FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'gitsubmodules.7’
$ man gitsubmodules.7
GITSUBMODULES(7) Git Manual GITSUBMODULES(7)
NAME
gitsubmodules - Mounting one repository inside another
SYNOPSIS
.gitmodules, $GIT_DIR/config
git submodule
git <command> --recurse-submodules
DESCRIPTION
A submodule is a repository embedded inside another repository. The submodule has its own
history; the repository it is embedded in is called a superproject.
On the filesystem, a submodule usually (but not always - see FORMS below) consists of (i)
a Git directory located under the $GIT_DIR/modules/ directory of its superproject, (ii) a
working directory inside the superproject?s working directory, and a .git file at the root
of the submodule?s working directory pointing to (i).
Assuming the submodule has a Git directory at $GIT_DIR/modules/foo/ and a working
directory at path/to/bar/, the superproject tracks the submodule via a gitlink entry in
the tree at path/to/bar and an entry in its .gitmodules file (see gitmodules(5)) of the
form submodule.foo.path = path/to/bar.
The gitlink entry contains the object name of the commit that the superproject expects the
submodule?s working directory to be at.
The section submodule.foo.* in the .gitmodules file gives additional hints to Git?s
porcelain layer. For example, the submodule.foo.url setting specifies where to obtain the

submodule. Page 1/6

Submodules can be used for at least two different use cases:

1. Using another project while maintaining independent history. Submodules allow you to
contain the working tree of another project within your own working tree while keeping
the history of both projects separate. Also, since submodules are fixed to an
arbitrary version, the other project can be independently developed without affecting
the superproject, allowing the superproject project to fix itself to new versions only
when desired.

2. Splitting a (logically single) project into multiple repositories and tying them back
together. This can be used to overcome current limitations of Git?s implementation to
have finer grained access:

? Size of the Git repository: In its current form Git scales up poorly for large
repositories containing content that is not compressed by delta computation
between trees. For example, you can use submodules to hold large binary assets and
these repositories can be shallowly cloned such that you do not have a large
history locally.

? Transfer size: In its current form Git requires the whole working tree present. It
does not allow partial trees to be transferred in fetch or clone. If the project
you work on consists of multiple repositories tied together as submodules in a
superproject, you can avoid fetching the working trees of the repositories you are
not interested in.

? Access control: By restricting user access to submodules, this can be used to
implement read/write policies for different users.

THE CONFIGURATION OF SUBMODULES

Submodule operations can be configured using the following mechanisms (from highest to

lowest precedence):

? The command line for those commands that support taking submodules as part of their
pathspecs. Most commands have a boolean flag --recurse-submodules which specify
whether to recurse into submodules. Examples are grep and checkout. Some commands take
enums, such as fetch and push, where you can specify how submodules are affected.

? The configuration inside the submodule. This includes $GIT_DIR/config in the
submodule, but also settings in the tree such as a .gitattributes or .gitignore files
that specify behavior of commands inside the submodule.

For example an effect from the submodule?s .gitignore file would be observed when you Page 2/6

run git status --ignore-submodules=none in the superproject. This collects information

from the submodule?s working directory by running status in the submodule while paying

attention to the .gitignore file of the submodule.

The submodule?s $GIT_DIR/config file would come into play when running git push
--recurse-submodules=check in the superproject, as this would check if the submodule
has any changes not published to any remote. The remotes are configured in the
submodule as usual in the $GIT_DIR/config file.

? The configuration file $GIT_DIR/config in the superproject. Git only recurses into
active submodules (see "ACTIVE SUBMODULES" section below).

If the submodule is not yet initialized, then the configuration inside the submodule
does not exist yet, so where to obtain the submodule from is configured here for
example.

? The .gitmodules file inside the superproject. A project usually uses this file to
suggest defaults for the upstream collection of repositories for the mapping that is
required between a submodule?s name and its path.

This file mainly serves as the mapping between the name and path of submodules in the
superproject, such that the submodule?s Git directory can be located.
If the submodule has never been initialized, this is the only place where submodule
configuration is found. It serves as the last fallback to specify where to obtain the
submodule from.

