P cbLrivors:

University

FPDF Library

PDF generator

| “ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'gpg2.1'
$ man gpg2.1
GPG(1) GNU Privacy Guard 2.2 GPG(1)
NAME
gpg - OpenPGP encryption and signing tool
SYNOPSIS
gpg [--homedir dir] [--options file] [options] command [args]
DESCRIPTION
gpg is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool to provide
digital encryption and signing services using the OpenPGP standard. gpg features
complete key management and all the bells and whistles you would expect from a full
OpenPGP implementation.
There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x supports
modern encryption algorithms and thus should be preferred over GhuPG 1.x. You only
need to use GnuPG 1.x if your platform doesn't support GnuPG 2.x, or you need sup?
port for some features that GnuPG 2.x has deprecated, e.g., decrypting data created
with PGP-2 keys.
If you are looking for version 1 of GnuPG, you may find that version installed un?
der the name gpg1l.
RETURN VALUE
The program returns O if everything was fine, 1 if at least a signature was bad,
and other error codes for fatal errors.
WARNINGS

Page 1/76
Use a *good* password for your user account and a *good* passphrase to protect your g

secret key. This passphrase is the weakest part of the whole system. Programs to do
dictionary attacks on your secret keyring are very easy to write and so you should
protect your "~/.gnupg/" directory very well.
Keep in mind that, if this program is used over a network (telnet), it is *very*
easy to spy out your passphrase!
If you are going to verify detached signatures, make sure that the program knows
about it; either give both filenames on the command line or use ?-? to specify
STDIN.
For scripted or other unattended use of gpg make sure to use the machine-parseable
interface and not the default interface which is intended for direct use by humans.
The machine-parseable interface provides a stable and well documented API indepen?
dent of the locale or future changes of gpg. To enable this interface use the op?
tions --with-colons and --status-fd. For certain operations the option --command-
fd may come handy too. See this man page and the file ?DETAILS? for the specifica?
tion of the interface. Note that the GnuPG “"info" pages as well as the PDF ver?
sion of the GhuPG manual features a chapter on unattended use of GhuPG. As an al?
ternative the library GPGME can be used as a high-level abstraction on top of that
interface.

INTEROPERABILITY
GnuPG tries to be a very flexible implementation of the OpenPGP standard. In par?
ticular, GnuPG implements many of the optional parts of the standard, such as the
SHA-512 hash, and the ZLIB and BZIP2 compression algorithms. It is important to be
aware that not all OpenPGP programs implement these optional algorithms and that by
forcing their use via the --cipher-algo, --digest-algo, --cert-digest-algo, or
--compress-algo options in GnuPG, it is possible to create a perfectly valid
OpenPGP message, but one that cannot be read by the intended recipient.
There are dozens of variations of OpenPGP programs available, and each supports a
slightly different subset of these optional algorithms. For example, until re?
cently, no (unhacked) version of PGP supported the BLOWFISH cipher algorithm. A
message using BLOWFISH simply could not be read by a PGP user. By default, GhuPG
uses the standard OpenPGP preferences system that will always do the right thing
and create messages that are usable by all recipients, regardless of which OpenPGP

program they use. Only override this safe default if you really know what you are Page 2/76

doing.
If you absolutely must override the safe default, or if the preferences on a given
key are invalid for some reason, you are far better off using the --pgp6, --pgp7,
or --pgp8 options. These options are safe as they do not force any particular algo?
rithms in violation of OpenPGP, but rather reduce the available algorithms to a
"PGP-safe" list.
COMMANDS
Commands are not distinguished from options except for the fact that only one com?
mand is allowed. Generally speaking, irrelevant options are silently ignored, and
may not be checked for correctness.
gpg may be run with no commands. In this case it will print a warning perform a
reasonable action depending on the type of file it is given as input (an encrypted
message is decrypted, a signature is verified, a file containing keys is listed,
etc.).
If you run into any problems, please add the option --verbose to the invocation to
see more diagnostics.
Commands not specific to the function
--version
Print the program version and licensing information. Note that you cannot
abbreviate this command.
--help
-h Print a usage message summarizing the most useful command-line options.
Note that you cannot arbitrarily abbreviate this command (though you can use
its short form -h).
--warranty
Print warranty information.
--dump-options
Print a list of all available options and commands. Note that you cannot
abbreviate this command.
Commands to select the type of operation
--sign
-s Sign a message. This command may be combined with --encrypt (to sign and en?

