
Linux Ubuntu 22.4.5 Manual Pages on command 'gpg2.1'

$ man gpg2.1

GPG(1) GNU Privacy Guard 2.2 GPG(1)

NAME

 gpg - OpenPGP encryption and signing tool

SYNOPSIS

 gpg [--homedir dir] [--options file] [options] command [args]

DESCRIPTION

 gpg is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool to provide

 digital encryption and signing services using the OpenPGP standard. gpg features

 complete key management and all the bells and whistles you would expect from a full

 OpenPGP implementation.

 There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x supports

 modern encryption algorithms and thus should be preferred over GnuPG 1.x. You only

 need to use GnuPG 1.x if your platform doesn't support GnuPG 2.x, or you need sup?

 port for some features that GnuPG 2.x has deprecated, e.g., decrypting data created

 with PGP-2 keys.

 If you are looking for version 1 of GnuPG, you may find that version installed un?

 der the name gpg1.

RETURN VALUE

 The program returns 0 if everything was fine, 1 if at least a signature was bad,

 and other error codes for fatal errors.

WARNINGS

 Use a *good* password for your user account and a *good* passphrase to protect your
Page 1/76

 secret key. This passphrase is the weakest part of the whole system. Programs to do

 dictionary attacks on your secret keyring are very easy to write and so you should

 protect your "~/.gnupg/" directory very well.

 Keep in mind that, if this program is used over a network (telnet), it is *very*

 easy to spy out your passphrase!

 If you are going to verify detached signatures, make sure that the program knows

 about it; either give both filenames on the command line or use ?-? to specify

 STDIN.

 For scripted or other unattended use of gpg make sure to use the machine-parseable

 interface and not the default interface which is intended for direct use by humans.

 The machine-parseable interface provides a stable and well documented API indepen?

 dent of the locale or future changes of gpg. To enable this interface use the op?

 tions --with-colons and --status-fd. For certain operations the option --command-

 fd may come handy too. See this man page and the file ?DETAILS? for the specifica?

 tion of the interface. Note that the GnuPG ``info'' pages as well as the PDF ver?

 sion of the GnuPG manual features a chapter on unattended use of GnuPG. As an al?

 ternative the library GPGME can be used as a high-level abstraction on top of that

 interface.

INTEROPERABILITY

 GnuPG tries to be a very flexible implementation of the OpenPGP standard. In par?

 ticular, GnuPG implements many of the optional parts of the standard, such as the

 SHA-512 hash, and the ZLIB and BZIP2 compression algorithms. It is important to be

 aware that not all OpenPGP programs implement these optional algorithms and that by

 forcing their use via the --cipher-algo, --digest-algo, --cert-digest-algo, or

 --compress-algo options in GnuPG, it is possible to create a perfectly valid

 OpenPGP message, but one that cannot be read by the intended recipient.

 There are dozens of variations of OpenPGP programs available, and each supports a

 slightly different subset of these optional algorithms. For example, until re?

 cently, no (unhacked) version of PGP supported the BLOWFISH cipher algorithm. A

 message using BLOWFISH simply could not be read by a PGP user. By default, GnuPG

 uses the standard OpenPGP preferences system that will always do the right thing

 and create messages that are usable by all recipients, regardless of which OpenPGP

 program they use. Only override this safe default if you really know what you are Page 2/76

 doing.

 If you absolutely must override the safe default, or if the preferences on a given

 key are invalid for some reason, you are far better off using the --pgp6, --pgp7,

 or --pgp8 options. These options are safe as they do not force any particular algo?

 rithms in violation of OpenPGP, but rather reduce the available algorithms to a

 "PGP-safe" list.

COMMANDS

 Commands are not distinguished from options except for the fact that only one com?

 mand is allowed. Generally speaking, irrelevant options are silently ignored, and

 may not be checked for correctness.

 gpg may be run with no commands. In this case it will print a warning perform a

 reasonable action depending on the type of file it is given as input (an encrypted

 message is decrypted, a signature is verified, a file containing keys is listed,

 etc.).

 If you run into any problems, please add the option --verbose to the invocation to

 see more diagnostics.

 Commands not specific to the function

 --version

 Print the program version and licensing information. Note that you cannot

 abbreviate this command.

 --help

 -h Print a usage message summarizing the most useful command-line options.

 Note that you cannot arbitrarily abbreviate this command (though you can use

 its short form -h).

 --warranty

 Print warranty information.

 --dump-options

 Print a list of all available options and commands. Note that you cannot

 abbreviate this command.

 Commands to select the type of operation

 --sign

 -s Sign a message. This command may be combined with --encrypt (to sign and en?

 crypt a message), --symmetric (to sign and symmetrically encrypt a message), Page 3/76

 or both --encrypt and --symmetric (to sign and encrypt a message that can be

 decrypted using a secret key or a passphrase). The signing key is chosen by

 default or can be set explicitly using the --local-user and --default-key

 options.

 --clear-sign

 --clearsign

 Make a cleartext signature. The content in a cleartext signature is read?

 able without any special software. OpenPGP software is only needed to verify

 the signature. cleartext signatures may modify end-of-line whitespace for

 platform independence and are not intended to be reversible. The signing

 key is chosen by default or can be set explicitly using the --local-user and

 --default-key options.

 --detach-sign

 -b Make a detached signature.

 --encrypt

 -e Encrypt data to one or more public keys. This command may be combined with

 --sign (to sign and encrypt a message), --symmetric (to encrypt a message

 that can be decrypted using a secret key or a passphrase), or --sign and

 --symmetric together (for a signed message that can be decrypted using a se?

 cret key or a passphrase). --recipient and related options specify which

 public keys to use for encryption.

 --symmetric

 -c Encrypt with a symmetric cipher using a passphrase. The default symmetric

 cipher used is AES-128, but may be chosen with the --cipher-algo option.

 This command may be combined with --sign (for a signed and symmetrically en?

 crypted message), --encrypt (for a message that may be decrypted via a se?

 cret key or a passphrase), or --sign and --encrypt together (for a signed

 message that may be decrypted via a secret key or a passphrase). gpg caches

 the passphrase used for symmetric encryption so that a decrypt operation may

 not require that the user needs to enter the passphrase. The option --no-

 symkey-cache can be used to disable this feature.

 --store

 Store only (make a simple literal data packet). Page 4/76

 --decrypt

 -d Decrypt the file given on the command line (or STDIN if no file is speci?

 fied) and write it to STDOUT (or the file specified with --output). If the

 decrypted file is signed, the signature is also verified. This command dif?

 fers from the default operation, as it never writes to the filename which is

 included in the file and it rejects files that don't begin with an encrypted

 message.

 --verify

 Assume that the first argument is a signed file and verify it without gener?

 ating any output. With no arguments, the signature packet is read from

 STDIN. If only one argument is given, the specified file is expected to in?

 clude a complete signature.

 With more than one argument, the first argument should specify a file with a

 detached signature and the remaining files should contain the signed data.

 To read the signed data from STDIN, use ?-? as the second filename. For se?

 curity reasons, a detached signature will not read the signed material from

 STDIN if not explicitly specified.

 Note: If the option --batch is not used, gpg may assume that a single argu?

 ment is a file with a detached signature, and it will try to find a matching

 data file by stripping certain suffixes. Using this historical feature to

 verify a detached signature is strongly discouraged; you should always spec?

 ify the data file explicitly.

 Note: When verifying a cleartext signature, gpg verifies only what makes up

 the cleartext signed data and not any extra data outside of the cleartext

 signature or the header lines directly following the dash marker line. The

 option --output may be used to write out the actual signed data, but there

 are other pitfalls with this format as well. It is suggested to avoid

 cleartext signatures in favor of detached signatures.

 Note: Sometimes the use of the gpgv tool is easier than using the full-

 fledged gpg with this option. gpgv is designed to compare signed data

 against a list of trusted keys and returns with success only for a good sig?

 nature. It has its own manual page.

 --multifile Page 5/76

 This modifies certain other commands to accept multiple files for processing

 on the command line or read from STDIN with each filename on a separate

 line. This allows for many files to be processed at once. --multifile may

 currently be used along with --verify, --encrypt, and --decrypt. Note that

 --multifile --verify may not be used with detached signatures.

 --verify-files

 Identical to --multifile --verify.

 --encrypt-files

 Identical to --multifile --encrypt.

 --decrypt-files

 Identical to --multifile --decrypt.

 --list-keys

 -k

 --list-public-keys

 List the specified keys. If no keys are specified, then all keys from the

 configured public keyrings are listed.

 Never use the output of this command in scripts or other programs. The out?

 put is intended only for humans and its format is likely to change. The

 --with-colons option emits the output in a stable, machine-parseable format,

 which is intended for use by scripts and other programs.

 --list-secret-keys

 -K List the specified secret keys. If no keys are specified, then all known

 secret keys are listed. A # after the initial tags sec or ssb means that

 the secret key or subkey is currently not usable. We also say that this key

 has been taken offline (for example, a primary key can be taken offline by

 exporting the key using the command --export-secret-subkeys). A > after

 these tags indicate that the key is stored on a smartcard. See also --list-

 keys.

 --check-signatures

 --check-sigs

 Same as --list-keys, but the key signatures are verified and listed too.

 Note that for performance reasons the revocation status of a signing key is

 not shown. This command has the same effect as using --list-keys with Page 6/76

 --with-sig-check.

 The status of the verification is indicated by a flag directly following the

 "sig" tag (and thus before the flags described below. A "!" indicates that

 the signature has been successfully verified, a "-" denotes a bad signature

 and a "%" is used if an error occurred while checking the signature (e.g. a

 non supported algorithm). Signatures where the public key is not available

 are not listed; to see their keyids the command --list-sigs can be used.

 For each signature listed, there are several flags in between the signature

 status flag and keyid. These flags give additional information about each

 key signature. From left to right, they are the numbers 1-3 for certificate

 check level (see --ask-cert-level), "L" for a local or non-exportable signa?

 ture (see --lsign-key), "R" for a nonRevocable signature (see the --edit-key

 command "nrsign"), "P" for a signature that contains a policy URL (see

 --cert-policy-url), "N" for a signature that contains a notation (see

 --cert-notation), "X" for an eXpired signature (see --ask-cert-expire), and

 the numbers 1-9 or "T" for 10 and above to indicate trust signature levels

 (see the --edit-key command "tsign").

 --locate-keys

 --locate-external-keys

 Locate the keys given as arguments. This command basically uses the same

 algorithm as used when locating keys for encryption or signing and may thus

 be used to see what keys gpg might use. In particular external methods as

 defined by --auto-key-locate may be used to locate a key. Only public keys

 are listed. The variant --locate-external-keys does not consider a locally

 existing key and can thus be used to force the refresh of a key via the de?

 fined external methods.

 --show-keys

 This commands takes OpenPGP keys as input and prints information about them

 in the same way the command --list-keys does for locally stored key. In ad?

 dition the list options show-unusable-uids, show-unusable-subkeys, show-no?

 tations and show-policy-urls are also enabled. As usual for automated pro?

 cessing, this command should be combined with the option --with-colons.

 --fingerprint Page 7/76

 List all keys (or the specified ones) along with their fingerprints. This is

 the same output as --list-keys but with the additional output of a line with

 the fingerprint. May also be combined with --check-signatures. If this com?

 mand is given twice, the fingerprints of all secondary keys are listed too.

 This command also forces pretty printing of fingerprints if the keyid format

 has been set to "none".

 --list-packets

 List only the sequence of packets. This command is only useful for debug?

 ging. When used with option --verbose the actual MPI values are dumped and

 not only their lengths. Note that the output of this command may change

 with new releases.

 --edit-card

 --card-edit

 Present a menu to work with a smartcard. The subcommand "help" provides an

 overview on available commands. For a detailed description, please see the

 Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-cardHOWTO .

 --card-status

 Show the content of the smart card.

 --change-pin

 Present a menu to allow changing the PIN of a smartcard. This functionality

 is also available as the subcommand "passwd" with the --edit-card command.

 --delete-keys name

 Remove key from the public keyring. In batch mode either --yes is required

 or the key must be specified by fingerprint. This is a safeguard against ac?

 cidental deletion of multiple keys. If the exclamation mark syntax is used

 with the fingerprint of a subkey only that subkey is deleted; if the excla?

 mation mark is used with the fingerprint of the primary key the entire pub?

 lic key is deleted.

 --delete-secret-keys name

 Remove key from the secret keyring. In batch mode the key must be specified

 by fingerprint. The option --yes can be used to advice gpg-agent not to re?

 quest a confirmation. This extra pre-caution is done because gpg can't be

 sure that the secret key (as controlled by gpg-agent) is only used for the Page 8/76

 given OpenPGP public key. If the exclamation mark syntax is used with the

 fingerprint of a subkey only the secret part of that subkey is deleted; if

 the exclamation mark is used with the fingerprint of the primary key only

 the secret part of the primary key is deleted.

 --delete-secret-and-public-key name

 Same as --delete-key, but if a secret key exists, it will be removed first.

 In batch mode the key must be specified by fingerprint. The option --yes

 can be used to advice gpg-agent not to request a confirmation.

 --export

 Either export all keys from all keyrings (default keyrings and those regis?

 tered via option --keyring), or if at least one name is given, those of the

 given name. The exported keys are written to STDOUT or to the file given

 with option --output. Use together with --armor to mail those keys.

 --send-keys keyIDs

 Similar to --export but sends the keys to a keyserver. Fingerprints may be

 used instead of key IDs. Don't send your complete keyring to a keyserver

 --- select only those keys which are new or changed by you. If no keyIDs

 are given, gpg does nothing.

 --export-secret-keys

 --export-secret-subkeys

 Same as --export, but exports the secret keys instead. The exported keys

 are written to STDOUT or to the file given with option --output. This com?

 mand is often used along with the option --armor to allow for easy printing

 of the key for paper backup; however the external tool paperkey does a bet?

 ter job of creating backups on paper. Note that exporting a secret key can

 be a security risk if the exported keys are sent over an insecure channel.

 The second form of the command has the special property to render the secret

 part of the primary key useless; this is a GNU extension to OpenPGP and

 other implementations can not be expected to successfully import such a key.

 Its intended use is in generating a full key with an additional signing sub?

 key on a dedicated machine. This command then exports the key without the

 primary key to the main machine.

 GnuPG may ask you to enter the passphrase for the key. This is required, Page 9/76

 because the internal protection method of the secret key is different from

 the one specified by the OpenPGP protocol.

 --export-ssh-key

 This command is used to export a key in the OpenSSH public key format. It

 requires the specification of one key by the usual means and exports the

 latest valid subkey which has an authentication capability to STDOUT or to

 the file given with option --output. That output can directly be added to

 ssh's ?authorized_key? file.

