
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-read-tree.1'

$ man git-read-tree.1

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

NAME

 git-read-tree - Reads tree information into the index

SYNOPSIS

 git read-tree [[-m [--trivial] [--aggressive] | --reset | --prefix=<prefix>]

 [-u | -i]] [--index-output=<file>] [--no-sparse-checkout]

 (--empty | <tree-ish1> [<tree-ish2> [<tree-ish3>]])

DESCRIPTION

 Reads the tree information given by <tree-ish> into the index, but does not actually

 update any of the files it "caches". (see: git-checkout-index(1))

 Optionally, it can merge a tree into the index, perform a fast-forward (i.e. 2-way) merge,

 or a 3-way merge, with the -m flag. When used with -m, the -u flag causes it to also

 update the files in the work tree with the result of the merge.

 Trivial merges are done by git read-tree itself. Only conflicting paths will be in

 unmerged state when git read-tree returns.

OPTIONS

 -m

 Perform a merge, not just a read. The command will refuse to run if your index file

 has unmerged entries, indicating that you have not finished previous merge you

 started.

 --reset

 Same as -m, except that unmerged entries are discarded instead of failing. When used

 with -u, updates leading to loss of working tree changes or untracked files or Page 1/9

 directories will not abort the operation.

 -u

 After a successful merge, update the files in the work tree with the result of the

 merge.

 -i

 Usually a merge requires the index file as well as the files in the working tree to be

 up to date with the current head commit, in order not to lose local changes. This flag

 disables the check with the working tree and is meant to be used when creating a merge

 of trees that are not directly related to the current working tree status into a

 temporary index file.

 -n, --dry-run

 Check if the command would error out, without updating the index or the files in the

 working tree for real.

 -v

 Show the progress of checking files out.

 --trivial

 Restrict three-way merge by git read-tree to happen only if there is no file-level

 merging required, instead of resolving merge for trivial cases and leaving conflicting

 files unresolved in the index.

 --aggressive

 Usually a three-way merge by git read-tree resolves the merge for really trivial cases

 and leaves other cases unresolved in the index, so that porcelains can implement

 different merge policies. This flag makes the command resolve a few more cases

 internally:

 ? when one side removes a path and the other side leaves the path unmodified. The

 resolution is to remove that path.

 ? when both sides remove a path. The resolution is to remove that path.

 ? when both sides add a path identically. The resolution is to add that path.

 --prefix=<prefix>

 Keep the current index contents, and read the contents of the named tree-ish under the

 directory at <prefix>. The command will refuse to overwrite entries that already

 existed in the original index file.

 --index-output=<file> Page 2/9

 Instead of writing the results out to $GIT_INDEX_FILE, write the resulting index in

 the named file. While the command is operating, the original index file is locked with

 the same mechanism as usual. The file must allow to be rename(2)ed into from a

 temporary file that is created next to the usual index file; typically this means it

 needs to be on the same filesystem as the index file itself, and you need write

 permission to the directories the index file and index output file are located in.

 --[no-]recurse-submodules

 Using --recurse-submodules will update the content of all active submodules according

 to the commit recorded in the superproject by calling read-tree recursively, also

 setting the submodules' HEAD to be detached at that commit.

 --no-sparse-checkout

 Disable sparse checkout support even if core.sparseCheckout is true.

 --empty

 Instead of reading tree object(s) into the index, just empty it.

 -q, --quiet

 Quiet, suppress feedback messages.

 <tree-ish#>

 The id of the tree object(s) to be read/merged.

MERGING

 If -m is specified, git read-tree can perform 3 kinds of merge, a single tree merge if

 only 1 tree is given, a fast-forward merge with 2 trees, or a 3-way merge if 3 or more

 trees are provided.

 Single Tree Merge

 If only 1 tree is specified, git read-tree operates as if the user did not specify -m,

 except that if the original index has an entry for a given pathname, and the contents of

 the path match with the tree being read, the stat info from the index is used. (In other

 words, the index?s stat()s take precedence over the merged tree?s).

 That means that if you do a git read-tree -m <newtree> followed by a git checkout-index -f

 -u -a, the git checkout-index only checks out the stuff that really changed.

 This is used to avoid unnecessary false hits when git diff-files is run after git

 read-tree.

 Two Tree Merge

 Typically, this is invoked as git read-tree -m $H $M, where $H is the head commit of the Page 3/9

 current repository, and $M is the head of a foreign tree, which is simply ahead of $H

 (i.e. we are in a fast-forward situation).

 When two trees are specified, the user is telling git read-tree the following:

 1. The current index and work tree is derived from $H, but the user may have local

 changes in them since $H.