crypt a message), --symmetric (to sign and symmetrically encrypt a message), Page 3/76

or both --encrypt and --symmetric (to sign and encrypt a message that can be
decrypted using a secret key or a passphrase). The signing key is chosen by
default or can be set explicitly using the --local-user and --default-key

options.

--clear-sign

--clearsign

Make a cleartext signature. The content in a cleartext signature is read?
able without any special software. OpenPGP software is only needed to verify
the signature. cleartext signatures may modify end-of-line whitespace for
platform independence and are not intended to be reversible. The signing
key is chosen by default or can be set explicitly using the --local-user and

--default-key options.

--detach-sign

-b

Make a detached signature.

--encrypt

-€

Encrypt data to one or more public keys. This command may be combined with
--sign (to sign and encrypt a message), --symmetric (to encrypt a message
that can be decrypted using a secret key or a passphrase), or --sign and
--symmetric together (for a signed message that can be decrypted using a se?
cret key or a passphrase). --recipient and related options specify which

public keys to use for encryption.

--symmetric

-C

Encrypt with a symmetric cipher using a passphrase. The default symmetric
cipher used is AES-128, but may be chosen with the --cipher-algo option.
This command may be combined with --sign (for a signed and symmetrically en?
crypted message), --encrypt (for a message that may be decrypted via a se?
cret key or a passphrase), or --sign and --encrypt together (for a signed
message that may be decrypted via a secret key or a passphrase). gpg caches
the passphrase used for symmetric encryption so that a decrypt operation may
not require that the user needs to enter the passphrase. The option --no-

symkey-cache can be used to disable this feature.

--store

Store only (make a simple literal data packet).

Page 4/76

--decrypt

-d

Decrypt the file given on the command line (or STDIN if no file is speci?
fied) and write it to STDOUT (or the file specified with --output). If the
decrypted file is signed, the signature is also verified. This command dif?
fers from the default operation, as it never writes to the filename which is
included in the file and it rejects files that don't begin with an encrypted

message.

--verify

Assume that the first argument is a signed file and verify it without gener?
ating any output. With no arguments, the signature packet is read from
STDIN. If only one argument is given, the specified file is expected to in?
clude a complete signature.

With more than one argument, the first argument should specify a file with a
detached signature and the remaining files should contain the signed data.
To read the signed data from STDIN, use ?-? as the second filename. For se?
curity reasons, a detached signature will not read the signed material from
STDIN if not explicitly specified.

Note: If the option --batch is not used, gpg may assume that a single argu?
ment is a file with a detached signature, and it will try to find a matching
data file by stripping certain suffixes. Using this historical feature to

verify a detached signature is strongly discouraged; you should always spec?
ify the data file explicitly.

Note: When verifying a cleartext signature, gpg verifies only what makes up
the cleartext signed data and not any extra data outside of the cleartext
signature or the header lines directly following the dash marker line. The
option --output may be used to write out the actual signed data, but there
are other pitfalls with this format as well. It is suggested to avoid
cleartext signatures in favor of detached signatures.

Note: Sometimes the use of the gpgv tool is easier than using the full-
fledged gpg with this option. gpgv is designed to compare signed data
against a list of trusted keys and returns with success only for a good sig?

nature. It has its own manual page.

--multifile Page 5/76

This modifies certain other commands to accept multiple files for processing
on the command line or read from STDIN with each filename on a separate
line. This allows for many files to be processed at once. --multifile may
currently be used along with --verify, --encrypt, and --decrypt. Note that
--multifile --verify may not be used with detached signatures.

--verify-files
Identical to --multifile --verify.