 By specifying the key to export using a key ID or a fingerprint suffixed

 with an exclamation mark (!), a specific subkey or the primary key can be

 exported. This does not even require that the key has the authentication

 capability flag set.

 --import

 --fast-import

 Import/merge keys. This adds the given keys to the keyring. The fast version

 is currently just a synonym.

 There are a few other options which control how this command works. Most

 notable here is the --import-options merge-only option which does not insert

 new keys but does only the merging of new signatures, user-IDs and subkeys.

 --receive-keys keyIDs

 --recv-keys keyIDs

 Import the keys with the given keyIDs from a keyserver.

 --refresh-keys

 Request updates from a keyserver for keys that already exist on the local

 keyring. This is useful for updating a key with the latest signatures, user

 IDs, etc. Calling this with no arguments will refresh the entire keyring.

 --search-keys names

 Search the keyserver for the given names. Multiple names given here will be

 joined together to create the search string for the keyserver. Note that

 keyservers search for names in a different and simpler way than gpg does.

 The best choice is to use a mail address. Due to data privacy reasons key?

 servers may even not even allow searching by user id or mail address and

 thus may only return results when being used with the --recv-key command to Page 10/76

 search by key fingerprint or keyid.

 --fetch-keys URIs

 Retrieve keys located at the specified URIs. Note that different installa?

 tions of GnuPG may support different protocols (HTTP, FTP, LDAP, etc.).

 When using HTTPS the system provided root certificates are used by this com?

 mand.

 --update-trustdb

 Do trust database maintenance. This command iterates over all keys and

 builds the Web of Trust. This is an interactive command because it may have

 to ask for the "ownertrust" values for keys. The user has to give an estima?

 tion of how far she trusts the owner of the displayed key to correctly cer?

 tify (sign) other keys. GnuPG only asks for the ownertrust value if it has

 not yet been assigned to a key. Using the --edit-key menu, the assigned

 value can be changed at any time.

 --check-trustdb

 Do trust database maintenance without user interaction. From time to time

 the trust database must be updated so that expired keys or signatures and

 the resulting changes in the Web of Trust can be tracked. Normally, GnuPG

 will calculate when this is required and do it automatically unless --no-

 auto-check-trustdb is set. This command can be used to force a trust data?

 base check at any time. The processing is identical to that of --update-

 trustdb but it skips keys with a not yet defined "ownertrust".

 For use with cron jobs, this command can be used together with --batch in

 which case the trust database check is done only if a check is needed. To

 force a run even in batch mode add the option --yes.

 --export-ownertrust

 Send the ownertrust values to STDOUT. This is useful for backup purposes as

 these values are the only ones which can't be re-created from a corrupted

 trustdb. Example:

 gpg --export-ownertrust > otrust.txt

 --import-ownertrust

 Update the trustdb with the ownertrust values stored in files (or STDIN if

 not given); existing values will be overwritten. In case of a severely dam? Page 11/76

 aged trustdb and if you have a recent backup of the ownertrust values (e.g.

 in the file ?otrust.txt?), you may re-create the trustdb using these com?

 mands:

 cd ~/.gnupg

 rm trustdb.gpg

 gpg --import-ownertrust < otrust.txt

 --rebuild-keydb-caches

 When updating from version 1.0.6 to 1.0.7 this command should be used to

 create signature caches in the keyring. It might be handy in other situa?

 tions too.

 --print-md algo

 --print-mds

 Print message digest of algorithm algo for all given files or STDIN. With

 the second form (or a deprecated "*" for algo) digests for all available al?

 gorithms are printed.

 --gen-random 0|1|2 count

 Emit count random bytes of the given quality level 0, 1 or 2. If count is

 not given or zero, an endless sequence of random bytes will be emitted. If

 used with --armor the output will be base64 encoded. PLEASE, don't use this

 command unless you know what you are doing; it may remove precious entropy

 from the system!

 --gen-prime mode bits

 Use the source, Luke :-). The output format is subject to change with ant

 release.

 --enarmor

 --dearmor

 Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. This is

 a GnuPG extension to OpenPGP and in general not very useful.

 --tofu-policy {auto|good|unknown|bad|ask} keys

 Set the TOFU policy for all the bindings associated with the specified keys.

 For more information about the meaning of the policies, see: [trust-model-

 tofu]. The keys may be specified either by their fingerprint (preferred) or

 their keyid. Page 12/76

 How to manage your keys

 This section explains the main commands for key management.

 --quick-generate-key user-id [algo [usage [expire]]]

 --quick-gen-key

 This is a simple command to generate a standard key with one user id. In

 contrast to --generate-key the key is generated directly without the need to

 answer a bunch of prompts. Unless the option --yes is given, the key cre?

 ation will be canceled if the given user id already exists in the keyring.

 If invoked directly on the console without any special options an answer to

 a ``Continue?'' style confirmation prompt is required. In case the user id

 already exists in the keyring a second prompt to force the creation of the

 key will show up.

 If algo or usage are given, only the primary key is created and no prompts

 are shown. To specify an expiration date but still create a primary and

 subkey use ``default'' or ``future-default'' for algo and ``default'' for

 usage. For a description of these optional arguments see the command

 --quick-add-key. The usage accepts also the value ``cert'' which can be

 used to create a certification only primary key; the default is to a create

 certification and signing key.

 The expire argument can be used to specify an expiration date for the key.

 Several formats are supported; commonly the ISO formats ``YYYY-MM-DD'' or

 ``YYYYMMDDThhmmss'' are used. To make the key expire in N seconds, N days,

 N weeks, N months, or N years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or

 ``Ny'' respectively. Not specifying a value, or using ``-'' results in a

 key expiring in a reasonable default interval. The values ``never'',

 ``none'' can be used for no expiration date.

 If this command is used with --batch, --pinentry-mode has been set to loop?

 back, and one of the passphrase options (--passphrase, --passphrase-fd, or

 passphrase-file) is used, the supplied passphrase is used for the new key

 and the agent does not ask for it. To create a key without any protection

 --passphrase '' may be used.

 To create an OpenPGP key from the keys available on the currently inserted

 smartcard, the special string ``card'' can be used for algo. If the card Page 13/76

 features an encryption and a signing key, gpg will figure them out and cre?

 ates an OpenPGP key consisting of the usual primary key and one subkey.

 This works only with certain smartcards. Note that the interactive --full-

 gen-key command allows to do the same but with greater flexibility in the

 selection of the smartcard keys.

 Note that it is possible to create a primary key and a subkey using non-de?

 fault algorithms by using ``default'' and changing the default parameters

 using the option --default-new-key-algo.

 --quick-set-expire fpr expire [*|subfprs]

 With two arguments given, directly set the expiration time of the primary

 key identified by fpr to expire. To remove the expiration time 0 can be

 used. With three arguments and the third given as an asterisk, the expira?

 tion time of all non-revoked and not yet expired subkeys are set to expire.

 With more than two arguments and a list of fingerprints given for subfprs,

 all non-revoked subkeys matching these fingerprints are set to expire.

 --quick-add-key fpr [algo [usage [expire]]]

 Directly add a subkey to the key identified by the fingerprint fpr. Without

 the optional arguments an encryption subkey is added. If any of the argu?

 ments are given a more specific subkey is added.

 algo may be any of the supported algorithms or curve names given in the for?

 mat as used by key listings. To use the default algorithm the string ``de?

 fault'' or ``-'' can be used. Supported algorithms are ``rsa'', ``dsa'',

 ``elg'', ``ed25519'', ``cv25519'', and other ECC curves. For example the

 string ``rsa'' adds an RSA key with the default key length; a string

 ``rsa4096'' requests that the key length is 4096 bits. The string ``future-

 default'' is an alias for the algorithm which will likely be used as default

 algorithm in future versions of gpg. To list the supported ECC curves the

 command gpg --with-colons --list-config curve can be used.

 Depending on the given algo the subkey may either be an encryption subkey or

 a signing subkey. If an algorithm is capable of signing and encryption and

 such a subkey is desired, a usage string must be given. This string is ei?

 ther ``default'' or ``-'' to keep the default or a comma delimited list (or

 space delimited list) of keywords: ``sign'' for a signing subkey, ``auth'' Page 14/76

 for an authentication subkey, and ``encr'' for an encryption subkey (``en?

 crypt'' can be used as alias for ``encr''). The valid combinations depend

 on the algorithm.

 The expire argument can be used to specify an expiration date for the key.

 Several formats are supported; commonly the ISO formats ``YYYY-MM-DD'' or

 ``YYYYMMDDThhmmss'' are used. To make the key expire in N seconds, N days,

 N weeks, N months, or N years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or

 ``Ny'' respectively. Not specifying a value, or using ``-'' results in a

 key expiring in a reasonable default interval. The values ``never'',

 ``none'' can be used for no expiration date.

 --generate-key

 --gen-key

 Generate a new key pair using the current default parameters. This is the

 standard command to create a new key. In addition to the key a revocation

 certificate is created and stored in the ?openpgp-revocs.d? directory below

 the GnuPG home directory.

 --full-generate-key

 --full-gen-key

 Generate a new key pair with dialogs for all options. This is an extended

 version of --generate-key.

 There is also a feature which allows you to create keys in batch mode. See

 the manual section ``Unattended key generation'' on how to use this.

 --generate-revocation name

 --gen-revoke name

 Generate a revocation certificate for the complete key. To only revoke a

 subkey or a key signature, use the --edit command.

 This command merely creates the revocation certificate so that it can be

 used to revoke the key if that is ever needed. To actually revoke a key the

 created revocation certificate needs to be merged with the key to revoke.

 This is done by importing the revocation certificate using the --import com?

 mand. Then the revoked key needs to be published, which is best done by

 sending the key to a keyserver (command --send-key) and by exporting (--ex?

 port) it to a file which is then send to frequent communication partners. Page 15/76

 --generate-designated-revocation name

 --desig-revoke name

 Generate a designated revocation certificate for a key. This allows a user

 (with the permission of the keyholder) to revoke someone else's key.

 --edit-key

 Present a menu which enables you to do most of the key management related

 tasks. It expects the specification of a key on the command line.

 uid n Toggle selection of user ID or photographic user ID with index n.

 Use * to select all and 0 to deselect all.

 key n Toggle selection of subkey with index n or key ID n. Use * to select

 all and 0 to deselect all.

 sign Make a signature on key of user name. If the key is not yet signed by

 the default user (or the users given with -u), the program displays

 the information of the key again, together with its fingerprint and

 asks whether it should be signed. This question is repeated for all

 users specified with -u.

 lsign Same as "sign" but the signature is marked as non-exportable and will

 therefore never be used by others. This may be used to make keys

 valid only in the local environment.

 nrsign Same as "sign" but the signature is marked as non-revocable and can

 therefore never be revoked.

 tsign Make a trust signature. This is a signature that combines the notions

 of certification (like a regular signature), and trust (like the

 "trust" command). It is generally only useful in distinct communities

 or groups. For more information please read the sections ``Trust

 Signature'' and ``Regular Expression'' in RFC-4880.

 Note that "l" (for local / non-exportable), "nr" (for non-revocable, and "t"

 (for trust) may be freely mixed and prefixed to "sign" to create a signature

 of any type desired.

 If the option --only-sign-text-ids is specified, then any non-text based user ids

 (e.g., photo IDs) will not be selected for signing.

 delsig Delete a signature. Note that it is not possible to retract a signa?

 ture, once it has been send to the public (i.e. to a keyserver). In Page 16/76

 that case you better use revsig.

 revsig Revoke a signature. For every signature which has been generated by

 one of the secret keys, GnuPG asks whether a revocation certificate

 should be generated.

 check Check the signatures on all selected user IDs. With the extra option

 selfsig only self-signatures are shown.

 adduid Create an additional user ID.

 addphoto

 Create a photographic user ID. This will prompt for a JPEG file that

 will be embedded into the user ID. Note that a very large JPEG will

 make for a very large key. Also note that some programs will display

 your JPEG unchanged (GnuPG), and some programs will scale it to fit

 in a dialog box (PGP).

 showphoto

 Display the selected photographic user ID.

 deluid Delete a user ID or photographic user ID. Note that it is not possi?

 ble to retract a user id, once it has been send to the public (i.e.

 to a keyserver). In that case you better use revuid.

 revuid Revoke a user ID or photographic user ID.

 primary

 Flag the current user id as the primary one, removes the primary user

 id flag from all other user ids and sets the timestamp of all af?

 fected self-signatures one second ahead. Note that setting a photo

 user ID as primary makes it primary over other photo user IDs, and

 setting a regular user ID as primary makes it primary over other reg?

 ular user IDs.

 keyserver

 Set a preferred keyserver for the specified user ID(s). This allows

 other users to know where you prefer they get your key from. See

 --keyserver-options honor-keyserver-url for more on how this works.

 Setting a value of "none" removes an existing preferred keyserver.

 notation

 Set a name=value notation for the specified user ID(s). See --cert- Page 17/76

 notation for more on how this works. Setting a value of "none" re?

 moves all notations, setting a notation prefixed with a minus sign

 (-) removes that notation, and setting a notation name (without the

 =value) prefixed with a minus sign removes all notations with that

 name.

 pref List preferences from the selected user ID. This shows the actual

 preferences, without including any implied preferences.

 showpref

 More verbose preferences listing for the selected user ID. This shows

 the preferences in effect by including the implied preferences of

 3DES (cipher), SHA-1 (digest), and Uncompressed (compression) if they

 are not already included in the preference list. In addition, the

 preferred keyserver and signature notations (if any) are shown.

 setpref string

 Set the list of user ID preferences to string for all (or just the

 selected) user IDs. Calling setpref with no arguments sets the pref?

 erence list to the default (either built-in or set via --default-

 preference-list), and calling setpref with "none" as the argument

 sets an empty preference list. Use gpg --version to get a list of

 available algorithms. Note that while you can change the preferences

 on an attribute user ID (aka "photo ID"), GnuPG does not select keys

 via attribute user IDs so these preferences will not be used by

 GnuPG.

 When setting preferences, you should list the algorithms in the order

 which you'd like to see them used by someone else when encrypting a

 message to your key. If you don't include 3DES, it will be automati?

 cally added at the end. Note that there are many factors that go

 into choosing an algorithm (for example, your key may not be the only

 recipient), and so the remote OpenPGP application being used to send

 to you may or may not follow your exact chosen order for a given mes?

 sage. It will, however, only choose an algorithm that is present on

 the preference list of every recipient key. See also the INTEROPER?

 ABILITY WITH OTHER OPENPGP PROGRAMS section below. Page 18/76

 addkey Add a subkey to this key.

 addcardkey

 Generate a subkey on a card and add it to this key.

 keytocard

 Transfer the selected secret subkey (or the primary key if no subkey

 has been selected) to a smartcard. The secret key in the keyring will

 be replaced by a stub if the key could be stored successfully on the

 card and you use the save command later. Only certain key types may

 be transferred to the card. A sub menu allows you to select on what

 card to store the key. Note that it is not possible to get that key

 back from the card - if the card gets broken your secret key will be

 lost unless you have a backup somewhere.

 bkuptocard file

 Restore the given file to a card. This command may be used to restore

 a backup key (as generated during card initialization) to a new card.

