
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitrepository-layout.5'

$ man gitrepository-layout.5

GITREPOSITORY-LAYOU(5) Git Manual GITREPOSITORY-LAYOU(5)

NAME

 gitrepository-layout - Git Repository Layout

SYNOPSIS

 $GIT_DIR/*

DESCRIPTION

 A Git repository comes in two different flavours:

 ? a .git directory at the root of the working tree;

 ? a <project>.git directory that is a bare repository (i.e. without its own working

 tree), that is typically used for exchanging histories with others by pushing into it

 and fetching from it.

 Note: Also you can have a plain text file .git at the root of your working tree,

 containing gitdir: <path> to point at the real directory that has the repository. This

 mechanism is often used for a working tree of a submodule checkout, to allow you in the

 containing superproject to git checkout a branch that does not have the submodule. The

 checkout has to remove the entire submodule working tree, without losing the submodule

 repository.

 These things may exist in a Git repository.

 objects

 Object store associated with this repository. Usually an object store is self

 sufficient (i.e. all the objects that are referred to by an object found in it are

 also found in it), but there are a few ways to violate it.

 1. You could have an incomplete but locally usable repository by creating a shallow Page 1/9

 clone. See git-clone(1).

 2. You could be using the objects/info/alternates or

 $GIT_ALTERNATE_OBJECT_DIRECTORIES mechanisms to borrow objects from other object

 stores. A repository with this kind of incomplete object store is not suitable to

 be published for use with dumb transports but otherwise is OK as long as

 objects/info/alternates points at the object stores it borrows from.

 This directory is ignored if $GIT_COMMON_DIR is set and "$GIT_COMMON_DIR/objects"

 will be used instead.

 objects/[0-9a-f][0-9a-f]

 A newly created object is stored in its own file. The objects are splayed over 256

 subdirectories using the first two characters of the sha1 object name to keep the

 number of directory entries in objects itself to a manageable number. Objects found

 here are often called unpacked (or loose) objects.

 objects/pack

 Packs (files that store many objects in compressed form, along with index files to

 allow them to be randomly accessed) are found in this directory.

 objects/info

 Additional information about the object store is recorded in this directory.

 objects/info/packs

 This file is to help dumb transports discover what packs are available in this object

 store. Whenever a pack is added or removed, git update-server-info should be run to

 keep this file up to date if the repository is published for dumb transports. git

 repack does this by default.

 objects/info/alternates

 This file records paths to alternate object stores that this object store borrows

 objects from, one pathname per line. Note that not only native Git tools use it

 locally, but the HTTP fetcher also tries to use it remotely; this will usually work if

 you have relative paths (relative to the object database, not to the repository!) in

 your alternates file, but it will not work if you use absolute paths unless the

 absolute path in filesystem and web URL is the same. See also

 objects/info/http-alternates.

 objects/info/http-alternates

 This file records URLs to alternate object stores that this object store borrows Page 2/9

 objects from, to be used when the repository is fetched over HTTP.

 refs

 References are stored in subdirectories of this directory. The git prune command knows

 to preserve objects reachable from refs found in this directory and its

 subdirectories. This directory is ignored (except refs/bisect, refs/rewritten and

 refs/worktree) if $GIT_COMMON_DIR is set and "$GIT_COMMON_DIR/refs" will be used

 instead.

 refs/heads/name

 records tip-of-the-tree commit objects of branch name

 refs/tags/name

 records any object name (not necessarily a commit object, or a tag object that points

 at a commit object).

 refs/remotes/name

 records tip-of-the-tree commit objects of branches copied from a remote repository.

 refs/replace/<obj-sha1>

 records the SHA-1 of the object that replaces <obj-sha1>. This is similar to

 info/grafts and is internally used and maintained by git-replace(1). Such refs can be

 exchanged between repositories while grafts are not.

 packed-refs

 records the same information as refs/heads/, refs/tags/, and friends record in a more

 efficient way. See git-pack-refs(1). This file is ignored if $GIT_COMMON_DIR is set

 and "$GIT_COMMON_DIR/packed-refs" will be used instead.

 HEAD

 A symref (see glossary) to the refs/heads/ namespace describing the currently active

 branch. It does not mean much if the repository is not associated with any working

 tree (i.e. a bare repository), but a valid Git repository must have the HEAD file;

 some porcelains may use it to guess the designated "default" branch of the repository

 (usually master). It is legal if the named branch name does not (yet) exist. In some

 legacy setups, it is a symbolic link instead of a symref that points at the current

 branch.