--encrypt-files
Identical to --multifile --encrypt.

--decrypt-files
Identical to --multifile --decrypt.

--list-keys

-k

--list-public-keys
List the specified keys. If no keys are specified, then all keys from the
configured public keyrings are listed.
Never use the output of this command in scripts or other programs. The out?
put is intended only for humans and its format is likely to change. The
--with-colons option emits the output in a stable, machine-parseable format,
which is intended for use by scripts and other programs.

--list-secret-keys

-K List the specified secret keys. If no keys are specified, then all known
secret keys are listed. A # after the initial tags sec or ssb means that
the secret key or subkey is currently not usable. We also say that this key
has been taken offline (for example, a primary key can be taken offline by
exporting the key using the command --export-secret-subkeys). A > after
these tags indicate that the key is stored on a smartcard. See also --list-
keys.

--check-signatures

--check-sigs
Same as --list-keys, but the key signatures are verified and listed too.
Note that for performance reasons the revocation status of a signing key is

not shown. This command has the same effect as using --list-keys with Page 6/76

--with-sig-check.
The status of the verification is indicated by a flag directly following the
"sig" tag (and thus before the flags described below. A "!" indicates that
the signature has been successfully verified, a "-" denotes a bad signature
and a "%" is used if an error occurred while checking the signature (e.g. a
non supported algorithm). Signatures where the public key is not available
are not listed; to see their keyids the command --list-sigs can be used.
For each signature listed, there are several flags in between the signature
status flag and keyid. These flags give additional information about each
key signature. From left to right, they are the numbers 1-3 for certificate
check level (see --ask-cert-level), "L" for a local or non-exportable signa?
ture (see --Isign-key), "R" for a nonRevocable signature (see the --edit-key
command "nrsign"), "P" for a signature that contains a policy URL (see
--cert-policy-url), "N" for a signature that contains a notation (see
--cert-notation), "X" for an eXpired signature (see --ask-cert-expire), and
the numbers 1-9 or "T" for 10 and above to indicate trust signature levels
(see the --edit-key command "tsign").

--locate-keys

--locate-external-keys
Locate the keys given as arguments. This command basically uses the same
algorithm as used when locating keys for encryption or signing and may thus
be used to see what keys gpg might use. In particular external methods as
defined by --auto-key-locate may be used to locate a key. Only public keys
are listed. The variant --locate-external-keys does not consider a locally
existing key and can thus be used to force the refresh of a key via the de?
fined external methods.

--show-keys
This commands takes OpenPGP keys as input and prints information about them
in the same way the command --list-keys does for locally stored key. In ad?
dition the list options show-unusable-uids, show-unusable-subkeys, show-no?
tations and show-policy-urls are also enabled. As usual for automated pro?
cessing, this command should be combined with the option --with-colons.

--fingerprint Page 7/76

List all keys (or the specified ones) along with their fingerprints. This is
the same output as --list-keys but with the additional output of a line with
the fingerprint. May also be combined with --check-signatures. If this com?
mand is given twice, the fingerprints of all secondary keys are listed too.
This command also forces pretty printing of fingerprints if the keyid format
has been set to "none".

--list-packets
List only the sequence of packets. This command is only useful for debug?
ging. When used with option --verbose the actual MPI values are dumped and
not only their lengths. Note that the output of this command may change
with new releases.

--edit-card

--card-edit
Present a menu to work with a smartcard. The subcommand "help" provides an

overview on available commands. For a detailed description, please see the

Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-cardHOWTO .

--card-status
Show the content of the smart card.

--change-pin
Present a menu to allow changing the PIN of a smartcard. This functionality
is also available as the subcommand "passwd" with the --edit-card command.

--delete-keys name
Remove key from the public keyring. In batch mode either --yes is required
or the key must be specified by fingerprint. This is a safeguard against ac?
cidental deletion of multiple keys. If the exclamation mark syntax is used
with the fingerprint of a subkey only that subkey is deleted; if the excla?
mation mark is used with the fingerprint of the primary key the entire pub?
lic key is deleted.

