
Rocky Enterprise Linux 9.2 Manual Pages on command 'gitsubmodules.7'

$ man gitsubmodules.7

GITSUBMODULES(7)                            Git Manual                           GITSUBMODULES(7)

NAME

       gitsubmodules - Mounting one repository inside another

SYNOPSIS

       .gitmodules, $GIT_DIR/config

       git submodule

       git <command> --recurse-submodules

DESCRIPTION

       A submodule is a repository embedded inside another repository. The submodule has its own

       history; the repository it is embedded in is called a superproject.

       On the filesystem, a submodule usually (but not always - see FORMS below) consists of (i)

       a Git directory located under the $GIT_DIR/modules/ directory of its superproject, (ii) a

       working directory inside the superproject?s working directory, and a .git file at the root

       of the submodule?s working directory pointing to (i).

       Assuming the submodule has a Git directory at $GIT_DIR/modules/foo/ and a working

       directory at path/to/bar/, the superproject tracks the submodule via a gitlink entry in

       the tree at path/to/bar and an entry in its .gitmodules file (see gitmodules(5)) of the

       form submodule.foo.path = path/to/bar.

       The gitlink entry contains the object name of the commit that the superproject expects the

       submodule?s working directory to be at.

       The section submodule.foo.* in the .gitmodules file gives additional hints to Git?s

       porcelain layer. For example, the submodule.foo.url setting specifies where to obtain the

       submodule. Page 1/6



       Submodules can be used for at least two different use cases:

        1. Using another project while maintaining independent history. Submodules allow you to

           contain the working tree of another project within your own working tree while keeping

           the history of both projects separate. Also, since submodules are fixed to an

           arbitrary version, the other project can be independently developed without affecting

           the superproject, allowing the superproject project to fix itself to new versions only

           when desired.

        2. Splitting a (logically single) project into multiple repositories and tying them back

           together. This can be used to overcome current limitations of Git?s implementation to

           have finer grained access:

           ?   Size of the Git repository: In its current form Git scales up poorly for large

               repositories containing content that is not compressed by delta computation

               between trees. For example, you can use submodules to hold large binary assets and

               these repositories can be shallowly cloned such that you do not have a large

               history locally.

           ?   Transfer size: In its current form Git requires the whole working tree present. It

               does not allow partial trees to be transferred in fetch or clone. If the project

               you work on consists of multiple repositories tied together as submodules in a

               superproject, you can avoid fetching the working trees of the repositories you are

               not interested in.

           ?   Access control: By restricting user access to submodules, this can be used to

               implement read/write policies for different users.

THE CONFIGURATION OF SUBMODULES

       Submodule operations can be configured using the following mechanisms (from highest to

       lowest precedence):

       ?   The command line for those commands that support taking submodules as part of their

           pathspecs. Most commands have a boolean flag --recurse-submodules which specify

           whether to recurse into submodules. Examples are grep and checkout. Some commands take

           enums, such as fetch and push, where you can specify how submodules are affected.

       ?   The configuration inside the submodule. This includes $GIT_DIR/config in the

           submodule, but also settings in the tree such as a .gitattributes or .gitignore files

           that specify behavior of commands inside the submodule.

           For example an effect from the submodule?s .gitignore file would be observed when you Page 2/6



           run git status --ignore-submodules=none in the superproject. This collects information

           from the submodule?s working directory by running status in the submodule while paying

           attention to the .gitignore file of the submodule.

           The submodule?s $GIT_DIR/config file would come into play when running git push

           --recurse-submodules=check in the superproject, as this would check if the submodule

           has any changes not published to any remote. The remotes are configured in the

           submodule as usual in the $GIT_DIR/config file.

       ?   The configuration file $GIT_DIR/config in the superproject. Git only recurses into

           active submodules (see "ACTIVE SUBMODULES" section below).

           If the submodule is not yet initialized, then the configuration inside the submodule

           does not exist yet, so where to obtain the submodule from is configured here for

           example.

       ?   The .gitmodules file inside the superproject. A project usually uses this file to

           suggest defaults for the upstream collection of repositories for the mapping that is

           required between a submodule?s name and its path.

           This file mainly serves as the mapping between the name and path of submodules in the

           superproject, such that the submodule?s Git directory can be located.

           If the submodule has never been initialized, this is the only place where submodule

           configuration is found. It serves as the last fallback to specify where to obtain the

           submodule from.