 2. The user wants to fast-forward to $M.

 In this case, the git read-tree -m $H $M command makes sure that no local change is lost

 as the result of this "merge". Here are the "carry forward" rules, where "I" denotes the

 index, "clean" means that index and work tree coincide, and "exists"/"nothing" refer to

 the presence of a path in the specified commit:

 I H M Result

 0 nothing nothing nothing (does not happen)

 1 nothing nothing exists use M

 2 nothing exists nothing remove path from index

 3 nothing exists exists, use M if "initial checkout",

 H == M keep index otherwise

 exists, fail

 H != M

 clean I==H I==M

 4 yes N/A N/A nothing nothing keep index

 5 no N/A N/A nothing nothing keep index

 6 yes N/A yes nothing exists keep index

 7 no N/A yes nothing exists keep index

 8 yes N/A no nothing exists fail

 9 no N/A no nothing exists fail

 10 yes yes N/A exists nothing remove path from index

 11 no yes N/A exists nothing fail

 12 yes no N/A exists nothing fail

 13 no no N/A exists nothing fail

 clean (H==M)

 ------ Page 4/9

 14 yes exists exists keep index

 15 no exists exists keep index

 clean I==H I==M (H!=M)

 16 yes no no exists exists fail

 17 no no no exists exists fail

 18 yes no yes exists exists keep index

 19 no no yes exists exists keep index

 20 yes yes no exists exists use M

 21 no yes no exists exists fail

 In all "keep index" cases, the index entry stays as in the original index file. If the

 entry is not up to date, git read-tree keeps the copy in the work tree intact when

 operating under the -u flag.

 When this form of git read-tree returns successfully, you can see which of the "local

 changes" that you made were carried forward by running git diff-index --cached $M. Note

 that this does not necessarily match what git diff-index --cached $H would have produced

 before such a two tree merge. This is because of cases 18 and 19 --- if you already had

 the changes in $M (e.g. maybe you picked it up via e-mail in a patch form), git diff-index

 --cached $H would have told you about the change before this merge, but it would not show

 in git diff-index --cached $M output after the two-tree merge.

 Case 3 is slightly tricky and needs explanation. The result from this rule logically

 should be to remove the path if the user staged the removal of the path and then switching

 to a new branch. That however will prevent the initial checkout from happening, so the

 rule is modified to use M (new tree) only when the content of the index is empty.

 Otherwise the removal of the path is kept as long as $H and $M are the same.

 3-Way Merge

 Each "index" entry has two bits worth of "stage" state. stage 0 is the normal one, and is

 the only one you?d see in any kind of normal use.

 However, when you do git read-tree with three trees, the "stage" starts out at 1.

 This means that you can do

 $ git read-tree -m <tree1> <tree2> <tree3>

 and you will end up with an index with all of the <tree1> entries in "stage1", all of the

 <tree2> entries in "stage2" and all of the <tree3> entries in "stage3". When performing a Page 5/9

 merge of another branch into the current branch, we use the common ancestor tree as

 <tree1>, the current branch head as <tree2>, and the other branch head as <tree3>.

 Furthermore, git read-tree has special-case logic that says: if you see a file that

 matches in all respects in the following states, it "collapses" back to "stage0":

 ? stage 2 and 3 are the same; take one or the other (it makes no difference - the same

 work has been done on our branch in stage 2 and their branch in stage 3)

 ? stage 1 and stage 2 are the same and stage 3 is different; take stage 3 (our branch in

 stage 2 did not do anything since the ancestor in stage 1 while their branch in stage

 3 worked on it)

 ? stage 1 and stage 3 are the same and stage 2 is different take stage 2 (we did

 something while they did nothing)

 The git write-tree command refuses to write a nonsensical tree, and it will complain about

 unmerged entries if it sees a single entry that is not stage 0.

 OK, this all sounds like a collection of totally nonsensical rules, but it?s actually

 exactly what you want in order to do a fast merge. The different stages represent the

 "result tree" (stage 0, aka "merged"), the original tree (stage 1, aka "orig"), and the

 two trees you are trying to merge (stage 2 and 3 respectively).

 The order of stages 1, 2 and 3 (hence the order of three <tree-ish> command-line

 arguments) are significant when you start a 3-way merge with an index file that is already

 populated. Here is an outline of how the algorithm works:

 ? if a file exists in identical format in all three trees, it will automatically

 collapse to "merged" state by git read-tree.

 ? a file that has any difference what-so-ever in the three trees will stay as separate

 entries in the index. It?s up to "porcelain policy" to determine how to remove the

 non-0 stages, and insert a merged version.

