
Rocky Enterprise Linux 9.2 Manual Pages on command 'go-build.1'

$ man go-build.1

GO-BUILD(1) General Commands Manual GO-BUILD(1)

NAME

 go-build - compile the packages named by the import paths

SYNOPSIS

 go build [-o output] [build flags] [packages]

DESCRIPTION

 Build compiles the packages named by the import paths, along with their dependencies, but

 it does not install the results.

 If the arguments to build are a list of .go files from a single directory, build treats

 them as a list of source files specifying a single package.

 When compiling packages, build ignores files that end in '_test.go'.

 When compiling a single main package, build writes the resulting executable to an output

 file named after the first source file ('go build ed.go rx.go' writes 'ed' or 'ed.exe') or

 the source code directory ('go build unix/sam' writes 'sam' or 'sam.exe'). The '.exe'

 suffix is added when writing a Windows executable.

 When compiling multiple packages or a single non-main package, build compiles the packages

 but discards the resulting object, serving only as a check that the packages can be built.

 The -o flag forces build to write the resulting executable or object to the named output

 file or directory, instead of the default behavior described in the last two paragraphs.

 If the named output is an existing directory or ends with a slash or backslash, then any

 resulting executables will be written to that directory.

 The -i flag installs the packages that are dependencies of the target.

 The -i flag is deprecated. Compiled packages are cached automatically. Page 1/5

OPTIONS

 The build flags are shared by the build, clean, get, install, list, run, and test com?

 mands:

 -a force rebuilding of packages that are already up-to-date.

 -n print the commands but do not run them.

 -p n the number of programs, such as build commands or test binaries, that can be run in

 parallel.

 The default is GOMAXPROCS, normally the number of CPUs available.

 -race enable data race detection.

 Supported only on linux/amd64, freebsd/amd64, darwin/amd64, windows/amd64,

 linux/ppc64le and linux/arm64 (only for 48-bit VMA).

 -msan enable interoperation with memory sanitizer. Supported only on linux/amd64,

 linux/arm64 and only with Clang/LLVM as the host C compiler. On linux/arm64, pie

 build mode will be used.

 -v print the names of packages as they are compiled.

 -work print the name of the temporary work directory and do not delete it when exiting.

 -x print the commands.

 -asmflags '[pattern=]arg list'

 arguments to pass on each go tool asm invocation.

 -buildmode mode

 build mode to use. See 'go help buildmode' for more.

 -compiler name

 name of compiler to use, as in runtime.Compiler (gccgo or gc)

 -gccgoflags 'arg list'

 arguments to pass on each gccgo compiler/linker invocation

 -gcflags 'arg list'

 arguments to pass on each go tool compile invocation.

 -installsuffix suffix

 a suffix to use in the name of the package installation directory, in order to keep

 output separate from default builds. If using the -race flag, the install suffix

 is automatically set to race or, if set explicitly, has _race appended to it. Like?

 wise for the -msan flag. Using a -buildmode option that requires non-default com?

 pile flags has a similar effect. Page 2/5

 -ldflags 'flag list'

 arguments to pass on each go tool link invocation.

 -linkshared

 build code that will be linked against shared libraries previously created with

 -buildmode=shared.

 -mod mode

 module download mode to use: readonly, vendor, or mod. By default, if a vendor di?

 rectory is present and the go version in go.mod is 1.14 or higher, the go command

 acts as if -mod=vendor were set. Otherwise, the go command acts as if -mod=read?

 only were set. See https://golang.org/ref/mod#build-commands for details.

 -modcacherw

 leave newly-created directories in the module cache read-write instead of making

 them read-only.

 -modfile file

 in module aware mode, read (and possibly write) an alternate go.mod file instead of

 the one in the module root directory. A file named "go.mod" must still be present

 in order to determine the module root directory, but it is not accessed. When -mod?

 file is specified, an alternate go.sum file is also used: its path is derived from

 the -modfile flag by trimming the ".mod" extension and appending ".sum".

 -overlay file

 read a JSON config file that provides an overlay for build operations. The file is

 a JSON struct with a single field, named 'Replace', that maps each disk file path

 (a string) to its backing file path, so that a build will run as if the disk file

 path exists with the contents given by the backing file paths, or as if the disk

 file path does not exist if its backing file path is empty. Support for the -over?

 lay flag has some limitations: importantly, cgo files included from outside the in?

 clude path must be in the same directory as the Go package they are included from,

 and overlays will not appear when binaries and tests are run through go run and go

 test respectively.

 -pkgdir dir

 install and load all packages from dir instead of the usual locations. For exam?

 ple, when building with a non-standard configuration, use -pkgdir to keep generated

 packages in a separate location. Page 3/5

 -tags tag,list

 a comma-separated list of build tags to consider satisfied during the build. For

 more information about build tags, see the description of build constraints in the

 documentation for the go/build package. (Earlier versions of Go used a space-sepa?

 rated list, and that form is deprecated but still recognized.)

 -trimpath

 remove all file system paths from the resulting executable. Instead of absolute

 file system paths, the recorded file names will begin with either "go" (for the

 standard library), or a module path@version (when using modules), or a plain import

 path (when using GOPATH).

 -toolexec 'cmd args'

 a program to use to invoke toolchain programs like vet and asm. For example, in?

 stead of running asm, the go command will run ?cmd args /path/to/asm <arguments for

 asm>?.

 The TOOLEXEC_IMPORTPATH environment variable will be set, matching ?go list -f

 {{.ImportPath}}? for the package being built.

 The -asmflags, -gccgoflags, -gcflags, and -ldflags flags accept a space-separated list of

 arguments to pass to an underlying tool during the build. To embed spaces in an element in

 the list, surround it with either single or double quotes. The argument list may be pre?

 ceded by a package pattern and an equal sign, which restricts the use of that argument

 list to the building of packages matching that pattern (see 'go help packages' for a de?

 scription of package patterns). Without a pattern, the argument list applies only to the

 packages named on the command line. The flags may be repeated with different patterns in

 order to specify different arguments for different sets of packages. If a package matches

 patterns given in multiple flags, the latest match on the command line wins. For example,

 'go build -gcflags=-S fmt' prints the disassembly only for package fmt, while 'go build

 -gcflags=all=-S fmt' prints the disassembly for fmt and all its dependencies.

 For more about specifying packages, see go-packages(7).

 For more about where packages and binaries are installed, see go-gopath(1).

 For more about calling between Go and C/C++, run 'go help c'.

 Note: Build adheres to certain conventions such as those described by 'go help gopath'.

 Not all projects can follow these conventions, however. Installations that have their own

 conventions or that use a separate software build system may choose to use lower-level in? Page 4/5

 vocations such as 'go tool compile' and 'go tool link' to avoid some of the overheads and

 design decisions of the build tool.

SEE ALSO

 go-install(1), go-get(1), go-clean(1).

AUTHOR

 This manual page was written by Michael Stapelberg <stapelberg@debian.org> and is main?

 tained by the Debian Go Compiler Team <team+go-compiler@tracker.debian.org> based on the

 output of 'go help build' for the Debian project (and may be used by others).

 2021-10-15 GO-BUILD(1)

Page 5/5

