
Rocky Enterprise Linux 9.2 Manual Pages on command 'glob.7'

$ man glob.7

GLOB(7) Linux Programmer's Manual GLOB(7)

NAME

 glob - globbing pathnames

DESCRIPTION

 Long ago, in UNIX V6, there was a program /etc/glob that would expand wildcard patterns.

 Soon afterward this became a shell built-in.

 These days there is also a library routine glob(3) that will perform this function for a

 user program.

 The rules are as follows (POSIX.2, 3.13).

 Wildcard matching

 A string is a wildcard pattern if it contains one of the characters '?', '*' or '['.

 Globbing is the operation that expands a wildcard pattern into the list of pathnames

 matching the pattern. Matching is defined by:

 A '?' (not between brackets) matches any single character.

 A '*' (not between brackets) matches any string, including the empty string.

 Character classes

 An expression "[...]" where the first character after the leading '[' is not an '!'

 matches a single character, namely any of the characters enclosed by the brackets. The

 string enclosed by the brackets cannot be empty; therefore ']' can be allowed between the

 brackets, provided that it is the first character. (Thus, "[][!]" matches the three char?

 acters '[', ']' and '!'.)

 Ranges

 There is one special convention: two characters separated by '-' denote a range. (Thus, Page 1/4

 "[A-Fa-f0-9]" is equivalent to "[ABCDEFabcdef0123456789]".) One may include '-' in its

 literal meaning by making it the first or last character between the brackets. (Thus,

 "[]-]" matches just the two characters ']' and '-', and "[--0]" matches the three charac?

 ters '-', '.', '0', since '/' cannot be matched.)

 Complementation

 An expression "[!...]" matches a single character, namely any character that is not

 matched by the expression obtained by removing the first '!' from it. (Thus, "[!]a-]"

 matches any single character except ']', 'a' and '-'.)

 One can remove the special meaning of '?', '*' and '[' by preceding them by a backslash,

 or, in case this is part of a shell command line, enclosing them in quotes. Between

 brackets these characters stand for themselves. Thus, "[[?*\]" matches the four charac?

 ters '[', '?', '*' and '\'.

 Pathnames

 Globbing is applied on each of the components of a pathname separately. A '/' in a path?

 name cannot be matched by a '?' or '*' wildcard, or by a range like "[.-0]". A range con?

 taining an explicit '/' character is syntactically incorrect. (POSIX requires that syn?

 tactically incorrect patterns are left unchanged.)

 If a filename starts with a '.', this character must be matched explicitly. (Thus, rm *

 will not remove .profile, and tar c * will not archive all your files; tar c . is better.)

 Empty lists

 The nice and simple rule given above: "expand a wildcard pattern into the list of matching

 pathnames" was the original UNIX definition. It allowed one to have patterns that expand

 into an empty list, as in

 xv -wait 0 *.gif *.jpg

 where perhaps no *.gif files are present (and this is not an error). However, POSIX re?

 quires that a wildcard pattern is left unchanged when it is syntactically incorrect, or

 the list of matching pathnames is empty. With bash one can force the classical behavior

 using this command:

 shopt -s nullglob

 (Similar problems occur elsewhere. For example, where old scripts have

 rm `find . -name "*~"`

 new scripts require

 rm -f nosuchfile `find . -name "*~"` Page 2/4

 to avoid error messages from rm called with an empty argument list.)

NOTES

 Regular expressions

 Note that wildcard patterns are not regular expressions, although they are a bit similar.

 First of all, they match filenames, rather than text, and secondly, the conventions are

 not the same: for example, in a regular expression '*' means zero or more copies of the

 preceding thing.

 Now that regular expressions have bracket expressions where the negation is indicated by a

 '^', POSIX has declared the effect of a wildcard pattern "[^...]" to be undefined.

 Character classes and internationalization

 Of course ranges were originally meant to be ASCII ranges, so that "[-%]" stands for

 "[!"#$%]" and "[a-z]" stands for "any lowercase letter". Some UNIX implementations gen?

 eralized this so that a range X-Y stands for the set of characters with code between the

 codes for X and for Y. However, this requires the user to know the character coding in

 use on the local system, and moreover, is not convenient if the collating sequence for the

 local alphabet differs from the ordering of the character codes. Therefore, POSIX ex?

 tended the bracket notation greatly, both for wildcard patterns and for regular expres?

 sions. In the above we saw three types of items that can occur in a bracket expression:

 namely (i) the negation, (ii) explicit single characters, and (iii) ranges. POSIX speci?

 fies ranges in an internationally more useful way and adds three more types:

 (iii) Ranges X-Y comprise all characters that fall between X and Y (inclusive) in the cur?

 rent collating sequence as defined by the LC_COLLATE category in the current locale.

 (iv) Named character classes, like

 [:alnum:] [:alpha:] [:blank:] [:cntrl:]

 [:digit:] [:graph:] [:lower:] [:print:]

 [:punct:] [:space:] [:upper:] [:xdigit:]

 so that one can say "[[:lower:]]" instead of "[a-z]", and have things work in Denmark,

 too, where there are three letters past 'z' in the alphabet. These character classes are

 defined by the LC_CTYPE category in the current locale.

 (v) Collating symbols, like "[.ch.]" or "[.a-acute.]", where the string between "[." and

 ".]" is a collating element defined for the current locale. Note that this may be a mul?

 ticharacter element.

 (vi) Equivalence class expressions, like "[=a=]", where the string between "[=" and "=]" Page 3/4

 is any collating element from its equivalence class, as defined for the current locale.

 For example, "[[=a=]]" might be equivalent to "[a?a??]", that is, to "[a[.a-acute.][.a-

 grave.][.a-umlaut.][.a-circumflex.]]".

SEE ALSO

 sh(1), fnmatch(3), glob(3), locale(7), regex(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 GLOB(7)

Page 4/4