FORMS

       Submodules can take the following forms:

       ?   The basic form described in DESCRIPTION with a Git directory, a working directory, a

           gitlink, and a .gitmodules entry.

       ?   "Old-form" submodule: A working directory with an embedded .git directory, and the

           tracking gitlink and .gitmodules entry in the superproject. This is typically found in

           repositories generated using older versions of Git.

           It is possible to construct these old form repositories manually.

           When deinitialized or deleted (see below), the submodule?s Git directory is

           automatically moved to $GIT_DIR/modules/<name>/ of the superproject.

       ?   Deinitialized submodule: A gitlink, and a .gitmodules entry, but no submodule working

           directory. The submodule?s Git directory may be there as after deinitializing the Git

           directory is kept around. The directory which is supposed to be the working directory Page 3/6



           is empty instead.

           A submodule can be deinitialized by running git submodule deinit. Besides emptying the

           working directory, this command only modifies the superproject?s $GIT_DIR/config file,

           so the superproject?s history is not affected. This can be undone using git submodule

           init.

       ?   Deleted submodule: A submodule can be deleted by running git rm <submodule path> &&

           git commit. This can be undone using git revert.

           The deletion removes the superproject?s tracking data, which are both the gitlink

           entry and the section in the .gitmodules file. The submodule?s working directory is

           removed from the file system, but the Git directory is kept around as it to make it

           possible to checkout past commits without requiring fetching from another repository.

           To completely remove a submodule, manually delete $GIT_DIR/modules/<name>/.

ACTIVE SUBMODULES

       A submodule is considered active,

        1. if submodule.<name>.active is set to true

           or

        2. if the submodule?s path matches the pathspec in submodule.active

           or

        3. if submodule.<name>.url is set.

       and these are evaluated in this order.

       For example:

           [submodule "foo"]

             active = false

             url = https://example.org/foo

           [submodule "bar"]

             active = true

             url = https://example.org/bar

           [submodule "baz"]

             url = https://example.org/baz

       In the above config only the submodule bar and baz are active, bar due to (1) and baz due

       to (3). foo is inactive because (1) takes precedence over (3)

       Note that (3) is a historical artefact and will be ignored if the (1) and (2) specify that

       the submodule is not active. In other words, if we have a submodule.<name>.active set to Page 4/6



       false or if the submodule?s path is excluded in the pathspec in submodule.active, the url

       doesn?t matter whether it is present or not. This is illustrated in the example that

       follows.

           [submodule "foo"]

             active = true

             url = https://example.org/foo

           [submodule "bar"]

             url = https://example.org/bar

           [submodule "baz"]

             url = https://example.org/baz

           [submodule "bob"]

             ignore = true

           [submodule]

             active = b*

             active = :(exclude) baz

       In here all submodules except baz (foo, bar, bob) are active. foo due to its own active

       flag and all the others due to the submodule active pathspec, which specifies that any

       submodule starting with b except baz are also active, regardless of the presence of the

       .url field.

WORKFLOW FOR A THIRD PARTY LIBRARY

           # Add a submodule

           git submodule add <url> <path>

           # Occasionally update the submodule to a new version:

           git -C <path> checkout <new version>

           git add <path>

           git commit -m "update submodule to new version"

           # See the list of submodules in a superproject

           git submodule status

           # See FORMS on removing submodules

WORKFLOW FOR AN ARTIFICIALLY SPLIT REPO

           # Enable recursion for relevant commands, such that

           # regular commands recurse into submodules by default

           git config --global submodule.recurse true Page 5/6



           # Unlike most other commands below, clone still needs

           # its own recurse flag:

           git clone --recurse <URL> <directory>

           cd <directory>

           # Get to know the code:

           git grep foo

           git ls-files --recurse-submodules

           Note

           git ls-files also requires its own --recurse-submodules flag.

           # Get new code

           git fetch

           git pull --rebase

           # Change worktree

           git checkout

           git reset

IMPLEMENTATION DETAILS

       When cloning or pulling a repository containing submodules the submodules will not be

       checked out by default; you can instruct clone to recurse into submodules. The init and

       update subcommands of git submodule will maintain submodules checked out and at an

       appropriate revision in your working tree. Alternatively you can set submodule.recurse to

       have checkout recursing into submodules (note that submodule.recurse also affects other

       Git commands, see git-config(1) for a complete list).

SEE ALSO

       git-submodule(1), gitmodules(5).

GIT

       Part of the git(1) suite

Git 2.34.1                                  07/07/2023                           GITSUBMODULES(7)

Page 6/6


