
Rocky Enterprise Linux 9.2 Manual Pages on command 'git-stash.1'

$ man git-stash.1

GIT-STASH(1) Git Manual GIT-STASH(1)

NAME

 git-stash - Stash the changes in a dirty working directory away

SYNOPSIS

 git stash list [<log-options>]

 git stash show [-u|--include-untracked|--only-untracked] [<diff-options>] [<stash>]

 git stash drop [-q|--quiet] [<stash>]

 git stash (pop | apply) [--index] [-q|--quiet] [<stash>]

 git stash branch <branchname> [<stash>]

 git stash [push [-p|--patch] [-k|--[no-]keep-index] [-q|--quiet]

 [-u|--include-untracked] [-a|--all] [-m|--message <message>]

 [--pathspec-from-file=<file> [--pathspec-file-nul]]

 [--] [<pathspec>...]]

 git stash clear

 git stash create [<message>]

 git stash store [-m|--message <message>] [-q|--quiet] <commit>

DESCRIPTION

 Use git stash when you want to record the current state of the working directory and the

 index, but want to go back to a clean working directory. The command saves your local

 modifications away and reverts the working directory to match the HEAD commit.

 The modifications stashed away by this command can be listed with git stash list,

 inspected with git stash show, and restored (potentially on top of a different commit)

 with git stash apply. Calling git stash without any arguments is equivalent to git stash Page 1/8

 push. A stash is by default listed as "WIP on branchname ...", but you can give a more

 descriptive message on the command line when you create one.

 The latest stash you created is stored in refs/stash; older stashes are found in the

 reflog of this reference and can be named using the usual reflog syntax (e.g. stash@{0} is

 the most recently created stash, stash@{1} is the one before it, stash@{2.hours.ago} is

 also possible). Stashes may also be referenced by specifying just the stash index (e.g.

 the integer n is equivalent to stash@{n}).

COMMANDS

 push [-p|--patch] [-k|--[no-]keep-index] [-u|--include-untracked] [-a|--all] [-q|--quiet]

 [-m|--message <message>] [--pathspec-from-file=<file> [--pathspec-file-nul]] [--]

 [<pathspec>...]

 Save your local modifications to a new stash entry and roll them back to HEAD (in the

 working tree and in the index). The <message> part is optional and gives the

 description along with the stashed state.

 For quickly making a snapshot, you can omit "push". In this mode, non-option arguments

 are not allowed to prevent a misspelled subcommand from making an unwanted stash

 entry. The two exceptions to this are stash -p which acts as alias for stash push -p

 and pathspec elements, which are allowed after a double hyphen -- for disambiguation.

 save [-p|--patch] [-k|--[no-]keep-index] [-u|--include-untracked] [-a|--all] [-q|--quiet]

 [<message>]

 This option is deprecated in favour of git stash push. It differs from "stash push" in

 that it cannot take pathspec. Instead, all non-option arguments are concatenated to

 form the stash message.

 list [<log-options>]

 List the stash entries that you currently have. Each stash entry is listed with its

 name (e.g. stash@{0} is the latest entry, stash@{1} is the one before, etc.), the

 name of the branch that was current when the entry was made, and a short description

 of the commit the entry was based on.

 stash@{0}: WIP on submit: 6ebd0e2... Update git-stash documentation

 stash@{1}: On master: 9cc0589... Add git-stash

 The command takes options applicable to the git log command to control what is shown

 and how. See git-log(1).

 show [-u|--include-untracked|--only-untracked] [<diff-options>] [<stash>] Page 2/8

 Show the changes recorded in the stash entry as a diff between the stashed contents

 and the commit back when the stash entry was first created. By default, the command

 shows the diffstat, but it will accept any format known to git diff (e.g., git stash

 show -p stash@{1} to view the second most recent entry in patch form). If no

 <diff-option> is provided, the default behavior will be given by the stash.showStat,

 and stash.showPatch config variables. You can also use stash.showIncludeUntracked to

 set whether --include-untracked is enabled by default.

 pop [--index] [-q|--quiet] [<stash>]

 Remove a single stashed state from the stash list and apply it on top of the current

 working tree state, i.e., do the inverse operation of git stash push. The working

 directory must match the index.

 Applying the state can fail with conflicts; in this case, it is not removed from the

 stash list. You need to resolve the conflicts by hand and call git stash drop manually

 afterwards.

 apply [--index] [-q|--quiet] [<stash>]

 Like pop, but do not remove the state from the stash list. Unlike pop, <stash> may be

 any commit that looks like a commit created by stash push or stash create.

 branch <branchname> [<stash>]

 Creates and checks out a new branch named <branchname> starting from the commit at

 which the <stash> was originally created, applies the changes recorded in <stash> to

 the new working tree and index. If that succeeds, and <stash> is a reference of the

 form stash@{<revision>}, it then drops the <stash>.

 This is useful if the branch on which you ran git stash push has changed enough that

 git stash apply fails due to conflicts. Since the stash entry is applied on top of the

 commit that was HEAD at the time git stash was run, it restores the originally stashed

 state with no conflicts.

 clear

 Remove all the stash entries. Note that those entries will then be subject to pruning,

 and may be impossible to recover (see Examples below for a possible strategy).

 drop [-q|--quiet] [<stash>]

 Remove a single stash entry from the list of stash entries.

 create

 Create a stash entry (which is a regular commit object) and return its object name, Page 3/8

 without storing it anywhere in the ref namespace. This is intended to be useful for

 scripts. It is probably not the command you want to use; see "push" above.

 store

 Store a given stash created via git stash create (which is a dangling merge commit) in

 the stash ref, updating the stash reflog. This is intended to be useful for scripts.