 ? the index file saves and restores with all this information, so you can merge things

 incrementally, but as long as it has entries in stages 1/2/3 (i.e., "unmerged

 entries") you can?t write the result. So now the merge algorithm ends up being really

 simple:

 ? you walk the index in order, and ignore all entries of stage 0, since they?ve

 already been done.

 ? if you find a "stage1", but no matching "stage2" or "stage3", you know it?s been

 removed from both trees (it only existed in the original tree), and you remove Page 6/9

 that entry.

 ? if you find a matching "stage2" and "stage3" tree, you remove one of them, and

 turn the other into a "stage0" entry. Remove any matching "stage1" entry if it

 exists too. .. all the normal trivial rules ..

 You would normally use git merge-index with supplied git merge-one-file to do this last

 step. The script updates the files in the working tree as it merges each path and at the

 end of a successful merge.

 When you start a 3-way merge with an index file that is already populated, it is assumed

 that it represents the state of the files in your work tree, and you can even have files

 with changes unrecorded in the index file. It is further assumed that this state is

 "derived" from the stage 2 tree. The 3-way merge refuses to run if it finds an entry in

 the original index file that does not match stage 2.

 This is done to prevent you from losing your work-in-progress changes, and mixing your

 random changes in an unrelated merge commit. To illustrate, suppose you start from what

 has been committed last to your repository:

 $ JC=`git rev-parse --verify "HEAD^0"`

 $ git checkout-index -f -u -a $JC

 You do random edits, without running git update-index. And then you notice that the tip of

 your "upstream" tree has advanced since you pulled from him:

 $ git fetch git://.... linus

 $ LT=`git rev-parse FETCH_HEAD`

 Your work tree is still based on your HEAD ($JC), but you have some edits since. Three-way

 merge makes sure that you have not added or modified index entries since $JC, and if you

 haven?t, then does the right thing. So with the following sequence:

 $ git read-tree -m -u `git merge-base $JC $LT` $JC $LT

 $ git merge-index git-merge-one-file -a

 $ echo "Merge with Linus" | \

 git commit-tree `git write-tree` -p $JC -p $LT

 what you would commit is a pure merge between $JC and $LT without your work-in-progress

 changes, and your work tree would be updated to the result of the merge.

 However, if you have local changes in the working tree that would be overwritten by this

 merge, git read-tree will refuse to run to prevent your changes from being lost.

 In other words, there is no need to worry about what exists only in the working tree. When Page 7/9

 you have local changes in a part of the project that is not involved in the merge, your

 changes do not interfere with the merge, and are kept intact. When they do interfere, the

 merge does not even start (git read-tree complains loudly and fails without modifying

 anything). In such a case, you can simply continue doing what you were in the middle of

 doing, and when your working tree is ready (i.e. you have finished your work-in-progress),

 attempt the merge again.

SPARSE CHECKOUT

 "Sparse checkout" allows populating the working directory sparsely. It uses the

 skip-worktree bit (see git-update-index(1)) to tell Git whether a file in the working

 directory is worth looking at.

 git read-tree and other merge-based commands (git merge, git checkout...) can help

 maintaining the skip-worktree bitmap and working directory update.

 $GIT_DIR/info/sparse-checkout is used to define the skip-worktree reference bitmap. When

 git read-tree needs to update the working directory, it resets the skip-worktree bit in

 the index based on this file, which uses the same syntax as .gitignore files. If an entry

 matches a pattern in this file, skip-worktree will not be set on that entry. Otherwise,

 skip-worktree will be set.

 Then it compares the new skip-worktree value with the previous one. If skip-worktree turns

 from set to unset, it will add the corresponding file back. If it turns from unset to set,

 that file will be removed.

 While $GIT_DIR/info/sparse-checkout is usually used to specify what files are in, you can

 also specify what files are not in, using negate patterns. For example, to remove the file

 unwanted:

 /*

 !unwanted

 Another tricky thing is fully repopulating the working directory when you no longer want

 sparse checkout. You cannot just disable "sparse checkout" because skip-worktree bits are

 still in the index and your working directory is still sparsely populated. You should

 re-populate the working directory with the $GIT_DIR/info/sparse-checkout file content as

 follows:

 /*

 Then you can disable sparse checkout. Sparse checkout support in git read-tree and similar

 commands is disabled by default. You need to turn core.sparseCheckout on in order to have Page 8/9

 sparse checkout support.

SEE ALSO

 git-write-tree(1); git-ls-files(1); gitignore(5); git-sparse-checkout(1);

GIT

 Part of the git(1) suite

Git 2.34.1 07/07/2023 GIT-READ-TREE(1)

Page 9/9