 In almost all cases this will be the encryption key. You should use

 this command only with the corresponding public key and make sure

 that the file given as argument is indeed the backup to restore. You

 should then select 2 to restore as encryption key. You will first be

 asked to enter the passphrase of the backup key and then for the Ad?

 min PIN of the card.

 delkey Remove a subkey (secondary key). Note that it is not possible to re?

 tract a subkey, once it has been send to the public (i.e. to a key?

 server). In that case you better use revkey. Also note that this

 only deletes the public part of a key.

 revkey Revoke a subkey.

 expire Change the key or subkey expiration time. If a subkey is selected,

 the expiration time of this subkey will be changed. With no selec?

 tion, the key expiration of the primary key is changed.

 trust Change the owner trust value for the key. This updates the trust-db

 immediately and no save is required.

 disable

 enable Disable or enable an entire key. A disabled key can not normally be Page 19/76

 used for encryption.

 addrevoker

 Add a designated revoker to the key. This takes one optional argu?

 ment: "sensitive". If a designated revoker is marked as sensitive, it

 will not be exported by default (see export-options).

 passwd Change the passphrase of the secret key.

 toggle This is dummy command which exists only for backward compatibility.

 clean Compact (by removing all signatures except the selfsig) any user ID

 that is no longer usable (e.g. revoked, or expired). Then, remove any

 signatures that are not usable by the trust calculations. Specifi?

 cally, this removes any signature that does not validate, any signa?

 ture that is superseded by a later signature, revoked signatures, and

 signatures issued by keys that are not present on the keyring.

 minimize

 Make the key as small as possible. This removes all signatures from

 each user ID except for the most recent self-signature.

 change-usage

 Change the usage flags (capabilities) of the primary key or of sub?

 keys. These usage flags (e.g. Certify, Sign, Authenticate, Encrypt)

 are set during key creation. Sometimes it is useful to have the op?

 portunity to change them (for example to add Authenticate) after they

 have been created. Please take care when doing this; the allowed us?

 age flags depend on the key algorithm.

 cross-certify

 Add cross-certification signatures to signing subkeys that may not

 currently have them. Cross-certification signatures protect against a

 subtle attack against signing subkeys. See --require-cross-certifica?

 tion. All new keys generated have this signature by default, so this

 command is only useful to bring older keys up to date.

 save Save all changes to the keyrings and quit.

 quit Quit the program without updating the keyrings.

 The listing shows you the key with its secondary keys and all user IDs. The

 primary user ID is indicated by a dot, and selected keys or user IDs are in? Page 20/76

 dicated by an asterisk. The trust value is displayed with the primary key:

 "trust" is the assigned owner trust and "validity" is the calculated valid?

 ity of the key. Validity values are also displayed for all user IDs. For

 possible values of trust, see: [trust-values].

 --sign-key name

 Signs a public key with your secret key. This is a shortcut version of the

 subcommand "sign" from --edit.

 --lsign-key name

 Signs a public key with your secret key but marks it as non-exportable. This

 is a shortcut version of the subcommand "lsign" from --edit-key.

 --quick-sign-key fpr [names]

 --quick-lsign-key fpr [names]

 Directly sign a key from the passphrase without any further user interac?

 tion. The fpr must be the verified primary fingerprint of a key in the lo?

 cal keyring. If no names are given, all useful user ids are signed; with

 given [names] only useful user ids matching one of theses names are signed.

 By default, or if a name is prefixed with a '*', a case insensitive sub?

 string match is used. If a name is prefixed with a '=' a case sensitive ex?

 act match is done.

 The command --quick-lsign-key marks the signatures as non-exportable. If

 such a non-exportable signature already exists the --quick-sign-key turns it

 into a exportable signature.

 This command uses reasonable defaults and thus does not provide the full

 flexibility of the "sign" subcommand from --edit-key. Its intended use is

 to help unattended key signing by utilizing a list of verified fingerprints.

 --quick-add-uid user-id new-user-id

 This command adds a new user id to an existing key. In contrast to the in?

 teractive sub-command adduid of --edit-key the new-user-id is added verbatim

 with only leading and trailing white space removed, it is expected to be

 UTF-8 encoded, and no checks on its form are applied.

 --quick-revoke-uid user-id user-id-to-revoke

 This command revokes a user ID on an existing key. It cannot be used to re?

 voke the last user ID on key (some non-revoked user ID must remain), with Page 21/76

 revocation reason ``User ID is no longer valid''. If you want to specify a

 different revocation reason, or to supply supplementary revocation text, you

 should use the interactive sub-command revuid of --edit-key.

 --quick-set-primary-uid user-id primary-user-id

 This command sets or updates the primary user ID flag on an existing key.

 user-id specifies the key and primary-user-id the user ID which shall be

 flagged as the primary user ID. The primary user ID flag is removed from

 all other user ids and the timestamp of all affected self-signatures is set

 one second ahead.

 --change-passphrase user-id

 --passwd user-id

 Change the passphrase of the secret key belonging to the certificate speci?

 fied as user-id. This is a shortcut for the sub-command passwd of the edit

 key menu. When using together with the option --dry-run this will not actu?

 ally change the passphrase but check that the current passphrase is correct.

OPTIONS

 gpg features a bunch of options to control the exact behaviour and to change the

 default configuration.

 Long options can be put in an options file (default "~/.gnupg/gpg.conf"). Short op?

 tion names will not work - for example, "armor" is a valid option for the options

 file, while "a" is not. Do not write the 2 dashes, but simply the name of the op?

 tion and any required arguments. Lines with a hash ('#') as the first non-white-

 space character are ignored. Commands may be put in this file too, but that is not

 generally useful as the command will execute automatically with every execution of

 gpg.

 Please remember that option parsing stops as soon as a non-option is encountered,

 you can explicitly stop parsing by using the special option --.

 How to change the configuration

 These options are used to change the configuration and are usually found in the op?

 tion file.

 --default-key name

 Use name as the default key to sign with. If this option is not used, the

 default key is the first key found in the secret keyring. Note that -u or Page 22/76

 --local-user overrides this option. This option may be given multiple

 times. In this case, the last key for which a secret key is available is

 used. If there is no secret key available for any of the specified values,

 GnuPG will not emit an error message but continue as if this option wasn't

 given.

 --default-recipient name

 Use name as default recipient if option --recipient is not used and don't

 ask if this is a valid one. name must be non-empty.

 --default-recipient-self

 Use the default key as default recipient if option --recipient is not used

 and don't ask if this is a valid one. The default key is the first one from

 the secret keyring or the one set with --default-key.

 --no-default-recipient

 Reset --default-recipient and --default-recipient-self.

 -v, --verbose

 Give more information during processing. If used twice, the input data is

 listed in detail.

 --no-verbose

 Reset verbose level to 0.

 -q, --quiet

 Try to be as quiet as possible.

 --batch

 --no-batch

 Use batch mode. Never ask, do not allow interactive commands. --no-batch

 disables this option. Note that even with a filename given on the command

 line, gpg might still need to read from STDIN (in particular if gpg figures

 that the input is a detached signature and no data file has been specified).

 Thus if you do not want to feed data via STDIN, you should connect STDIN to

 g?/dev/null?.

 It is highly recommended to use this option along with the options --status-

 fd and --with-colons for any unattended use of gpg.

 --no-tty

 Make sure that the TTY (terminal) is never used for any output. This option Page 23/76

 is needed in some cases because GnuPG sometimes prints warnings to the TTY

 even if --batch is used.

 --yes Assume "yes" on most questions.

 --no Assume "no" on most questions.

 --list-options parameters

 This is a space or comma delimited string that gives options used when list?

 ing keys and signatures (that is, --list-keys, --check-signatures, --list-

 public-keys, --list-secret-keys, and the --edit-key functions). Options can

 be prepended with a no- (after the two dashes) to give the opposite meaning.

 The options are:

 show-photos

 Causes --list-keys, --check-signatures, --list-public-keys, and

 --list-secret-keys to display any photo IDs attached to the key. De?

 faults to no. See also --photo-viewer. Does not work with --with-

 colons: see --attribute-fd for the appropriate way to get photo data

 for scripts and other frontends.

 show-usage

 Show usage information for keys and subkeys in the standard key list?

 ing. This is a list of letters indicating the allowed usage for a

 key (E=encryption, S=signing, C=certification, A=authentication).

 Defaults to yes.

 show-policy-urls

 Show policy URLs in the --check-signatures listings. Defaults to

 no.

 show-notations

 show-std-notations

 show-user-notations

 Show all, IETF standard, or user-defined signature notations in the

 --check-signatures listings. Defaults to no.

 show-keyserver-urls

 Show any preferred keyserver URL in the --check-signatures listings.

 Defaults to no.

 show-uid-validity Page 24/76

 Display the calculated validity of user IDs during key listings. De?

 faults to yes.

 show-unusable-uids

 Show revoked and expired user IDs in key listings. Defaults to no.

 show-unusable-subkeys

 Show revoked and expired subkeys in key listings. Defaults to no.

 show-keyring

 Display the keyring name at the head of key listings to show which

 keyring a given key resides on. Defaults to no.

 show-sig-expire

 Show signature expiration dates (if any) during --check-signatures

 listings. Defaults to no.

 show-sig-subpackets

 Include signature subpackets in the key listing. This option can take

 an optional argument list of the subpackets to list. If no argument

 is passed, list all subpackets. Defaults to no. This option is only

 meaningful when using --with-colons along with --check-signatures.

 show-only-fpr-mbox

 For each user-id which has a valid mail address print only the fin?

 gerprint followed by the mail address.

 --verify-options parameters

 This is a space or comma delimited string that gives options used when veri?

 fying signatures. Options can be prepended with a `no-' to give the opposite

 meaning. The options are:

 show-photos

 Display any photo IDs present on the key that issued the signature.

 Defaults to no. See also --photo-viewer.

 show-policy-urls

 Show policy URLs in the signature being verified. Defaults to yes.

 show-notations

 show-std-notations

 show-user-notations

 Show all, IETF standard, or user-defined signature notations in the Page 25/76

 signature being verified. Defaults to IETF standard.

 show-keyserver-urls

 Show any preferred keyserver URL in the signature being verified.

 Defaults to yes.

 show-uid-validity

 Display the calculated validity of the user IDs on the key that is?

 sued the signature. Defaults to yes.

 show-unusable-uids

 Show revoked and expired user IDs during signature verification. De?

 faults to no.

 show-primary-uid-only

 Show only the primary user ID during signature verification. That is

 all the AKA lines as well as photo Ids are not shown with the signa?

 ture verification status.

 pka-lookups

 Enable PKA lookups to verify sender addresses. Note that PKA is based

 on DNS, and so enabling this option may disclose information on when

 and what signatures are verified or to whom data is encrypted. This

 is similar to the "web bug" described for the --auto-key-retrieve op?

 tion.

 pka-trust-increase

 Raise the trust in a signature to full if the signature passes PKA

 validation. This option is only meaningful if pka-lookups is set.

 --enable-large-rsa

 --disable-large-rsa

 With --generate-key and --batch, enable the creation of RSA secret keys as

 large as 8192 bit. Note: 8192 bit is more than is generally recommended.

 These large keys don't significantly improve security, but they are more ex?

 pensive to use, and their signatures and certifications are larger. This

 option is only available if the binary was build with large-secmem support.

 --enable-dsa2

 --disable-dsa2

 Enable hash truncation for all DSA keys even for old DSA Keys up to 1024 Page 26/76

 bit. This is also the default with --openpgp. Note that older versions of

 GnuPG also required this flag to allow the generation of DSA larger than

 1024 bit.

 --photo-viewer string

 This is the command line that should be run to view a photo ID. "%i" will be

 expanded to a filename containing the photo. "%I" does the same, except the

 file will not be deleted once the viewer exits. Other flags are "%k" for

 the key ID, "%K" for the long key ID, "%f" for the key fingerprint, "%t" for

 the extension of the image type (e.g. "jpg"), "%T" for the MIME type of the

 image (e.g. "image/jpeg"), "%v" for the single-character calculated validity

 of the image being viewed (e.g. "f"), "%V" for the calculated validity as a

 string (e.g. "full"), "%U" for a base32 encoded hash of the user ID, and

 "%%" for an actual percent sign. If neither %i or %I are present, then the

 photo will be supplied to the viewer on standard input.

 On Unix the default viewer is xloadimage -fork -quiet -title 'KeyID 0x%k'

 STDIN with a fallback to display -title 'KeyID 0x%k' %i and finally to xdg-

 open %i. On Windows !ShellExecute 400 %i is used; here the command is a

 meta command to use that API call followed by a wait time in milliseconds

 which is used to give the viewer time to read the temporary image file be?

 fore gpg deletes it again. Note that if your image viewer program is not

 secure, then executing it from gpg does not make it secure.

 --exec-path string

 Sets a list of directories to search for photo viewers If not provided photo

 viewers use the PATH environment variable.

 --keyring file

 Add file to the current list of keyrings. If file begins with a tilde and a

 slash, these are replaced by the $HOME directory. If the filename does not

 contain a slash, it is assumed to be in the GnuPG home directory ("~/.gnupg"

 if --homedir or $GNUPGHOME is not used).

 Note that this adds a keyring to the current list. If the intent is to use

 the specified keyring alone, use --keyring along with --no-default-keyring.

 If the option --no-keyring has been used no keyrings will be used at all.

 --secret-keyring file Page 27/76

 This is an obsolete option and ignored. All secret keys are stored in the

 ?private-keys-v1.d? directory below the GnuPG home directory.

 --primary-keyring file

 Designate file as the primary public keyring. This means that newly imported

 keys (via --import or keyserver --recv-from) will go to this keyring.

 --trustdb-name file

 Use file instead of the default trustdb. If file begins with a tilde and a

 slash, these are replaced by the $HOME directory. If the filename does not

 contain a slash, it is assumed to be in the GnuPG home directory (?~/.gnupg?

 if --homedir or $GNUPGHOME is not used).

 --homedir dir

 Set the name of the home directory to dir. If this option is not used, the

 home directory defaults to ?~/.gnupg?. It is only recognized when given on

 the command line. It also overrides any home directory stated through the

 environment variable ?GNUPGHOME? or (on Windows systems) by means of the

 Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

 On Windows systems it is possible to install GnuPG as a portable applica?

 tion. In this case only this command line option is considered, all other

 ways to set a home directory are ignored.

 To install GnuPG as a portable application under Windows, create an empty

 file named ?gpgconf.ctl? in the same directory as the tool ?gpgconf.exe?.