--delete-secret-keys name
Remove key from the secret keyring. In batch mode the key must be specified
by fingerprint. The option --yes can be used to advice gpg-agent not to re?
guest a confirmation. This extra pre-caution is done because gpg can't be

sure that the secret key (as controlled by gpg-agent) is only used for the

Page 8/76

given OpenPGP public key. If the exclamation mark syntax is used with the
fingerprint of a subkey only the secret part of that subkey is deleted; if
the exclamation mark is used with the fingerprint of the primary key only
the secret part of the primary key is deleted.

--delete-secret-and-public-key name
Same as --delete-key, but if a secret key exists, it will be removed first.
In batch mode the key must be specified by fingerprint. The option --yes
can be used to advice gpg-agent not to request a confirmation.

--export
Either export all keys from all keyrings (default keyrings and those regis?
tered via option --keyring), or if at least one name is given, those of the
given name. The exported keys are written to STDOUT or to the file given
with option --output. Use together with --armor to mail those keys.

--send-keys keylDs
Similar to --export but sends the keys to a keyserver. Fingerprints may be
used instead of key IDs. Don't send your complete keyring to a keyserver
--- select only those keys which are new or changed by you. If no keylDs
are given, gpg does nothing.

--export-secret-keys

--export-secret-subkeys
Same as --export, but exports the secret keys instead. The exported keys
are written to STDOUT or to the file given with option --output. This com?
mand is often used along with the option --armor to allow for easy printing
of the key for paper backup; however the external tool paperkey does a bet?
ter job of creating backups on paper. Note that exporting a secret key can
be a security risk if the exported keys are sent over an insecure channel.
The second form of the command has the special property to render the secret
part of the primary key useless; this is a GNU extension to OpenPGP and
other implementations can not be expected to successfully import such a key.
Its intended use is in generating a full key with an additional signing sub?
key on a dedicated machine. This command then exports the key without the
primary key to the main machine.

GnuPG may ask you to enter the passphrase for the key. This is required, Page 9/76

because the internal protection method of the secret key is different from
the one specified by the OpenPGP protocol.

--export-ssh-key
This command is used to export a key in the OpenSSH public key format. It
requires the specification of one key by the usual means and exports the
latest valid subkey which has an authentication capability to STDOUT or to
the file given with option --output. That output can directly be added to
ssh's ?authorized_key? file.
By specifying the key to export using a key ID or a fingerprint suffixed
with an exclamation mark (), a specific subkey or the primary key can be
exported. This does not even require that the key has the authentication
capability flag set.

--import

--fast-import
Import/merge keys. This adds the given keys to the keyring. The fast version
is currently just a synonym.
There are a few other options which control how this command works. Most
notable here is the --import-options merge-only option which does not insert
new keys but does only the merging of new signatures, user-IDs and subkeys.

--receive-keys keylDs

--recv-keys keylDs
Import the keys with the given keyIDs from a keyserver.

--refresh-keys
Request updates from a keyserver for keys that already exist on the local
keyring. This is useful for updating a key with the latest signatures, user
IDs, etc. Calling this with no arguments will refresh the entire keyring.

--search-keys names
Search the keyserver for the given names. Multiple names given here will be
joined together to create the search string for the keyserver. Note that
keyservers search for names in a different and simpler way than gpg does.
The best choice is to use a mail address. Due to data privacy reasons key?
servers may even not even allow searching by user id or mail address and

thus may only return results when being used with the --recv-key command to

Page 10/76

search by key fingerprint or keyid.

--fetch-keys URIs
Retrieve keys located at the specified URIs. Note that different installa?
tions of GhuPG may support different protocols (HTTP, FTP, LDAP, etc.).
When using HTTPS the system provided root certificates are used by this com?
mand.

--update-trustdb
Do trust database maintenance. This command iterates over all keys and
builds the Web of Trust. This is an interactive command because it may have
to ask for the "ownertrust" values for keys. The user has to give an estima?
tion of how far she trusts the owner of the displayed key to correctly cer?
tify (sign) other keys. GnuPG only asks for the ownertrust value if it has
not yet been assigned to a key. Using the --edit-key menu, the assigned
value can be changed at any time.