 HEAD can also record a specific commit directly, instead of being a symref to point at

 the current branch. Such a state is often called detached HEAD. See git-checkout(1)

 for details. Page 3/9

 config

 Repository specific configuration file. This file is ignored if $GIT_COMMON_DIR is set

 and "$GIT_COMMON_DIR/config" will be used instead.

 config.worktree

 Working directory specific configuration file for the main working directory in

 multiple working directory setup (see git-worktree(1)).

 branches

 A slightly deprecated way to store shorthands to be used to specify a URL to git

 fetch, git pull and git push. A file can be stored as branches/<name> and then name

 can be given to these commands in place of repository argument. See the REMOTES

 section in git-fetch(1) for details. This mechanism is legacy and not likely to be

 found in modern repositories. This directory is ignored if $GIT_COMMON_DIR is set and

 "$GIT_COMMON_DIR/branches" will be used instead.

 hooks

 Hooks are customization scripts used by various Git commands. A handful of sample

 hooks are installed when git init is run, but all of them are disabled by default. To

 enable, the .sample suffix has to be removed from the filename by renaming. Read

 githooks(5) for more details about each hook. This directory is ignored if

 $GIT_COMMON_DIR is set and "$GIT_COMMON_DIR/hooks" will be used instead.

 common

 When multiple working trees are used, most of files in $GIT_DIR are per-worktree with

 a few known exceptions. All files under common however will be shared between all

 working trees.

 index

 The current index file for the repository. It is usually not found in a bare

 repository.

 sharedindex.<SHA-1>

 The shared index part, to be referenced by $GIT_DIR/index and other temporary index

 files. Only valid in split index mode.

 info

 Additional information about the repository is recorded in this directory. This

 directory is ignored if $GIT_COMMON_DIR is set and "$GIT_COMMON_DIR/info" will be used

 instead. Page 4/9

 info/refs

 This file helps dumb transports discover what refs are available in this repository.

 If the repository is published for dumb transports, this file should be regenerated by

 git update-server-info every time a tag or branch is created or modified. This is

 normally done from the hooks/update hook, which is run by the git-receive-pack command

 when you git push into the repository.

 info/grafts

 This file records fake commit ancestry information, to pretend the set of parents a

 commit has is different from how the commit was actually created. One record per line

 describes a commit and its fake parents by listing their 40-byte hexadecimal object

 names separated by a space and terminated by a newline.

 Note that the grafts mechanism is outdated and can lead to problems transferring

 objects between repositories; see git-replace(1) for a more flexible and robust system

 to do the same thing.

 info/exclude

 This file, by convention among Porcelains, stores the exclude pattern list.

 .gitignore is the per-directory ignore file. git status, git add, git rm and git

 clean look at it but the core Git commands do not look at it. See also: gitignore(5).

 info/attributes

 Defines which attributes to assign to a path, similar to per-directory .gitattributes

 files. See also: gitattributes(5).

 info/sparse-checkout

 This file stores sparse checkout patterns. See also: git-read-tree(1).

 remotes

 Stores shorthands for URL and default refnames for use when interacting with remote

 repositories via git fetch, git pull and git push commands. See the REMOTES section in

 git-fetch(1) for details. This mechanism is legacy and not likely to be found in

 modern repositories. This directory is ignored if $GIT_COMMON_DIR is set and

 "$GIT_COMMON_DIR/remotes" will be used instead.

 logs

 Records of changes made to refs are stored in this directory. See git-update-ref(1)

 for more information. This directory is ignored (except logs/HEAD) if $GIT_COMMON_DIR

 is set and "$GIT_COMMON_DIR/logs" will be used instead. Page 5/9

 logs/refs/heads/name

 Records all changes made to the branch tip named name.

 logs/refs/tags/name

 Records all changes made to the tag named name.

 shallow

 This is similar to info/grafts but is internally used and maintained by shallow clone

 mechanism. See --depth option to git-clone(1) and git-fetch(1). This file is ignored

 if $GIT_COMMON_DIR is set and "$GIT_COMMON_DIR/shallow" will be used instead.

 commondir

 If this file exists, $GIT_COMMON_DIR (see git(1)) will be set to the path specified in

 this file if it is not explicitly set. If the specified path is relative, it is

 relative to $GIT_DIR. The repository with commondir is incomplete without the

 repository pointed by "commondir".

 modules

 Contains the git-repositories of the submodules.

 worktrees

 Contains administrative data for linked working trees. Each subdirectory contains the

 working tree-related part of a linked working tree. This directory is ignored if

 $GIT_COMMON_DIR is set, in which case "$GIT_COMMON_DIR/worktrees" will be used

 instead.

 worktrees/<id>/gitdir

 A text file containing the absolute path back to the .git file that points to here.