 The root of the installation is then that directory; or, if ?gpgconf.exe?

 has been installed directly below a directory named ?bin?, its parent direc?

 tory. You also need to make sure that the following directories exist and

 are writable: ?ROOT/home? for the GnuPG home and ?ROOT/var/cache/gnupg? for

 internal cache files.

 --display-charset name

 Set the name of the native character set. This is used to convert some in?

 formational strings like user IDs to the proper UTF-8 encoding. Note that

 this has nothing to do with the character set of data to be encrypted or

 signed; GnuPG does not recode user-supplied data. If this option is not

 used, the default character set is determined from the current locale. A

 verbosity level of 3 shows the chosen set. Valid values for name are: Page 28/76

 iso-8859-1

 This is the Latin 1 set.

 iso-8859-2

 The Latin 2 set.

 iso-8859-15

 This is currently an alias for the Latin 1 set.

 koi8-r The usual Russian set (RFC-1489).

 utf-8 Bypass all translations and assume that the OS uses native UTF-8 en?

 coding.

 --utf8-strings

 --no-utf8-strings

 Assume that command line arguments are given as UTF-8 strings. The default

 (--no-utf8-strings) is to assume that arguments are encoded in the character

 set as specified by --display-charset. These options affect all following

 arguments. Both options may be used multiple times.

 --options file

 Read options from file and do not try to read them from the default options

 file in the homedir (see --homedir). This option is ignored if used in an

 options file.

 --no-options

 Shortcut for --options /dev/null. This option is detected before an attempt

 to open an option file. Using this option will also prevent the creation of

 a ?~/.gnupg? homedir.

 -z n

 --compress-level n

 --bzip2-compress-level n

 Set compression level to n for the ZIP and ZLIB compression algorithms. The

 default is to use the default compression level of zlib (normally 6).

 --bzip2-compress-level sets the compression level for the BZIP2 compression

 algorithm (defaulting to 6 as well). This is a different option from --com?

 press-level since BZIP2 uses a significant amount of memory for each addi?

 tional compression level. -z sets both. A value of 0 for n disables com?

 pression. Page 29/76

 --bzip2-decompress-lowmem

 Use a different decompression method for BZIP2 compressed files. This alter?

 nate method uses a bit more than half the memory, but also runs at half the

 speed. This is useful under extreme low memory circumstances when the file

 was originally compressed at a high --bzip2-compress-level.

 --mangle-dos-filenames

 --no-mangle-dos-filenames

 Older version of Windows cannot handle filenames with more than one dot.

 --mangle-dos-filenames causes GnuPG to replace (rather than add to) the ex?

 tension of an output filename to avoid this problem. This option is off by

 default and has no effect on non-Windows platforms.

 --ask-cert-level

 --no-ask-cert-level

 When making a key signature, prompt for a certification level. If this op?

 tion is not specified, the certification level used is set via --default-

 cert-level. See --default-cert-level for information on the specific levels

 and how they are used. --no-ask-cert-level disables this option. This option

 defaults to no.

 --default-cert-level n

 The default to use for the check level when signing a key.

 0 means you make no particular claim as to how carefully you verified the

 key.

 1 means you believe the key is owned by the person who claims to own it but

 you could not, or did not verify the key at all. This is useful for a "per?

 sona" verification, where you sign the key of a pseudonymous user.

 2 means you did casual verification of the key. For example, this could mean

 that you verified the key fingerprint and checked the user ID on the key

 against a photo ID.

 3 means you did extensive verification of the key. For example, this could

 mean that you verified the key fingerprint with the owner of the key in per?

 son, and that you checked, by means of a hard to forge document with a photo

 ID (such as a passport) that the name of the key owner matches the name in

 the user ID on the key, and finally that you verified (by exchange of email) Page 30/76

 that the email address on the key belongs to the key owner.

 Note that the examples given above for levels 2 and 3 are just that: exam?

 ples. In the end, it is up to you to decide just what "casual" and "exten?

 sive" mean to you.

 This option defaults to 0 (no particular claim).

 --min-cert-level

 When building the trust database, treat any signatures with a certification

 level below this as invalid. Defaults to 2, which disregards level 1 signa?

 tures. Note that level 0 "no particular claim" signatures are always ac?

 cepted.

 --trusted-key long key ID

 Assume that the specified key (which must be given as a full 8 byte key ID)

 is as trustworthy as one of your own secret keys. This option is useful if

 you don't want to keep your secret keys (or one of them) online but still

 want to be able to check the validity of a given recipient's or signator's

 key.

 --trust-model {pgp|classic|tofu|tofu+pgp|direct|always|auto}

 Set what trust model GnuPG should follow. The models are:

 pgp This is the Web of Trust combined with trust signatures as used in

 PGP 5.x and later. This is the default trust model when creating a

 new trust database.

 classic

 This is the standard Web of Trust as introduced by PGP 2.

 tofu

 TOFU stands for Trust On First Use. In this trust model, the first

 time a key is seen, it is memorized. If later another key with a

 user id with the same email address is seen, both keys are marked as

 suspect. In that case, the next time either is used, a warning is

 displayed describing the conflict, why it might have occurred (either

 the user generated a new key and failed to cross sign the old and new

 keys, the key is forgery, or a man-in-the-middle attack is being at?

 tempted), and the user is prompted to manually confirm the validity

 of the key in question. Page 31/76

 Because a potential attacker is able to control the email address and

 thereby circumvent the conflict detection algorithm by using an email

 address that is similar in appearance to a trusted email address,

 whenever a message is verified, statistics about the number of mes?

 sages signed with the key are shown. In this way, a user can easily

 identify attacks using fake keys for regular correspondents.

 When compared with the Web of Trust, TOFU offers significantly weaker

 security guarantees. In particular, TOFU only helps ensure consis?

 tency (that is, that the binding between a key and email address

 doesn't change). A major advantage of TOFU is that it requires lit?

 tle maintenance to use correctly. To use the web of trust properly,

 you need to actively sign keys and mark users as trusted introducers.

 This is a time-consuming process and anecdotal evidence suggests that

 even security-conscious users rarely take the time to do this thor?

 oughly and instead rely on an ad-hoc TOFU process.

 In the TOFU model, policies are associated with bindings between keys

 and email addresses (which are extracted from user ids and normal?

 ized). There are five policies, which can be set manually using the

 --tofu-policy option. The default policy can be set using the

 --tofu-default-policy option.

 The TOFU policies are: auto, good, unknown, bad and ask. The auto

 policy is used by default (unless overridden by --tofu-default-pol?

 icy) and marks a binding as marginally trusted. The good, unknown

 and bad policies mark a binding as fully trusted, as having unknown

 trust or as having trust never, respectively. The unknown policy is

 useful for just using TOFU to detect conflicts, but to never assign

 positive trust to a binding. The final policy, ask prompts the user

 to indicate the binding's trust. If batch mode is enabled (or input

 is inappropriate in the context), then the user is not prompted and

 the undefined trust level is returned.

 tofu+pgp

 This trust model combines TOFU with the Web of Trust. This is done

 by computing the trust level for each model and then taking the maxi? Page 32/76

 mum trust level where the trust levels are ordered as follows: un?

 known < undefined < marginal < fully < ultimate < expired < never.

 By setting --tofu-default-policy=unknown, this model can be used to

 implement the web of trust with TOFU's conflict detection algorithm,

 but without its assignment of positive trust values, which some secu?

 rity-conscious users don't like.

 direct Key validity is set directly by the user and not calculated via the

 Web of Trust. This model is solely based on the key and does not

 distinguish user IDs. Note that when changing to another trust model

 the trust values assigned to a key are transformed into ownertrust

 values, which also indicate how you trust the owner of the key to

 sign other keys.

 always Skip key validation and assume that used keys are always fully valid.

 You generally won't use this unless you are using some external vali?

 dation scheme. This option also suppresses the "[uncertain]" tag

 printed with signature checks when there is no evidence that the user

 ID is bound to the key. Note that this trust model still does not

 allow the use of expired, revoked, or disabled keys.

 auto Select the trust model depending on whatever the internal trust data?

 base says. This is the default model if such a database already ex?

 ists. Note that a tofu trust model is not considered here and must

 be enabled explicitly.

 --auto-key-locate mechanisms

 --no-auto-key-locate

 GnuPG can automatically locate and retrieve keys as needed using this op?

 tion. This happens when encrypting to an email address (in the "user@exam?

 ple.com" form), and there are no "user@example.com" keys on the local

 keyring. This option takes any number of the mechanisms listed below, in

 the order they are to be tried. Instead of listing the mechanisms as comma

 delimited arguments, the option may also be given several times to add more

 mechanism. The option --no-auto-key-locate or the mechanism "clear" resets

 the list. The default is "local,wkd".

 cert Locate a key using DNS CERT, as specified in RFC-4398. Page 33/76

 pka Locate a key using DNS PKA.

 dane Locate a key using DANE, as specified in draft-ietf-dane-openpgp?

 key-05.txt.

 wkd Locate a key using the Web Key Directory protocol.

 ldap Using DNS Service Discovery, check the domain in question for any

 LDAP keyservers to use. If this fails, attempt to locate the key us?

 ing the PGP Universal method of checking ?ldap://keys.(thedomain)?.

 keyserver

 Locate a key using a keyserver.

 keyserver-URL

 In addition, a keyserver URL as used in the dirmngr configuration may

 be used here to query that particular keyserver.

 local Locate the key using the local keyrings. This mechanism allows the

 user to select the order a local key lookup is done. Thus using

 ?--auto-key-locate local? is identical to --no-auto-key-locate.

 nodefault

 This flag disables the standard local key lookup, done before any of

 the mechanisms defined by the --auto-key-locate are tried. The posi?

 tion of this mechanism in the list does not matter. It is not re?

 quired if local is also used.

 clear Clear all defined mechanisms. This is useful to override mechanisms

 given in a config file. Note that a nodefault in mechanisms will

 also be cleared unless it is given after the clear.

 --auto-key-retrieve

 --no-auto-key-retrieve

 These options enable or disable the automatic retrieving of keys from a key?

 server when verifying signatures made by keys that are not on the local

 keyring. The default is --no-auto-key-retrieve.

 The order of methods tried to lookup the key is:

 1. If a preferred keyserver is specified in the signature and the option

 honor-keyserver-url is active (which is not the default), that keyserver is

 tried. Note that the creator of the signature uses the option --sig-key?

 server-url to specify the preferred keyserver for data signatures. Page 34/76

 2. If the signature has the Signer's UID set (e.g. using --sender while cre?

 ating the signature) a Web Key Directory (WKD) lookup is done. This is the

 default configuration but can be disabled by removing WKD from the auto-key-

 locate list or by using the option --disable-signer-uid.

 3. If the option honor-pka-record is active, the legacy PKA method is used.

 4. If any keyserver is configured and the Issuer Fingerprint is part of the

 signature (since GnuPG 2.1.16), the configured keyservers are tried.

 Note that this option makes a "web bug" like behavior possible. Keyserver

 or Web Key Directory operators can see which keys you request, so by sending

 you a message signed by a brand new key (which you naturally will not have

 on your local keyring), the operator can tell both your IP address and the

 time when you verified the signature.

 --keyid-format {none|short|0xshort|long|0xlong}

 Select how to display key IDs. "none" does not show the key ID at all but

 shows the fingerprint in a separate line. "short" is the traditional

 8-character key ID. "long" is the more accurate (but less convenient)

 16-character key ID. Add an "0x" to either to include an "0x" at the begin?

 ning of the key ID, as in 0x99242560. Note that this option is ignored if

 the option --with-colons is used.

 --keyserver name

 This option is deprecated - please use the --keyserver in ?dirmngr.conf? in?

 stead.

 Use name as your keyserver. This is the server that --receive-keys, --send-

 keys, and --search-keys will communicate with to receive keys from, send

 keys to, and search for keys on. The format of the name is a URI:

 `scheme:[//]keyservername[:port]' The scheme is the type of keyserver: "hkp"

 for the HTTP (or compatible) keyservers, "ldap" for the LDAP keyservers, or

 "mailto" for the Graff email keyserver. Note that your particular installa?

 tion of GnuPG may have other keyserver types available as well. Keyserver

 schemes are case-insensitive. After the keyserver name, optional keyserver

 configuration options may be provided. These are the same as the global

 --keyserver-options from below, but apply only to this particular keyserver.

 Most keyservers synchronize with each other, so there is generally no need Page 35/76

 to send keys to more than one server. The keyserver hkp://keys.gnupg.net

 uses round robin DNS to give a different keyserver each time you use it.

 --keyserver-options {name=value}

 This is a space or comma delimited string that gives options for the key?

 server. Options can be prefixed with a `no-' to give the opposite meaning.

 Valid import-options or export-options may be used here as well to apply to

 importing (--recv-key) or exporting (--send-key) a key from a keyserver.

 While not all options are available for all keyserver types, some common op?

 tions are:

 include-revoked

 When searching for a key with --search-keys, include keys that are

 marked on the keyserver as revoked. Note that not all keyservers dif?

 ferentiate between revoked and unrevoked keys, and for such key?

 servers this option is meaningless. Note also that most keyservers do

 not have cryptographic verification of key revocations, and so turn?

 ing this option off may result in skipping keys that are incorrectly

 marked as revoked.

 include-disabled

 When searching for a key with --search-keys, include keys that are

 marked on the keyserver as disabled. Note that this option is not

 used with HKP keyservers.

 auto-key-retrieve

 This is an obsolete alias for the option auto-key-retrieve. Please

 do not use it; it will be removed in future versions..

 honor-keyserver-url

 When using --refresh-keys, if the key in question has a preferred

 keyserver URL, then use that preferred keyserver to refresh the key

 from. In addition, if auto-key-retrieve is set, and the signature be?

 ing verified has a preferred keyserver URL, then use that preferred

 keyserver to fetch the key from. Note that this option introduces a

 "web bug": The creator of the key can see when the keys is refreshed.

 Thus this option is not enabled by default.

 honor-pka-record Page 36/76

 If --auto-key-retrieve is used, and the signature being verified has

 a PKA record, then use the PKA information to fetch the key. Defaults

 to "yes".

 include-subkeys

 When receiving a key, include subkeys as potential targets. Note that

 this option is not used with HKP keyservers, as they do not support

 retrieving keys by subkey id.

 timeout

 http-proxy=value

 verbose

 debug

 check-cert

 ca-cert-file

 These options have no more function since GnuPG 2.1. Use the dirmngr

 configuration options instead.

 The default list of options is: "self-sigs-only, repair-keys, repair-pks-subkey-

 bug, export-attributes, honor-pka-record".

 --completes-needed n

 Number of completely trusted users to introduce a new key signer (defaults

 to 1).

