
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-revert.1'

$ man git-revert.1

GIT-REVERT(1) Git Manual GIT-REVERT(1)

NAME

 git-revert - Revert some existing commits

SYNOPSIS

 git revert [--[no-]edit] [-n] [-m parent-number] [-s] [-S[<keyid>]] <commit>...

 git revert (--continue | --skip | --abort | --quit)

DESCRIPTION

 Given one or more existing commits, revert the changes that the related patches introduce,

 and record some new commits that record them. This requires your working tree to be clean

 (no modifications from the HEAD commit).

 Note: git revert is used to record some new commits to reverse the effect of some earlier

 commits (often only a faulty one). If you want to throw away all uncommitted changes in

 your working directory, you should see git-reset(1), particularly the --hard option. If

 you want to extract specific files as they were in another commit, you should see git-

 restore(1), specifically the --source option. Take care with these alternatives as both

 will discard uncommitted changes in your working directory.

 See "Reset, restore and revert" in git(1) for the differences between the three commands.

OPTIONS

 <commit>...

 Commits to revert. For a more complete list of ways to spell commit names, see

 gitrevisions(7). Sets of commits can also be given but no traversal is done by

 default, see git-rev-list(1) and its --no-walk option.

 -e, --edit Page 1/4

 With this option, git revert will let you edit the commit message prior to committing

 the revert. This is the default if you run the command from a terminal.

 -m parent-number, --mainline parent-number

 Usually you cannot revert a merge because you do not know which side of the merge

 should be considered the mainline. This option specifies the parent number (starting

 from 1) of the mainline and allows revert to reverse the change relative to the

 specified parent.

 Reverting a merge commit declares that you will never want the tree changes brought in

 by the merge. As a result, later merges will only bring in tree changes introduced by

 commits that are not ancestors of the previously reverted merge. This may or may not

 be what you want.

 See the revert-a-faulty-merge How-To[1] for more details.

 --no-edit

 With this option, git revert will not start the commit message editor.

 --cleanup=<mode>

 This option determines how the commit message will be cleaned up before being passed

 on to the commit machinery. See git-commit(1) for more details. In particular, if the

 <mode> is given a value of scissors, scissors will be appended to MERGE_MSG before

 being passed on in the case of a conflict.

 -n, --no-commit

 Usually the command automatically creates some commits with commit log messages

 stating which commits were reverted. This flag applies the changes necessary to revert

 the named commits to your working tree and the index, but does not make the commits.

 In addition, when this option is used, your index does not have to match the HEAD

 commit. The revert is done against the beginning state of your index.

 This is useful when reverting more than one commits' effect to your index in a row.

 -S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

 GPG-sign commits. The keyid argument is optional and defaults to the committer

 identity; if specified, it must be stuck to the option without a space. --no-gpg-sign

 is useful to countermand both commit.gpgSign configuration variable, and earlier

 --gpg-sign.

 -s, --signoff

 Add a Signed-off-by trailer at the end of the commit message. See the signoff option Page 2/4

 in git-commit(1) for more information.

 --strategy=<strategy>

 Use the given merge strategy. Should only be used once. See the MERGE STRATEGIES

 section in git-merge(1) for details.

 -X<option>, --strategy-option=<option>

 Pass the merge strategy-specific option through to the merge strategy. See git-

 merge(1) for details.

 --rerere-autoupdate, --no-rerere-autoupdate

 Allow the rerere mechanism to update the index with the result of auto-conflict

 resolution if possible.

SEQUENCER SUBCOMMANDS

 --continue

 Continue the operation in progress using the information in .git/sequencer. Can be

 used to continue after resolving conflicts in a failed cherry-pick or revert.

 --skip

 Skip the current commit and continue with the rest of the sequence.

 --quit

 Forget about the current operation in progress. Can be used to clear the sequencer

 state after a failed cherry-pick or revert.

 --abort

 Cancel the operation and return to the pre-sequence state.

EXAMPLES

 git revert HEAD~3

 Revert the changes specified by the fourth last commit in HEAD and create a new commit

 with the reverted changes.

 git revert -n master~5..master~2

 Revert the changes done by commits from the fifth last commit in master (included) to

 the third last commit in master (included), but do not create any commit with the

 reverted changes. The revert only modifies the working tree and the index.

SEE ALSO

 git-cherry-pick(1)

GIT

 Part of the git(1) suite Page 3/4

NOTES

 1. revert-a-faulty-merge How-To

 file:///usr/share/doc/git/html/howto/revert-a-faulty-merge.html

Git 2.34.1 07/07/2023 GIT-REVERT(1)

Page 4/4