 This is used to check if the linked repository has been manually removed and there is

 no need to keep this directory any more. The mtime of this file should be updated

 every time the linked repository is accessed.

 worktrees/<id>/locked

 If this file exists, the linked working tree may be on a portable device and not

 available. The presence of this file prevents worktrees/<id> from being pruned either

 automatically or manually by git worktree prune. The file may contain a string

 explaining why the repository is locked.

 worktrees/<id>/config.worktree

 Working directory specific configuration file.

GIT REPOSITORY FORMAT VERSIONS Page 6/9

 Every git repository is marked with a numeric version in the core.repositoryformatversion

 key of its config file. This version specifies the rules for operating on the on-disk

 repository data. An implementation of git which does not understand a particular version

 advertised by an on-disk repository MUST NOT operate on that repository; doing so risks

 not only producing wrong results, but actually losing data.

 Because of this rule, version bumps should be kept to an absolute minimum. Instead, we

 generally prefer these strategies:

 ? bumping format version numbers of individual data files (e.g., index, packfiles, etc).

 This restricts the incompatibilities only to those files.

 ? introducing new data that gracefully degrades when used by older clients (e.g., pack

 bitmap files are ignored by older clients, which simply do not take advantage of the

 optimization they provide).

 A whole-repository format version bump should only be part of a change that cannot be

 independently versioned. For instance, if one were to change the reachability rules for

 objects, or the rules for locking refs, that would require a bump of the repository format

 version.

 Note that this applies only to accessing the repository?s disk contents directly. An older

 client which understands only format 0 may still connect via git:// to a repository using

 format 1, as long as the server process understands format 1.

 The preferred strategy for rolling out a version bump (whether whole repository or for a

 single file) is to teach git to read the new format, and allow writing the new format with

 a config switch or command line option (for experimentation or for those who do not care

 about backwards compatibility with older gits). Then after a long period to allow the

 reading capability to become common, we may switch to writing the new format by default.

 The currently defined format versions are:

 Version 0

 This is the format defined by the initial version of git, including but not limited to the

 format of the repository directory, the repository configuration file, and the object and

 ref storage. Specifying the complete behavior of git is beyond the scope of this document.

 Version 1

 This format is identical to version 0, with the following exceptions:

 1. When reading the core.repositoryformatversion variable, a git implementation which

 supports version 1 MUST also read any configuration keys found in the extensions Page 7/9

 section of the configuration file.

 2. If a version-1 repository specifies any extensions.* keys that the running git has

 not implemented, the operation MUST NOT proceed. Similarly, if the value of any known

 key is not understood by the implementation, the operation MUST NOT proceed.

 Note that if no extensions are specified in the config file, then

 core.repositoryformatversion SHOULD be set to 0 (setting it to 1 provides no benefit, and

 makes the repository incompatible with older implementations of git).

 This document will serve as the master list for extensions. Any implementation wishing to

 define a new extension should make a note of it here, in order to claim the name.

 The defined extensions are:

 noop

 This extension does not change git?s behavior at all. It is useful only for testing

 format-1 compatibility.

 preciousObjects

 When the config key extensions.preciousObjects is set to true, objects in the

 repository MUST NOT be deleted (e.g., by git-prune or git repack -d).

 partialclone

 When the config key extensions.partialclone is set, it indicates that the repo was

 created with a partial clone (or later performed a partial fetch) and that the remote

 may have omitted sending certain unwanted objects. Such a remote is called a "promisor

 remote" and it promises that all such omitted objects can be fetched from it in the

 future.

 The value of this key is the name of the promisor remote.

 worktreeConfig

 If set, by default "git config" reads from both "config" and "config.worktree" file

 from GIT_DIR in that order. In multiple working directory mode, "config" file is

 shared while "config.worktree" is per-working directory (i.e., it?s in

 GIT_COMMON_DIR/worktrees/<id>/config.worktree)

SEE ALSO

 git-init(1), git-clone(1), git-fetch(1), git-pack-refs(1), git-gc(1), git-checkout(1),

 gitglossary(7), The Git User?s Manual[1]

GIT

 Part of the git(1) suite Page 8/9

NOTES

 1. The Git User?s Manual

 file:///usr/share/doc/git/html/user-manual.html

Git 2.34.1 07/07/2023 GITREPOSITORY-LAYOU(5)

Page 9/9