 --marginals-needed n

 Number of marginally trusted users to introduce a new key signer (defaults

 to 3)

 --tofu-default-policy {auto|good|unknown|bad|ask}

 The default TOFU policy (defaults to auto). For more information about the

 meaning of this option, see: [trust-model-tofu].

 --max-cert-depth n

 Maximum depth of a certification chain (default is 5).

 --no-sig-cache

 Do not cache the verification status of key signatures. Caching gives a

 much better performance in key listings. However, if you suspect that your

 public keyring is not safe against write modifications, you can use this op?

 tion to disable the caching. It probably does not make sense to disable it Page 37/76

 because all kind of damage can be done if someone else has write access to

 your public keyring.

 --auto-check-trustdb

 --no-auto-check-trustdb

 If GnuPG feels that its information about the Web of Trust has to be up?

 dated, it automatically runs the --check-trustdb command internally. This

 may be a time consuming process. --no-auto-check-trustdb disables this op?

 tion.

 --use-agent

 --no-use-agent

 This is dummy option. gpg always requires the agent.

 --gpg-agent-info

 This is dummy option. It has no effect when used with gpg.

 --agent-program file

 Specify an agent program to be used for secret key operations. The default

 value is determined by running gpgconf with the option --list-dirs. Note

 that the pipe symbol (|) is used for a regression test suite hack and may

 thus not be used in the file name.

 --dirmngr-program file

 Specify a dirmngr program to be used for keyserver access. The default

 value is ?/usr/bin/dirmngr?.

 --disable-dirmngr

 Entirely disable the use of the Dirmngr.

 --no-autostart

 Do not start the gpg-agent or the dirmngr if it has not yet been started and

 its service is required. This option is mostly useful on machines where the

 connection to gpg-agent has been redirected to another machines. If dirmngr

 is required on the remote machine, it may be started manually using gpgconf

 --launch dirmngr.

 --lock-once

 Lock the databases the first time a lock is requested and do not release the

 lock until the process terminates.

 --lock-multiple Page 38/76

 Release the locks every time a lock is no longer needed. Use this to over?

 ride a previous --lock-once from a config file.

 --lock-never

 Disable locking entirely. This option should be used only in very special

 environments, where it can be assured that only one process is accessing

 those files. A bootable floppy with a stand-alone encryption system will

 probably use this. Improper usage of this option may lead to data and key

 corruption.

 --exit-on-status-write-error

 This option will cause write errors on the status FD to immediately termi?

 nate the process. That should in fact be the default but it never worked

 this way and thus we need an option to enable this, so that the change won't

 break applications which close their end of a status fd connected pipe too

 early. Using this option along with --enable-progress-filter may be used to

 cleanly cancel long running gpg operations.

 --limit-card-insert-tries n

 With n greater than 0 the number of prompts asking to insert a smartcard

 gets limited to N-1. Thus with a value of 1 gpg won't at all ask to insert a

 card if none has been inserted at startup. This option is useful in the con?

 figuration file in case an application does not know about the smartcard

 support and waits ad infinitum for an inserted card.

 --no-random-seed-file

 GnuPG uses a file to store its internal random pool over invocations. This

 makes random generation faster; however sometimes write operations are not

 desired. This option can be used to achieve that with the cost of slower

 random generation.

 --no-greeting

 Suppress the initial copyright message.

 --no-secmem-warning

 Suppress the warning about "using insecure memory".

 --no-permission-warning

 Suppress the warning about unsafe file and home directory (--homedir) per?

 missions. Note that the permission checks that GnuPG performs are not in? Page 39/76

 tended to be authoritative, but rather they simply warn about certain common

 permission problems. Do not assume that the lack of a warning means that

 your system is secure.

 Note that the warning for unsafe --homedir permissions cannot be suppressed

 in the gpg.conf file, as this would allow an attacker to place an unsafe

 gpg.conf file in place, and use this file to suppress warnings about itself.

 The --homedir permissions warning may only be suppressed on the command

 line.

 --require-secmem

 --no-require-secmem

 Refuse to run if GnuPG cannot get secure memory. Defaults to no (i.e. run,

 but give a warning).

 --require-cross-certification

 --no-require-cross-certification

 When verifying a signature made from a subkey, ensure that the cross certi?

 fication "back signature" on the subkey is present and valid. This protects

 against a subtle attack against subkeys that can sign. Defaults to --re?

 quire-cross-certification for gpg.

 --expert

 --no-expert

 Allow the user to do certain nonsensical or "silly" things like signing an

 expired or revoked key, or certain potentially incompatible things like gen?

 erating unusual key types. This also disables certain warning messages about

 potentially incompatible actions. As the name implies, this option is for

 experts only. If you don't fully understand the implications of what it al?

 lows you to do, leave this off. --no-expert disables this option.

 Key related options

 --recipient name

 -r Encrypt for user id name. If this option or --hidden-recipient is not speci?

 fied, GnuPG asks for the user-id unless --default-recipient is given.

 --hidden-recipient name

 -R Encrypt for user ID name, but hide the key ID of this user's key. This op?

 tion helps to hide the receiver of the message and is a limited countermea? Page 40/76

 sure against traffic analysis. If this option or --recipient is not speci?

 fied, GnuPG asks for the user ID unless --default-recipient is given.

 --recipient-file file

 -f This option is similar to --recipient except that it encrypts to a key

 stored in the given file. file must be the name of a file containing ex?

 actly one key. gpg assumes that the key in this file is fully valid.

 --hidden-recipient-file file

 -F This option is similar to --hidden-recipient except that it encrypts to a

 key stored in the given file. file must be the name of a file containing

 exactly one key. gpg assumes that the key in this file is fully valid.

 --encrypt-to name

 Same as --recipient but this one is intended for use in the options file and

 may be used with your own user-id as an "encrypt-to-self". These keys are

 only used when there are other recipients given either by use of --recipient

 or by the asked user id. No trust checking is performed for these user ids

 and even disabled keys can be used.

 --hidden-encrypt-to name

 Same as --hidden-recipient but this one is intended for use in the options

 file and may be used with your own user-id as a hidden "encrypt-to-self".

 These keys are only used when there are other recipients given either by use

 of --recipient or by the asked user id. No trust checking is performed for

 these user ids and even disabled keys can be used.

 --no-encrypt-to

 Disable the use of all --encrypt-to and --hidden-encrypt-to keys.

 --group {name=value}

 Sets up a named group, which is similar to aliases in email programs. Any

 time the group name is a recipient (-r or --recipient), it will be expanded

 to the values specified. Multiple groups with the same name are automati?

 cally merged into a single group.

 The values are key IDs or fingerprints, but any key description is accepted.

 Note that a value with spaces in it will be treated as two different values.

 Note also there is only one level of expansion --- you cannot make an group

 that points to another group. When used from the command line, it may be Page 41/76

 necessary to quote the argument to this option to prevent the shell from

 treating it as multiple arguments.

 --ungroup name

 Remove a given entry from the --group list.

 --no-groups

 Remove all entries from the --group list.

 --local-user name

 -u Use name as the key to sign with. Note that this option overrides --default-

 key.

 --sender mbox

 This option has two purposes. mbox must either be a complete user id with a

 proper mail address or just a mail address. When creating a signature this

 option tells gpg the user id of a key used to make a signature if the key

 was not directly specified by a user id. When verifying a signature the

 mbox is used to restrict the information printed by the TOFU code to match?

 ing user ids.

 --try-secret-key name

 For hidden recipients GPG needs to know the keys to use for trial decryp?

 tion. The key set with --default-key is always tried first, but this is of?

 ten not sufficient. This option allows setting more keys to be used for

 trial decryption. Although any valid user-id specification may be used for

 name it makes sense to use at least the long keyid to avoid ambiguities.

 Note that gpg-agent might pop up a pinentry for a lot keys to do the trial

 decryption. If you want to stop all further trial decryption you may use

 close-window button instead of the cancel button.

 --try-all-secrets

 Don't look at the key ID as stored in the message but try all secret keys in

 turn to find the right decryption key. This option forces the behaviour as

 used by anonymous recipients (created by using --throw-keyids or --hidden-

 recipient) and might come handy in case where an encrypted message contains

 a bogus key ID.

 --skip-hidden-recipients

 --no-skip-hidden-recipients Page 42/76

 During decryption skip all anonymous recipients. This option helps in the

 case that people use the hidden recipients feature to hide their own en?

 crypt-to key from others. If one has many secret keys this may lead to a

 major annoyance because all keys are tried in turn to decrypt something

 which was not really intended for it. The drawback of this option is that

 it is currently not possible to decrypt a message which includes real anony?

 mous recipients.

 Input and Output

 --armor

 -a Create ASCII armored output. The default is to create the binary OpenPGP

 format.

 --no-armor

 Assume the input data is not in ASCII armored format.

 --output file

 -o file

 Write output to file. To write to stdout use - as the filename.

 --max-output n

 This option sets a limit on the number of bytes that will be generated when

 processing a file. Since OpenPGP supports various levels of compression, it

 is possible that the plaintext of a given message may be significantly

 larger than the original OpenPGP message. While GnuPG works properly with

 such messages, there is often a desire to set a maximum file size that will

 be generated before processing is forced to stop by the OS limits. Defaults

 to 0, which means "no limit".

 --input-size-hint n

 This option can be used to tell GPG the size of the input data in bytes. n

 must be a positive base-10 number. This option is only useful if the input

 is not taken from a file. GPG may use this hint to optimize its buffer al?

 location strategy. It is also used by the --status-fd line ``PROGRESS'' to

 provide a value for ``total'' if that is not available by other means.

 --key-origin string[,url]

 gpg can track the origin of a key. Certain origins are implicitly known

 (e.g. keyserver, web key directory) and set. For a standard import the ori? Page 43/76

 gin of the keys imported can be set with this option. To list the possible

 values use "help" for string. Some origins can store an optional url argu?

 ment. That URL can appended to string after a comma.

 --import-options parameters

 This is a space or comma delimited string that gives options for importing

 keys. Options can be prepended with a `no-' to give the opposite meaning.

 The options are:

 import-local-sigs

 Allow importing key signatures marked as "local". This is not gener?

 ally useful unless a shared keyring scheme is being used. Defaults

 to no.

 keep-ownertrust

 Normally possible still existing ownertrust values of a key are

 cleared if a key is imported. This is in general desirable so that a

 formerly deleted key does not automatically gain an ownertrust values

 merely due to import. On the other hand it is sometimes necessary to

 re-import a trusted set of keys again but keeping already assigned

 ownertrust values. This can be achieved by using this option.

 repair-pks-subkey-bug

 During import, attempt to repair the damage caused by the PKS key?

 server bug (pre version 0.9.6) that mangles keys with multiple sub?

 keys. Note that this cannot completely repair the damaged key as some

 crucial data is removed by the keyserver, but it does at least give

 you back one subkey. Defaults to no for regular --import and to yes

 for keyserver --receive-keys.

 import-show

 show-only

 Show a listing of the key as imported right before it is stored.

 This can be combined with the option --dry-run to only look at keys;

 the option show-only is a shortcut for this combination. The command

 --show-keys is another shortcut for this. Note that suffixes like

 '#' for "sec" and "sbb" lines may or may not be printed.

 import-export Page 44/76

 Run the entire import code but instead of storing the key to the lo?

 cal keyring write it to the output. The export options export-pka

 and export-dane affect the output. This option can be used to remove

 all invalid parts from a key without the need to store it.

 merge-only

 During import, allow key updates to existing keys, but do not allow

 any new keys to be imported. Defaults to no.

 import-clean

 After import, compact (remove all signatures except the self-signa?

 ture) any user IDs from the new key that are not usable. Then, re?

 move any signatures from the new key that are not usable. This in?

 cludes signatures that were issued by keys that are not present on

 the keyring. This option is the same as running the --edit-key com?

 mand "clean" after import. Defaults to no.

 self-sigs-only

 Accept only self-signatures while importing a key. All other key

 signatures are skipped at an early import stage. This option can be

 used with keyserver-options to mitigate attempts to flood a key with

 bogus signatures from a keyserver. The drawback is that all other

 valid key signatures, as required by the Web of Trust are also not

 imported. Note that when using this option along with import-clean

 it suppresses the final clean step after merging the imported key

 into the existing key.

 repair-keys

 After import, fix various problems with the keys. For example, this

 reorders signatures, and strips duplicate signatures. Defaults to

 yes.

 import-minimal

 Import the smallest key possible. This removes all signatures except

 the most recent self-signature on each user ID. This option is the

 same as running the --edit-key command "minimize" after import. De?

 faults to no.

 restore Page 45/76

 import-restore

 Import in key restore mode. This imports all data which is usually

 skipped during import; including all GnuPG specific data. All other

 contradicting options are overridden.

 --import-filter {name=expr}

 --export-filter {name=expr}

 These options define an import/export filter which are applied to the im?

 ported/exported keyblock right before it will be stored/written. name de?

 fines the type of filter to use, expr the expression to evaluate. The op?

 tion can be used several times which then appends more expression to the

 same name.

 The available filter types are:

 keep-uid

 This filter will keep a user id packet and its dependent packets in

 the keyblock if the expression evaluates to true.

 drop-subkey

 This filter drops the selected subkeys. Currently only implemented

 for --export-filter.

 drop-sig

 This filter drops the selected key signatures on user ids. Self-sig?

 natures are not considered. Currently only implemented for --import-

 filter.

 For the syntax of the expression see the chapter "FILTER EXPRESSIONS". The prop?

 erty names for the expressions depend on the actual filter type and are indicated

 in the following table.

 The available properties are:

 uid A string with the user id. (keep-uid)

 mbox The addr-spec part of a user id with mailbox or the empty string.

 (keep-uid)

 key_algo

 A number with the public key algorithm of a key or subkey packet.

 (drop-subkey)

 key_created Page 46/76

 key_created_d

 The first is the timestamp a public key or subkey packet was created.

 The second is the same but given as an ISO string, e.g. "2016-08-17".

 (drop-subkey)

 primary

 Boolean indicating whether the user id is the primary one. (keep-

 uid)

 expired

 Boolean indicating whether a user id (keep-uid), a key (drop-subkey),

 or a signature (drop-sig) expired.

 revoked

 Boolean indicating whether a user id (keep-uid) or a key (drop-sub?

 key) has been revoked.

 disabled

 Boolean indicating whether a primary key is disabled. (not used)

 secret Boolean indicating whether a key or subkey is a secret one. (drop-

 subkey)

 usage A string indicating the usage flags for the subkey, from the sequence

 ``ecsa?''. For example, a subkey capable of just signing and authen?

 tication would be an exact match for ``sa''. (drop-subkey)

 sig_created

 sig_created_d

 The first is the timestamp a signature packet was created. The sec?

 ond is the same but given as an ISO date string, e.g. "2016-08-17".