 It is probably not the command you want to use; see "push" above.

OPTIONS

 -a, --all

 This option is only valid for push and save commands.

 All ignored and untracked files are also stashed and then cleaned up with git clean.

 -u, --include-untracked, --no-include-untracked

 When used with the push and save commands, all untracked files are also stashed and

 then cleaned up with git clean.

 When used with the show command, show the untracked files in the stash entry as part

 of the diff.

 --only-untracked

 This option is only valid for the show command.

 Show only the untracked files in the stash entry as part of the diff.

 --index

 This option is only valid for pop and apply commands.

 Tries to reinstate not only the working tree?s changes, but also the index?s ones.

 However, this can fail, when you have conflicts (which are stored in the index, where

 you therefore can no longer apply the changes as they were originally).

 -k, --keep-index, --no-keep-index

 This option is only valid for push and save commands.

 All changes already added to the index are left intact.

 -p, --patch

 This option is only valid for push and save commands.

 Interactively select hunks from the diff between HEAD and the working tree to be

 stashed. The stash entry is constructed such that its index state is the same as the

 index state of your repository, and its worktree contains only the changes you

 selected interactively. The selected changes are then rolled back from your worktree.

 See the ?Interactive Mode? section of git-add(1) to learn how to operate the --patch Page 4/8

 mode.

 The --patch option implies --keep-index. You can use --no-keep-index to override this.

 --pathspec-from-file=<file>

 This option is only valid for push command.

 Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then

 standard input is used. Pathspec elements are separated by LF or CR/LF. Pathspec

 elements can be quoted as explained for the configuration variable core.quotePath (see

 git-config(1)). See also --pathspec-file-nul and global --literal-pathspecs.

 --pathspec-file-nul

 This option is only valid for push command.

 Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL

 character and all other characters are taken literally (including newlines and

 quotes).

 -q, --quiet

 This option is only valid for apply, drop, pop, push, save, store commands.

 Quiet, suppress feedback messages.

 --

 This option is only valid for push command.

 Separates pathspec from options for disambiguation purposes.

 <pathspec>...

 This option is only valid for push command.

 The new stash entry records the modified states only for the files that match the

 pathspec. The index entries and working tree files are then rolled back to the state

 in HEAD only for these files, too, leaving files that do not match the pathspec

 intact.

 For more details, see the pathspec entry in gitglossary(7).

 <stash>

 This option is only valid for apply, branch, drop, pop, show commands.

 A reference of the form stash@{<revision>}. When no <stash> is given, the latest stash

 is assumed (that is, stash@{0}).

DISCUSSION

 A stash entry is represented as a commit whose tree records the state of the working

 directory, and its first parent is the commit at HEAD when the entry was created. The tree Page 5/8

 of the second parent records the state of the index when the entry is made, and it is made

 a child of the HEAD commit. The ancestry graph looks like this:

 .----W

 / /

 -----H----I

 where H is the HEAD commit, I is a commit that records the state of the index, and W is a

 commit that records the state of the working tree.

EXAMPLES

 Pulling into a dirty tree

 When you are in the middle of something, you learn that there are upstream changes

 that are possibly relevant to what you are doing. When your local changes do not

 conflict with the changes in the upstream, a simple git pull will let you move

 forward.

 However, there are cases in which your local changes do conflict with the upstream

 changes, and git pull refuses to overwrite your changes. In such a case, you can stash

 your changes away, perform a pull, and then unstash, like this:

 $ git pull

 ...

 file foobar not up to date, cannot merge.

 $ git stash

 $ git pull

 $ git stash pop

 Interrupted workflow

 When you are in the middle of something, your boss comes in and demands that you fix

 something immediately. Traditionally, you would make a commit to a temporary branch to

 store your changes away, and return to your original branch to make the emergency fix,

 like this:

 # ... hack hack hack ...

 $ git switch -c my_wip

 $ git commit -a -m "WIP"

 $ git switch master

 $ edit emergency fix

 $ git commit -a -m "Fix in a hurry" Page 6/8

 $ git switch my_wip

 $ git reset --soft HEAD^

 # ... continue hacking ...

 You can use git stash to simplify the above, like this:

 # ... hack hack hack ...

 $ git stash

 $ edit emergency fix

 $ git commit -a -m "Fix in a hurry"

 $ git stash pop

 # ... continue hacking ...

 Testing partial commits

 You can use git stash push --keep-index when you want to make two or more commits out

 of the changes in the work tree, and you want to test each change before committing:

 # ... hack hack hack ...

 $ git add --patch foo # add just first part to the index

 $ git stash push --keep-index # save all other changes to the stash

 $ edit/build/test first part

 $ git commit -m 'First part' # commit fully tested change

 $ git stash pop # prepare to work on all other changes

 # ... repeat above five steps until one commit remains ...

 $ edit/build/test remaining parts

 $ git commit foo -m 'Remaining parts'

 Recovering stash entries that were cleared/dropped erroneously

 If you mistakenly drop or clear stash entries, they cannot be recovered through the

 normal safety mechanisms. However, you can try the following incantation to get a list

 of stash entries that are still in your repository, but not reachable any more:

 git fsck --unreachable |

 grep commit | cut -d\ -f3 |

 xargs git log --merges --no-walk --grep=WIP

SEE ALSO

 git-checkout(1), git-commit(1), git-reflog(1), git-reset(1), git-switch(1)

GIT

 Part of the git(1) suite Page 7/8

Git 2.34.1 07/07/2023 GIT-STASH(1)

Page 8/8