FORMS

Submodules can take the following forms:

? The basic form described in DESCRIPTION with a Git directory, a working directory, a
gitlink, and a .gitmodules entry.

? "Old-form" submodule: A working directory with an embedded .git directory, and the
tracking gitlink and .gitmodules entry in the superproject. This is typically found in
repositories generated using older versions of Git.

It is possible to construct these old form repositories manually.
When deinitialized or deleted (see below), the submodule?s Git directory is
automatically moved to $GIT_DIR/modules/<name>/ of the superproject.

? Deinitialized submodule: A gitlink, and a .gitmodules entry, but no submodule working
directory. The submodule?s Git directory may be there as after deinitializing the Git

directory is kept around. The directory which is supposed to be the working directory

Page 3/6

is empty instead.
A submodule can be deinitialized by running git submodule deinit. Besides emptying the
working directory, this command only modifies the superproject?s $GIT_DIR/config file,
so the superproject?s history is not affected. This can be undone using git submodule
init.
? Deleted submodule: A submodule can be deleted by running git rm <submodule path> &&
git commit. This can be undone using git revert.
The deletion removes the superproject?s tracking data, which are both the gitlink
entry and the section in the .gitmodules file. The submodule?s working directory is
removed from the file system, but the Git directory is kept around as it to make it
possible to checkout past commits without requiring fetching from another repository.
To completely remove a submodule, manually delete $GIT_DIR/modules/<name>/.
ACTIVE SUBMODULES
A submodule is considered active,
1. if submodule.<name>.active is set to true
or
2. if the submodule?s path matches the pathspec in submodule.active
or
3. if submodule.<name>.url is set.
and these are evaluated in this order.
For example:
[submodule "fo0"]
active = false
url = https://example.org/foo
[submodule "bar"]
active = true
url = https://example.org/bar
[submodule "baz"]
url = https://example.org/baz
In the above config only the submodule bar and baz are active, bar due to (1) and baz due
to (3). foo is inactive because (1) takes precedence over (3)
Note that (3) is a historical artefact and will be ignored if the (1) and (2) specify that

the submodule is not active. In other words, if we have a submodule.<name>.active set to Page 4/6

false or if the submodule?s path is excluded in the pathspec in submodule.active, the url
doesn?t matter whether it is present or not. This is illustrated in the example that
follows.
[submodule "fo0"]
active = true
url = https://example.org/foo
[submodule "bar"]
url = https://example.org/bar
[submodule "baz"]
url = https://example.org/baz
[submodule "bob"]
ignore = true
[submodule]
active = b*
active = :(exclude) baz
In here all submodules except baz (foo, bar, bob) are active. foo due to its own active
flag and all the others due to the submodule active pathspec, which specifies that any
submodule starting with b except baz are also active, regardless of the presence of the
.url field.
WORKFLOW FOR A THIRD PARTY LIBRARY
Add a submodule
git submodule add <url> <path>
Occasionally update the submodule to a new version:
git -C <path> checkout <new version>
git add <path>
git commit -m "update submodule to new version"
See the list of submodules in a superproject
git submodule status
See FORMS on removing submodules
WORKFLOW FOR AN ARTIFICIALLY SPLIT REPO
Enable recursion for relevant commands, such that
regular commands recurse into submodules by default

git config --global submodule.recurse true Page 5/6

Unlike most other commands below, clone still needs
its own recurse flag:
git clone --recurse <URL> <directory>
cd <directory>
Get to know the code:
git grep foo
git Is-files --recurse-submodules
Note
git Is-files also requires its own --recurse-submodules flag.
Get new code
git fetch
git pull --rebase
Change worktree
git checkout
git reset
IMPLEMENTATION DETAILS
When cloning or pulling a repository containing submodules the submodules will not be
checked out by default; you can instruct clone to recurse into submodules. The init and
update subcommands of git submodule will maintain submodules checked out and at an
appropriate revision in your working tree. Alternatively you can set submodule.recurse to
have checkout recursing into submodules (note that submodule.recurse also affects other
Git commands, see git-config(1) for a complete list).
SEE ALSO
git-submodule(1), gitmodules(5).
GIT
Part of the git(1) suite

Git2.34.1 07/07/2023 GITSUBMODULES(7)

Page 6/6