 (drop-sig)

 sig_algo

 A number with the public key algorithm of a signature packet. (drop-

 sig)

 sig_digest_algo

 A number with the digest algorithm of a signature packet. (drop-sig)

 --export-options parameters

 This is a space or comma delimited string that gives options for exporting

 keys. Options can be prepended with a `no-' to give the opposite meaning. Page 47/76

 The options are:

 export-local-sigs

 Allow exporting key signatures marked as "local". This is not gener?

 ally useful unless a shared keyring scheme is being used. Defaults

 to no.

 export-attributes

 Include attribute user IDs (photo IDs) while exporting. Not including

 attribute user IDs is useful to export keys that are going to be used

 by an OpenPGP program that does not accept attribute user IDs. De?

 faults to yes.

 export-sensitive-revkeys

 Include designated revoker information that was marked as "sensi?

 tive". Defaults to no.

 backup

 export-backup

 Export for use as a backup. The exported data includes all data

 which is needed to restore the key or keys later with GnuPG. The

 format is basically the OpenPGP format but enhanced with GnuPG spe?

 cific data. All other contradicting options are overridden.

 export-clean

 Compact (remove all signatures from) user IDs on the key being ex?

 ported if the user IDs are not usable. Also, do not export any signa?

 tures that are not usable. This includes signatures that were issued

 by keys that are not present on the keyring. This option is the same

 as running the --edit-key command "clean" before export except that

 the local copy of the key is not modified. Defaults to no.

 export-minimal

 Export the smallest key possible. This removes all signatures except

 the most recent self-signature on each user ID. This option is the

 same as running the --edit-key command "minimize" before export ex?

 cept that the local copy of the key is not modified. Defaults to no.

 export-pka

 Instead of outputting the key material output PKA records suitable to Page 48/76

 put into DNS zone files. An ORIGIN line is printed before each

 record to allow diverting the records to the corresponding zone file.

 export-dane

 Instead of outputting the key material output OpenPGP DANE records

 suitable to put into DNS zone files. An ORIGIN line is printed be?

 fore each record to allow diverting the records to the corresponding

 zone file.

 --with-colons

 Print key listings delimited by colons. Note that the output will be encoded

 in UTF-8 regardless of any --display-charset setting. This format is useful

 when GnuPG is called from scripts and other programs as it is easily machine

 parsed. The details of this format are documented in the file ?doc/DETAILS?,

 which is included in the GnuPG source distribution.

 --fixed-list-mode

 Do not merge primary user ID and primary key in --with-colon listing mode

 and print all timestamps as seconds since 1970-01-01. Since GnuPG 2.0.10,

 this mode is always used and thus this option is obsolete; it does not harm

 to use it though.

 --legacy-list-mode

 Revert to the pre-2.1 public key list mode. This only affects the human

 readable output and not the machine interface (i.e. --with-colons). Note

 that the legacy format does not convey suitable information for elliptic

 curves.

 --with-fingerprint

 Same as the command --fingerprint but changes only the format of the output

 and may be used together with another command.

 --with-subkey-fingerprint

 If a fingerprint is printed for the primary key, this option forces printing

 of the fingerprint for all subkeys. This could also be achieved by using

 the --with-fingerprint twice but by using this option along with keyid-for?

 mat "none" a compact fingerprint is printed.

 --with-icao-spelling

 Print the ICAO spelling of the fingerprint in addition to the hex digits. Page 49/76

 --with-keygrip

 Include the keygrip in the key listings. In --with-colons mode this is im?

 plicitly enable for secret keys.

 --with-key-origin

 Include the locally held information on the origin and last update of a key

 in a key listing. In --with-colons mode this is always printed. This data

 is currently experimental and shall not be considered part of the stable

 API.

 --with-wkd-hash

 Print a Web Key Directory identifier along with each user ID in key list?

 ings. This is an experimental feature and semantics may change.

 --with-secret

 Include info about the presence of a secret key in public key listings done

 with --with-colons.

 OpenPGP protocol specific options

 -t, --textmode

 --no-textmode

 Treat input files as text and store them in the OpenPGP canonical text form

 with standard "CRLF" line endings. This also sets the necessary flags to in?

 form the recipient that the encrypted or signed data is text and may need

 its line endings converted back to whatever the local system uses. This op?

 tion is useful when communicating between two platforms that have different

 line ending conventions (UNIX-like to Mac, Mac to Windows, etc). --no-

 textmode disables this option, and is the default.

 --force-v3-sigs

 --no-force-v3-sigs

 --force-v4-certs

 --no-force-v4-certs

 These options are obsolete and have no effect since GnuPG 2.1.

 --force-mdc

 --disable-mdc

 These options are obsolete and have no effect since GnuPG 2.2.8. The MDC is

 always used. But note: If the creation of a legacy non-MDC message is ex? Page 50/76

 ceptionally required, the option --rfc2440 allows for this.

 --disable-signer-uid

 By default the user ID of the signing key is embedded in the data signature.

 As of now this is only done if the signing key has been specified with lo?

 cal-user using a mail address, or with sender. This information can be

 helpful for verifier to locate the key; see option --auto-key-retrieve.

 --personal-cipher-preferences string

 Set the list of personal cipher preferences to string. Use gpg --version to

 get a list of available algorithms, and use none to set no preference at

 all. This allows the user to safely override the algorithm chosen by the

 recipient key preferences, as GPG will only select an algorithm that is us?

 able by all recipients. The most highly ranked cipher in this list is also

 used for the --symmetric encryption command.

 --personal-digest-preferences string

 Set the list of personal digest preferences to string. Use gpg --version to

 get a list of available algorithms, and use none to set no preference at

 all. This allows the user to safely override the algorithm chosen by the

 recipient key preferences, as GPG will only select an algorithm that is us?

 able by all recipients. The most highly ranked digest algorithm in this

 list is also used when signing without encryption (e.g. --clear-sign or

 --sign).

 --personal-compress-preferences string

 Set the list of personal compression preferences to string. Use gpg --ver?

 sion to get a list of available algorithms, and use none to set no prefer?

 ence at all. This allows the user to safely override the algorithm chosen

 by the recipient key preferences, as GPG will only select an algorithm that

 is usable by all recipients. The most highly ranked compression algorithm

 in this list is also used when there are no recipient keys to consider (e.g.

 --symmetric).

 --s2k-cipher-algo name

 Use name as the cipher algorithm for symmetric encryption with a passphrase

 if --personal-cipher-preferences and --cipher-algo are not given. The de?

 fault is AES-128. Page 51/76

 --s2k-digest-algo name

 Use name as the digest algorithm used to mangle the passphrases for symmet?

 ric encryption. The default is SHA-1.

 --s2k-mode n

 Selects how passphrases for symmetric encryption are mangled. If n is 0 a

 plain passphrase (which is in general not recommended) will be used, a 1

 adds a salt (which should not be used) to the passphrase and a 3 (the de?

 fault) iterates the whole process a number of times (see --s2k-count).

 --s2k-count n

 Specify how many times the passphrases mangling for symmetric encryption is

 repeated. This value may range between 1024 and 65011712 inclusive. The

 default is inquired from gpg-agent. Note that not all values in the

 1024-65011712 range are legal and if an illegal value is selected, GnuPG

 will round up to the nearest legal value. This option is only meaningful if

 --s2k-mode is set to the default of 3.

 Compliance options

 These options control what GnuPG is compliant to. Only one of these options may be

 active at a time. Note that the default setting of this is nearly always the cor?

 rect one. See the INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below before

 using one of these options.

 --gnupg

 Use standard GnuPG behavior. This is essentially OpenPGP behavior (see

 --openpgp), but with some additional workarounds for common compatibility

 problems in different versions of PGP. This is the default option, so it is

 not generally needed, but it may be useful to override a different compli?

 ance option in the gpg.conf file.

 --openpgp

 Reset all packet, cipher and digest options to strict OpenPGP behavior. Use

 this option to reset all previous options like --s2k-*, --cipher-algo, --di?

 gest-algo and --compress-algo to OpenPGP compliant values. All PGP work?

 arounds are disabled.

 --rfc4880

 Reset all packet, cipher and digest options to strict RFC-4880 behavior. Page 52/76

 Note that this is currently the same thing as --openpgp.

 --rfc4880bis

 Enable experimental features from proposed updates to RFC-4880. This option

 can be used in addition to the other compliance options. Warning: The be?

 havior may change with any GnuPG release and created keys or data may not be

 usable with future GnuPG versions.

 --rfc2440

 Reset all packet, cipher and digest options to strict RFC-2440 behavior.

 Note that by using this option encryption packets are created in a legacy

 mode without MDC protection. This is dangerous and should thus only be used

 for experiments. See also option --ignore-mdc-error.

 --pgp6 Set up all options to be as PGP 6 compliant as possible. This restricts you

 to the ciphers IDEA (if the IDEA plugin is installed), 3DES, and CAST5, the

 hashes MD5, SHA1 and RIPEMD160, and the compression algorithms none and ZIP.

 This also disables --throw-keyids, and making signatures with signing sub?

 keys as PGP 6 does not understand signatures made by signing subkeys.

 This option implies --escape-from-lines.

 --pgp7 Set up all options to be as PGP 7 compliant as possible. This is identical

 to --pgp6 except that MDCs are not disabled, and the list of allowable ci?

 phers is expanded to add AES128, AES192, AES256, and TWOFISH.

 --pgp8 Set up all options to be as PGP 8 compliant as possible. PGP 8 is a lot

 closer to the OpenPGP standard than previous versions of PGP, so all this

 does is disable --throw-keyids and set --escape-from-lines. All algorithms

 are allowed except for the SHA224, SHA384, and SHA512 digests.

 --compliance string

 This option can be used instead of one of the options above. Valid values

 for string are the above option names (without the double dash) and possibly

 others as shown when using "help" for value.

 Doing things one usually doesn't want to do

 -n

 --dry-run

 Don't make any changes (this is not completely implemented).

 --list-only Page 53/76

 Changes the behaviour of some commands. This is like --dry-run but different

 in some cases. The semantic of this option may be extended in the future.

 Currently it only skips the actual decryption pass and therefore enables a

 fast listing of the encryption keys.

 -i

 --interactive

 Prompt before overwriting any files.

 --debug-level level

 Select the debug level for investigating problems. level may be a numeric

 value or by a keyword:

 none No debugging at all. A value of less than 1 may be used instead of

 the keyword.

 basic Some basic debug messages. A value between 1 and 2 may be used in?

 stead of the keyword.

 advanced

 More verbose debug messages. A value between 3 and 5 may be used in?

 stead of the keyword.

 expert Even more detailed messages. A value between 6 and 8 may be used in?

 stead of the keyword.

 guru All of the debug messages you can get. A value greater than 8 may be

 used instead of the keyword. The creation of hash tracing files is

 only enabled if the keyword is used.

 How these messages are mapped to the actual debugging flags is not specified and

 may change with newer releases of this program. They are however carefully selected

 to best aid in debugging.

 --debug flags

 Set debugging flags. All flags are or-ed and flags may be given in C syntax

 (e.g. 0x0042) or as a comma separated list of flag names. To get a list of

 all supported flags the single word "help" can be used.

 --debug-all

 Set all useful debugging flags.

 --debug-iolbf

 Set stdout into line buffered mode. This option is only honored when given Page 54/76

 on the command line.

 --faked-system-time epoch

 This option is only useful for testing; it sets the system time back or

 forth to epoch which is the number of seconds elapsed since the year 1970.

 Alternatively epoch may be given as a full ISO time string (e.g.

 "20070924T154812").

 If you suffix epoch with an exclamation mark (!), the system time will ap?

 pear to be frozen at the specified time.

 --enable-progress-filter

 Enable certain PROGRESS status outputs. This option allows frontends to dis?

 play a progress indicator while gpg is processing larger files. There is a

 slight performance overhead using it.

 --status-fd n

 Write special status strings to the file descriptor n. See the file DETAILS

 in the documentation for a listing of them.

 --status-file file

 Same as --status-fd, except the status data is written to file file.

 --logger-fd n

 Write log output to file descriptor n and not to STDERR.

 --log-file file

 --logger-file file

 Same as --logger-fd, except the logger data is written to file file. Use

 ?socket://? to log to a socket. Note that in this version of gpg the option

 has only an effect if --batch is also used.

 --attribute-fd n

 Write attribute subpackets to the file descriptor n. This is most useful for

 use with --status-fd, since the status messages are needed to separate out

 the various subpackets from the stream delivered to the file descriptor.

 --attribute-file file

 Same as --attribute-fd, except the attribute data is written to file file.

 --comment string

 --no-comments

 Use string as a comment string in cleartext signatures and ASCII armored Page 55/76

 messages or keys (see --armor). The default behavior is not to use a comment

 string. --comment may be repeated multiple times to get multiple comment

 strings. --no-comments removes all comments. It is a good idea to keep the

 length of a single comment below 60 characters to avoid problems with mail

 programs wrapping such lines. Note that comment lines, like all other

 header lines, are not protected by the signature.

 --emit-version

 --no-emit-version

 Force inclusion of the version string in ASCII armored output. If given

 once only the name of the program and the major number is emitted, given

 twice the minor is also emitted, given thrice the micro is added, and given

 four times an operating system identification is also emitted. --no-emit-

 version (default) disables the version line.

 --sig-notation {name=value}

 --cert-notation {name=value}

 -N, --set-notation {name=value}

 Put the name value pair into the signature as notation data. name must con?

 sist only of printable characters or spaces, and must contain a '@' charac?

 ter in the form keyname@domain.example.com (substituting the appropriate

 keyname and domain name, of course). This is to help prevent pollution of

 the IETF reserved notation namespace. The --expert flag overrides the '@'

 check. value may be any printable string; it will be encoded in UTF-8, so

 you should check that your --display-charset is set correctly. If you prefix

 name with an exclamation mark (!), the notation data will be flagged as

 critical (rfc4880:5.2.3.16). --sig-notation sets a notation for data signa?

 tures. --cert-notation sets a notation for key signatures (certifications).

 --set-notation sets both.

 There are special codes that may be used in notation names. "%k" will be ex?

 panded into the key ID of the key being signed, "%K" into the long key ID of

 the key being signed, "%f" into the fingerprint of the key being signed,

 "%s" into the key ID of the key making the signature, "%S" into the long key

 ID of the key making the signature, "%g" into the fingerprint of the key

 making the signature (which might be a subkey), "%p" into the fingerprint of Page 56/76

 the primary key of the key making the signature, "%c" into the signature

 count from the OpenPGP smartcard, and "%%" results in a single "%". %k, %K,

 and %f are only meaningful when making a key signature (certification), and

 %c is only meaningful when using the OpenPGP smartcard.

 --known-notation name

 Adds name to a list of known critical signature notations. The effect of

 this is that gpg will not mark a signature with a critical signature nota?

 tion of that name as bad. Note that gpg already knows by default about a

 few critical signatures notation names.

 --sig-policy-url string

 --cert-policy-url string

 --set-policy-url string

 Use string as a Policy URL for signatures (rfc4880:5.2.3.20). If you prefix

 it with an exclamation mark (!), the policy URL packet will be flagged as

 critical. --sig-policy-url sets a policy url for data signatures. --cert-

 policy-url sets a policy url for key signatures (certifications). --set-pol?

 icy-url sets both.

 The same %-expandos used for notation data are available here as well.

 --sig-keyserver-url string

 Use string as a preferred keyserver URL for data signatures. If you prefix

 it with an exclamation mark (!), the keyserver URL packet will be flagged as

 critical.

 The same %-expandos used for notation data are available here as well.

 --set-filename string

 Use string as the filename which is stored inside messages. This overrides

 the default, which is to use the actual filename of the file being en?

 crypted. Using the empty string for string effectively removes the filename

 from the output.

 --for-your-eyes-only

 --no-for-your-eyes-only

 Set the `for your eyes only' flag in the message. This causes GnuPG to

 refuse to save the file unless the --output option is given, and PGP to use

 a "secure viewer" with a claimed Tempest-resistant font to display the mes? Page 57/76

 sage. This option overrides --set-filename. --no-for-your-eyes-only dis?

 ables this option.

 --use-embedded-filename

 --no-use-embedded-filename

 Try to create a file with a name as embedded in the data. This can be a dan?

 gerous option as it enables overwriting files. Defaults to no. Note that

 the option --output overrides this option.

 --cipher-algo name

 Use name as cipher algorithm. Running the program with the command --version

 yields a list of supported algorithms. If this is not used the cipher algo?

 rithm is selected from the preferences stored with the key. In general, you

 do not want to use this option as it allows you to violate the OpenPGP stan?

 dard. --personal-cipher-preferences is the safe way to accomplish the same

 thing.

 --digest-algo name

 Use name as the message digest algorithm. Running the program with the com?

 mand --version yields a list of supported algorithms. In general, you do not

 want to use this option as it allows you to violate the OpenPGP standard.

 --personal-digest-preferences is the safe way to accomplish the same thing.

 --compress-algo name

 Use compression algorithm name. "zlib" is RFC-1950 ZLIB compression. "zip"

 is RFC-1951 ZIP compression which is used by PGP. "bzip2" is a more modern

 compression scheme that can compress some things better than zip or zlib,

 but at the cost of more memory used during compression and decompression.

 "uncompressed" or "none" disables compression. If this option is not used,

 the default behavior is to examine the recipient key preferences to see

 which algorithms the recipient supports. If all else fails, ZIP is used for

 maximum compatibility.

 ZLIB may give better compression results than ZIP, as the compression window

 size is not limited to 8k. BZIP2 may give even better compression results

 than that, but will use a significantly larger amount of memory while com?

 pressing and decompressing. This may be significant in low memory situa?

 tions. Note, however, that PGP (all versions) only supports ZIP compression. Page 58/76

 Using any algorithm other than ZIP or "none" will make the message unread?

 able with PGP. In general, you do not want to use this option as it allows

 you to violate the OpenPGP standard. --personal-compress-preferences is the

 safe way to accomplish the same thing.

 --cert-digest-algo name

 Use name as the message digest algorithm used when signing a key. Running

 the program with the command --version yields a list of supported algo?

 rithms. Be aware that if you choose an algorithm that GnuPG supports but

 other OpenPGP implementations do not, then some users will not be able to

 use the key signatures you make, or quite possibly your entire key.

 --disable-cipher-algo name

 Never allow the use of name as cipher algorithm. The given name will not be

 checked so that a later loaded algorithm will still get disabled.

 --disable-pubkey-algo name

 Never allow the use of name as public key algorithm. The given name will

 not be checked so that a later loaded algorithm will still get disabled.

 --throw-keyids

 --no-throw-keyids

 Do not put the recipient key IDs into encrypted messages. This helps to hide

 the receivers of the message and is a limited countermeasure against traffic

 analysis. ([Using a little social engineering anyone who is able to decrypt

 the message can check whether one of the other recipients is the one he sus?

 pects.]) On the receiving side, it may slow down the decryption process be?

 cause all available secret keys must be tried. --no-throw-keyids disables

 this option. This option is essentially the same as using --hidden-recipient

 for all recipients.

 --not-dash-escaped

 This option changes the behavior of cleartext signatures so that they can be

 used for patch files. You should not send such an armored file via email be?

 cause all spaces and line endings are hashed too. You can not use this op?

 tion for data which has 5 dashes at the beginning of a line, patch files

 don't have this. A special armor header line tells GnuPG about this cleart?

 ext signature option. Page 59/76

 --escape-from-lines

 --no-escape-from-lines

 Because some mailers change lines starting with "From " to ">From " it is

 good to handle such lines in a special way when creating cleartext signa?

 tures to prevent the mail system from breaking the signature. Note that all

 other PGP versions do it this way too. Enabled by default. --no-escape-

 from-lines disables this option.

 --passphrase-repeat n

 Specify how many times gpg will request a new passphrase be repeated. This

 is useful for helping memorize a passphrase. Defaults to 1 repetition.

 --passphrase-fd n

 Read the passphrase from file descriptor n. Only the first line will be read

 from file descriptor n. If you use 0 for n, the passphrase will be read from

 STDIN. This can only be used if only one passphrase is supplied.

 Note that since Version 2.0 this passphrase is only used if the option

 --batch has also been given. Since Version 2.1 the --pinentry-mode also

 needs to be set to loopback.

 --passphrase-file file

 Read the passphrase from file file. Only the first line will be read from

 file file. This can only be used if only one passphrase is supplied. Obvi?

 ously, a passphrase stored in a file is of questionable security if other

 users can read this file. Don't use this option if you can avoid it.

 Note that since Version 2.0 this passphrase is only used if the option

 --batch has also been given. Since Version 2.1 the --pinentry-mode also

 needs to be set to loopback.

 --passphrase string

 Use string as the passphrase. This can only be used if only one passphrase

 is supplied. Obviously, this is of very questionable security on a multi-

 user system. Don't use this option if you can avoid it.

 Note that since Version 2.0 this passphrase is only used if the option

 --batch has also been given. Since Version 2.1 the --pinentry-mode also

 needs to be set to loopback.

 --pinentry-mode mode Page 60/76

 Set the pinentry mode to mode. Allowed values for mode are:

 default

 Use the default of the agent, which is ask.

 ask Force the use of the Pinentry.

 cancel Emulate use of Pinentry's cancel button.

 error Return a Pinentry error (``No Pinentry'').

 loopback

 Redirect Pinentry queries to the caller. Note that in contrast to

 Pinentry the user is not prompted again if he enters a bad password.

 --no-symkey-cache

 Disable the passphrase cache used for symmetrical en- and decryption. This

 cache is based on the message specific salt value (cf. --s2k-mode).

 --request-origin origin

 Tell gpg to assume that the operation ultimately originated at origin. De?

 pending on the origin certain restrictions are applied and the Pinentry may

 include an extra note on the origin. Supported values for origin are: local

 which is the default, remote to indicate a remote origin or browser for an

 operation requested by a web browser.

 --command-fd n

 This is a replacement for the deprecated shared-memory IPC mode. If this

 option is enabled, user input on questions is not expected from the TTY but

 from the given file descriptor. It should be used together with --status-fd.

 See the file doc/DETAILS in the source distribution for details on how to

 use it.

 --command-file file

 Same as --command-fd, except the commands are read out of file file

 --allow-non-selfsigned-uid

 --no-allow-non-selfsigned-uid

 Allow the import and use of keys with user IDs which are not self-signed.

 This is not recommended, as a non self-signed user ID is trivial to forge.

 --no-allow-non-selfsigned-uid disables.

 --allow-freeform-uid

 Disable all checks on the form of the user ID while generating a new one. Page 61/76

 This option should only be used in very special environments as it does not

 ensure the de-facto standard format of user IDs.

 --ignore-time-conflict

 GnuPG normally checks that the timestamps associated with keys and signa?

 tures have plausible values. However, sometimes a signature seems to be

 older than the key due to clock problems. This option makes these checks

 just a warning. See also --ignore-valid-from for timestamp issues on sub?

 keys.

 --ignore-valid-from

 GnuPG normally does not select and use subkeys created in the future. This

 option allows the use of such keys and thus exhibits the pre-1.0.7 behav?

 iour. You should not use this option unless there is some clock problem. See

 also --ignore-time-conflict for timestamp issues with signatures.

 --ignore-crc-error

 The ASCII armor used by OpenPGP is protected by a CRC checksum against

 transmission errors. Occasionally the CRC gets mangled somewhere on the

 transmission channel but the actual content (which is protected by the

 OpenPGP protocol anyway) is still okay. This option allows GnuPG to ignore

 CRC errors.

 --ignore-mdc-error

 This option changes a MDC integrity protection failure into a warning. It

 is required to decrypt old messages which did not use an MDC. It may also

 be useful if a message is partially garbled, but it is necessary to get as

 much data as possible out of that garbled message. Be aware that a missing

 or failed MDC can be an indication of an attack. Use with great caution;

 see also option --rfc2440.

 --allow-weak-digest-algos

 Signatures made with known-weak digest algorithms are normally rejected with

 an ``invalid digest algorithm'' message. This option allows the verifica?

 tion of signatures made with such weak algorithms. MD5 is the only digest

 algorithm considered weak by default. See also --weak-digest to reject

 other digest algorithms.

 --weak-digest name Page 62/76

 Treat the specified digest algorithm as weak. Signatures made over weak di?

 gests algorithms are normally rejected. This option can be supplied multiple

 times if multiple algorithms should be considered weak. See also --allow-

 weak-digest-algos to disable rejection of weak digests. MD5 is always con?

 sidered weak, and does not need to be listed explicitly.

 --allow-weak-key-signatures

 To avoid a minor risk of collision attacks on third-party key signatures

 made using SHA-1, those key signatures are considered invalid. This options

 allows to override this restriction.

 --no-default-keyring

 Do not add the default keyrings to the list of keyrings. Note that GnuPG

 will not operate without any keyrings, so if you use this option and do not

 provide alternate keyrings via --keyring or --secret-keyring, then GnuPG

 will still use the default public or secret keyrings.

 --no-keyring

 Do not use any keyring at all. This overrides the default and all options

 which specify keyrings.

 --skip-verify

 Skip the signature verification step. This may be used to make the decryp?

 tion faster if the signature verification is not needed.

 --with-key-data

 Print key listings delimited by colons (like --with-colons) and print the

 public key data.

 --list-signatures

 --list-sigs

 Same as --list-keys, but the signatures are listed too. This command has

 the same effect as using --list-keys with --with-sig-list. Note that in

 contrast to --check-signatures the key signatures are not verified. This

 command can be used to create a list of signing keys missing in the local

 keyring; for example:

 gpg --list-sigs --with-colons USERID | \

 awk -F: '$1=="sig" && $2=="?" {if($13){print $13}else{print $5}}'

 --fast-list-mode Page 63/76

 Changes the output of the list commands to work faster; this is achieved by

 leaving some parts empty. Some applications don't need the user ID and the

 trust information given in the listings. By using this options they can get

 a faster listing. The exact behaviour of this option may change in future

 versions. If you are missing some information, don't use this option.

 --no-literal

 This is not for normal use. Use the source to see for what it might be use?

 ful.

 --set-filesize

 This is not for normal use. Use the source to see for what it might be use?

 ful.

 --show-session-key

 Display the session key used for one message. See --override-session-key for

 the counterpart of this option.

 We think that Key Escrow is a Bad Thing; however the user should have the

 freedom to decide whether to go to prison or to reveal the content of one

 specific message without compromising all messages ever encrypted for one

 secret key.

 You can also use this option if you receive an encrypted message which is

 abusive or offensive, to prove to the administrators of the messaging system

 that the ciphertext transmitted corresponds to an inappropriate plaintext so

 they can take action against the offending user.

 --override-session-key string

 --override-session-key-fd fd

 Don't use the public key but the session key string respective the session

 key taken from the first line read from file descriptor fd. The format of

 this string is the same as the one printed by --show-session-key. This op?

 tion is normally not used but comes handy in case someone forces you to re?

 veal the content of an encrypted message; using this option you can do this

 without handing out the secret key. Note that using --override-session-key

 may reveal the session key to all local users via the global process table.

 Often it is useful to combine this option with --no-keyring.

 --ask-sig-expire Page 64/76

 --no-ask-sig-expire

 When making a data signature, prompt for an expiration time. If this option

 is not specified, the expiration time set via --default-sig-expire is used.

 --no-ask-sig-expire disables this option.

 --default-sig-expire

 The default expiration time to use for signature expiration. Valid values

 are "0" for no expiration, a number followed by the letter d (for days), w

 (for weeks), m (for months), or y (for years) (for example "2m" for two

 months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD.

 Defaults to "0".

 --ask-cert-expire

 --no-ask-cert-expire

 When making a key signature, prompt for an expiration time. If this option

 is not specified, the expiration time set via --default-cert-expire is used.

 --no-ask-cert-expire disables this option.

 --default-cert-expire

 The default expiration time to use for key signature expiration. Valid val?

 ues are "0" for no expiration, a number followed by the letter d (for days),

 w (for weeks), m (for months), or y (for years) (for example "2m" for two

 months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD.

 Defaults to "0".

 --default-new-key-algo string

 This option can be used to change the default algorithms for key generation.

 The string is similar to the arguments required for the command --quick-add-

 key but slightly different. For example the current default of

 "rsa2048/cert,sign+rsa2048/encr" (or "rsa3072") can be changed to the value

 of what we currently call future default, which is

 "ed25519/cert,sign+cv25519/encr". You need to consult the source code to

 learn the details. Note that the advanced key generation commands can al?

 ways be used to specify a key algorithm directly.

 --allow-secret-key-import

 This is an obsolete option and is not used anywhere.

 --allow-multiple-messages Page 65/76

 --no-allow-multiple-messages

 Allow processing of multiple OpenPGP messages contained in a single file or

 stream. Some programs that call GPG are not prepared to deal with multiple

 messages being processed together, so this option defaults to no. Note that

 versions of GPG prior to 1.4.7 always allowed multiple messages.

 Warning: Do not use this option unless you need it as a temporary work?

 around!

 --enable-special-filenames

 This option enables a mode in which filenames of the form ?-&n?, where n is

 a non-negative decimal number, refer to the file descriptor n and not to a

 file with that name.

 --no-expensive-trust-checks

 Experimental use only.

 --preserve-permissions

 Don't change the permissions of a secret keyring back to user read/write

 only. Use this option only if you really know what you are doing.

 --default-preference-list string

 Set the list of default preferences to string. This preference list is used

 for new keys and becomes the default for "setpref" in the edit menu.

 --default-keyserver-url name

 Set the default keyserver URL to name. This keyserver will be used as the

 keyserver URL when writing a new self-signature on a key, which includes key

 generation and changing preferences.

 --list-config

 Display various internal configuration parameters of GnuPG. This option is

 intended for external programs that call GnuPG to perform tasks, and is thus

 not generally useful. See the file ?doc/DETAILS? in the source distribution

 for the details of which configuration items may be listed. --list-config is

 only usable with --with-colons set.

 --list-gcrypt-config

 Display various internal configuration parameters of Libgcrypt.

 --gpgconf-list

 This command is similar to --list-config but in general only internally used Page 66/76

 by the gpgconf tool.

 --gpgconf-test

 This is more or less dummy action. However it parses the configuration file

 and returns with failure if the configuration file would prevent gpg from

 startup. Thus it may be used to run a syntax check on the configuration

 file.

 Deprecated options

 --show-photos

 --no-show-photos

 Causes --list-keys, --list-signatures, --list-public-keys, --list-secret-

 keys, and verifying a signature to also display the photo ID attached to the

 key, if any. See also --photo-viewer. These options are deprecated. Use

 --list-options [no-]show-photos and/or --verify-options [no-]show-photos in?

 stead.

 --show-keyring

 Display the keyring name at the head of key listings to show which keyring a

 given key resides on. This option is deprecated: use --list-options

 [no-]show-keyring instead.

 --always-trust

 Identical to --trust-model always. This option is deprecated.

 --show-notation

 --no-show-notation

 Show signature notations in the --list-signatures or --check-signatures

 listings as well as when verifying a signature with a notation in it. These

 options are deprecated. Use --list-options [no-]show-notation and/or --ver?

 ify-options [no-]show-notation instead.

 --show-policy-url

 --no-show-policy-url

 Show policy URLs in the --list-signatures or --check-signatures listings as

 well as when verifying a signature with a policy URL in it. These options

 are deprecated. Use --list-options [no-]show-policy-url and/or --verify-op?

 tions [no-]show-policy-url instead.

EXAMPLES Page 67/76

 gpg -se -r Bob file

 sign and encrypt for user Bob

 gpg --clear-sign file

 make a cleartext signature

 gpg -sb file

 make a detached signature

 gpg -u 0x12345678 -sb file

 make a detached signature with the key 0x12345678

 gpg --list-keys user_ID

 show keys

 gpg --fingerprint user_ID

 show fingerprint

 gpg --verify pgpfile

 gpg --verify sigfile [datafile]

 Verify the signature of the file but do not output the data unless re?

 quested. The second form is used for detached signatures, where sigfile is

 the detached signature (either ASCII armored or binary) and datafile are the

 signed data; if this is not given, the name of the file holding the signed

 data is constructed by cutting off the extension (".asc" or ".sig") of sig?

 file or by asking the user for the filename. If the option --output is also

 used the signed data is written to the file specified by that option; use -

 to write the signed data to stdout.

HOW TO SPECIFY A USER ID

 There are different ways to specify a user ID to GnuPG. Some of them are only

 valid for gpg others are only good for gpgsm. Here is the entire list of ways to

 specify a key:

 By key Id.

 This format is deduced from the length of the string and its content or 0x

 prefix. The key Id of an X.509 certificate are the low 64 bits of its SHA-1

 fingerprint. The use of key Ids is just a shortcut, for all automated pro?

 cessing the fingerprint should be used.

 When using gpg an exclamation mark (!) may be appended to force using the

 specified primary or secondary key and not to try and calculate which pri? Page 68/76

 mary or secondary key to use.

 The last four lines of the example give the key ID in their long form as in?

 ternally used by the OpenPGP protocol. You can see the long key ID using the

 option --with-colons.

 234567C4

 0F34E556E

 01347A56A

 0xAB123456

 234AABBCC34567C4

 0F323456784E56EAB

 01AB3FED1347A5612

 0x234AABBCC34567C4

 By fingerprint.

 This format is deduced from the length of the string and its content or the

 0x prefix. Note, that only the 20 byte version fingerprint is available

 with gpgsm (i.e. the SHA-1 hash of the certificate).

 When using gpg an exclamation mark (!) may be appended to force using the

 specified primary or secondary key and not to try and calculate which pri?

 mary or secondary key to use.

 The best way to specify a key Id is by using the fingerprint. This avoids

 any ambiguities in case that there are duplicated key IDs.

 1234343434343434C434343434343434

 123434343434343C3434343434343734349A3434

 0E12343434343434343434EAB3484343434343434

 0xE12343434343434343434EAB3484343434343434

 gpgsm also accepts colons between each pair of hexadecimal digits because this is

 the de-facto standard on how to present X.509 fingerprints. gpg also allows the

 use of the space separated SHA-1 fingerprint as printed by the key listing com?

 mands.

 By exact match on OpenPGP user ID.

 This is denoted by a leading equal sign. It does not make sense for X.509

 certificates.

 =Heinrich Heine <heinrichh@uni-duesseldorf.de> Page 69/76

 By exact match on an email address.

 This is indicated by enclosing the email address in the usual way with left

 and right angles.

 <heinrichh@uni-duesseldorf.de>

 By partial match on an email address.

 This is indicated by prefixing the search string with an @. This uses a

 substring search but considers only the mail address (i.e. inside the angle

 brackets).

 @heinrichh

 By exact match on the subject's DN.

 This is indicated by a leading slash, directly followed by the RFC-2253 en?

 coded DN of the subject. Note that you can't use the string printed by

 gpgsm --list-keys because that one has been reordered and modified for bet?

 ter readability; use --with-colons to print the raw (but standard escaped)

 RFC-2253 string.

 /CN=Heinrich Heine,O=Poets,L=Paris,C=FR

 By exact match on the issuer's DN.

 This is indicated by a leading hash mark, directly followed by a slash and

 then directly followed by the RFC-2253 encoded DN of the issuer. This

 should return the Root cert of the issuer. See note above.

 #/CN=Root Cert,O=Poets,L=Paris,C=FR

 By exact match on serial number and issuer's DN.

 This is indicated by a hash mark, followed by the hexadecimal representation

 of the serial number, then followed by a slash and the RFC-2253 encoded DN

 of the issuer. See note above.

 #4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

 By keygrip.

 This is indicated by an ampersand followed by the 40 hex digits of a key?

 grip. gpgsm prints the keygrip when using the command --dump-cert.

 &D75F22C3F86E355877348498CDC92BD21010A480

 By substring match.

 This is the default mode but applications may want to explicitly indicate

 this by putting the asterisk in front. Match is not case sensitive. Page 70/76

 Heine

 *Heine

 . and + prefixes

 These prefixes are reserved for looking up mails anchored at the end and for

 a word search mode. They are not yet implemented and using them is unde?

 fined.

 Please note that we have reused the hash mark identifier which was used in

 old GnuPG versions to indicate the so called local-id. It is not anymore

 used and there should be no conflict when used with X.509 stuff.

 Using the RFC-2253 format of DNs has the drawback that it is not possible to

 map them back to the original encoding, however we don't have to do this be?

 cause our key database stores this encoding as meta data.

FILTER EXPRESSIONS

 The options --import-filter and --export-filter use expressions with this syntax

 (square brackets indicate an optional part and curly braces a repetition, white

 space between the elements are allowed):

 [lc] {[{flag}] PROPNAME op VALUE [lc]}

 The name of a property (PROPNAME) may only consist of letters, digits and under?

 scores. The description for the filter type describes which properties are de?

 fined. If an undefined property is used it evaluates to the empty string. Unless

 otherwise noted, the VALUE must always be given and may not be the empty string.

 No quoting is defined for the value, thus the value may not contain the strings &&

 or ||, which are used as logical connection operators. The flag -- can be used to

 remove this restriction.

 Numerical values are computed as long int; standard C notation applies. lc is the

 logical connection operator; either && for a conjunction or || for a disjunction.

 A conjunction is assumed at the begin of an expression. Conjunctions have higher

 precedence than disjunctions. If VALUE starts with one of the characters used in

 any op a space after the op is required.

 The supported operators (op) are:

 =~ Substring must match.

 !~ Substring must not match.

 = The full string must match. Page 71/76

 <> The full string must not match.

 == The numerical value must match.

 != The numerical value must not match.

 <= The numerical value of the field must be LE than the value.

 < The numerical value of the field must be LT than the value.

 > The numerical value of the field must be GT than the value.

 >= The numerical value of the field must be GE than the value.

 -le The string value of the field must be less or equal than the value.

 -lt The string value of the field must be less than the value.

 -gt The string value of the field must be greater than the value.

 -ge The string value of the field must be greater or equal than the value.

 -n True if value is not empty (no value allowed).

 -z True if value is empty (no value allowed).

 -t Alias for "PROPNAME != 0" (no value allowed).

 -f Alias for "PROPNAME == 0" (no value allowed).

 Values for flag must be space separated. The supported flags are:

 -- VALUE spans to the end of the expression.

 -c The string match in this part is done case-sensitive.

 The filter options concatenate several specifications for a filter of the same

 type. For example the four options in this example:

 --import-filter keep-uid="uid =~ Alfa"

 --import-filter keep-uid="&& uid !~ Test"

 --import-filter keep-uid="|| uid =~ Alpha"

 --import-filter keep-uid="uid !~ Test"

 which is equivalent to

 --import-filter \

 keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"

 imports only the user ids of a key containing the strings "Alfa" or "Alpha" but not

 the string "test".

TRUST VALUES

 Trust values are used to indicate ownertrust and validity of keys and user IDs.

 They are displayed with letters or strings:

 - Page 72/76

 unknown

 No ownertrust assigned / not yet calculated.

 e

 expired

 Trust calculation has failed; probably due to an expired key.

 q

 undefined, undef

 Not enough information for calculation.

 n

 never Never trust this key.

 m

 marginal

 Marginally trusted.

 f

 full Fully trusted.

 u

 ultimate

 Ultimately trusted.

 r

 revoked

 For validity only: the key or the user ID has been revoked.

 ?

 err The program encountered an unknown trust value.

FILES

 There are a few configuration files to control certain aspects of gpg's operation.

 Unless noted, they are expected in the current home directory (see: [option --home?

 dir]).

 gpg.conf

 This is the standard configuration file read by gpg on startup. It may con?

 tain any valid long option; the leading two dashes may not be entered and

 the option may not be abbreviated. This default name may be changed on the

 command line (see: [gpg-option --options]). You should backup this file.

 Note that on larger installations, it is useful to put predefined files into the Page 73/76

 directory ?/etc/skel/.gnupg? so that newly created users start up with a working

 configuration. For existing users a small helper script is provided to create

 these files (see: [addgnupghome]).

 For internal purposes gpg creates and maintains a few other files; They all live in

 the current home directory (see: [option --homedir]). Only the gpg program may

 modify these files.

 ~/.gnupg

 This is the default home directory which is used if neither the environment

 variable GNUPGHOME nor the option --homedir is given.

 ~/.gnupg/pubring.gpg

 The public keyring. You should backup this file.

 ~/.gnupg/pubring.gpg.lock

 The lock file for the public keyring.

 ~/.gnupg/pubring.kbx

 The public keyring using a different format. This file is shared with

 gpgsm. You should backup this file.

 ~/.gnupg/pubring.kbx.lock

 The lock file for ?pubring.kbx?.

 ~/.gnupg/secring.gpg

 A secret keyring as used by GnuPG versions before 2.1. It is not used by

 GnuPG 2.1 and later.

 ~/.gnupg/secring.gpg.lock

 The lock file for the secret keyring.

 ~/.gnupg/.gpg-v21-migrated

 File indicating that a migration to GnuPG 2.1 has been done.

 ~/.gnupg/trustdb.gpg

 The trust database. There is no need to backup this file; it is better to

 backup the ownertrust values (see: [option --export-ownertrust]).

 ~/.gnupg/trustdb.gpg.lock

 The lock file for the trust database.

 ~/.gnupg/random_seed

 A file used to preserve the state of the internal random pool.

 ~/.gnupg/openpgp-revocs.d/ Page 74/76

 This is the directory where gpg stores pre-generated revocation certifi?

 cates. The file name corresponds to the OpenPGP fingerprint of the respec?

 tive key. It is suggested to backup those certificates and if the primary

 private key is not stored on the disk to move them to an external storage

 device. Anyone who can access theses files is able to revoke the corre?

 sponding key. You may want to print them out. You should backup all files

 in this directory and take care to keep this backup closed away.

 Operation is further controlled by a few environment variables:

 HOME Used to locate the default home directory.

 GNUPGHOME

 If set directory used instead of "~/.gnupg".

 GPG_AGENT_INFO

 This variable is obsolete; it was used by GnuPG versions before 2.1.

 PINENTRY_USER_DATA

 This value is passed via gpg-agent to pinentry. It is useful to convey ex?

 tra information to a custom pinentry.

 COLUMNS

 LINES Used to size some displays to the full size of the screen.

 LANGUAGE

 Apart from its use by GNU, it is used in the W32 version to override the

 language selection done through the Registry. If used and set to a valid

 and available language name (langid), the file with the translation is

 loaded from gpgdir/gnupg.nls/langid.mo. Here gpgdir is the directory out of

 which the gpg binary has been loaded. If it can't be loaded the Registry is

 tried and as last resort the native Windows locale system is used.

 When calling the gpg-agent component gpg sends a set of environment variables to

 gpg-agent. The names of these variables can be listed using the command:

 gpg-connect-agent 'getinfo std_env_names' /bye | awk '$1=="D" {print $2}'

BUGS

 On older systems this program should be installed as setuid(root). This is neces?

 sary to lock memory pages. Locking memory pages prevents the operating system from

 writing memory pages (which may contain passphrases or other sensitive material) to

 disk. If you get no warning message about insecure memory your operating system Page 75/76

 supports locking without being root. The program drops root privileges as soon as

 locked memory is allocated.

 Note also that some systems (especially laptops) have the ability to ``suspend to

 disk'' (also known as ``safe sleep'' or ``hibernate''). This writes all memory to

 disk before going into a low power or even powered off mode. Unless measures are

 taken in the operating system to protect the saved memory, passphrases or other

 sensitive material may be recoverable from it later.

 Before you report a bug you should first search the mailing list archives for simi?

 lar problems and second check whether such a bug has already been reported to our

 bug tracker at https://bugs.gnupg.org.

SEE ALSO

 gpgv(1), gpgsm(1), gpg-agent(1)

 The full documentation for this tool is maintained as a Texinfo manual. If GnuPG

 and the info program are properly installed at your site, the command

 info gnupg

 should give you access to the complete manual including a menu structure and an in?

 dex.

GnuPG 2.2.19 2019-11-23 GPG(1)

Page 76/76