--check-trustdb
Do trust database maintenance without user interaction. From time to time
the trust database must be updated so that expired keys or signatures and
the resulting changes in the Web of Trust can be tracked. Normally, GnuPG
will calculate when this is required and do it automatically unless --no-
auto-check-trustdb is set. This command can be used to force a trust data?
base check at any time. The processing is identical to that of --update-
trustdb but it skips keys with a not yet defined "ownertrust".
For use with cron jobs, this command can be used together with --batch in
which case the trust database check is done only if a check is needed. To
force a run even in batch mode add the option --yes.

--export-ownertrust
Send the ownertrust values to STDOUT. This is useful for backup purposes as
these values are the only ones which can't be re-created from a corrupted
trustdb. Example:

gpg --export-ownertrust > otrust.txt

--import-ownertrust

Update the trustdb with the ownertrust values stored in files (or STDIN if

not given); existing values will be overwritten. In case of a severely dam?

Page 11/76

aged trustdb and if you have a recent backup of the ownertrust values (e.g.
in the file ?otrust.txt?), you may re-create the trustdb using these com?
mands:
cd ~/.gnupg
rm trustdb.gpg
gpg --import-ownertrust < otrust.txt
--rebuild-keydb-caches
When updating from version 1.0.6 to 1.0.7 this command should be used to
create signature caches in the keyring. It might be handy in other situa?
tions too.
--print-md algo
--print-mds
Print message digest of algorithm algo for all given files or STDIN. With
the second form (or a deprecated "*" for algo) digests for all available al?
gorithms are printed.
--gen-random 0|1]2 count
Emit count random bytes of the given quality level 0, 1 or 2. If count is
not given or zero, an endless sequence of random bytes will be emitted. If
used with --armor the output will be base64 encoded. PLEASE, don't use this
command unless you know what you are doing; it may remove precious entropy
from the system!
--gen-prime mode bits
Use the source, Luke :-). The output format is subject to change with ant
release.
--enarmor
--dearmor
Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. This is
a GnuPG extension to OpenPGP and in general not very useful.
--tofu-policy {auto|good|unknown|bad|ask} keys
Set the TOFU policy for all the bindings associated with the specified keys.
For more information about the meaning of the policies, see: [trust-model-
tofu]. The keys may be specified either by their fingerprint (preferred) or

their keyid. Page 12/76

How to manage your keys

This section explains the main commands for key management.

--quick-generate-key user-id [algo [usage [expire]]]

--quick-gen-key
This is a simple command to generate a standard key with one user id. In
contrast to --generate-key the key is generated directly without the need to
answer a bunch of prompts. Unless the option --yes is given, the key cre?
ation will be canceled if the given user id already exists in the keyring.
If invoked directly on the console without any special options an answer to
a Continue?" style confirmation prompt is required. In case the user id
already exists in the keyring a second prompt to force the creation of the
key will show up.
If algo or usage are given, only the primary key is created and no prompts
are shown. To specify an expiration date but still create a primary and
subkey use ““default" or “future-default” for algo and ““default” for
usage. For a description of these optional arguments see the command
--quick-add-key. The usage accepts also the value ““cert" which can be
used to create a certification only primary key; the default is to a create
certification and signing key.
The expire argument can be used to specify an expiration date for the key.
Several formats are supported; commonly the ISO formats “YYYY-MM-DD" or
“YYYYMMDDThhmmss" are used. To make the key expire in N seconds, N days,
N weeks, N months, or N years use ““seconds=N", "Nd", "Nw", "Nm", or
“Ny" respectively. Not specifying a value, or using ~*-" results in a
key expiring in a reasonable default interval. The values never",
“none" can be used for no expiration date.
If this command is used with --batch, --pinentry-mode has been set to loop?
back, and one of the passphrase options (--passphrase, --passphrase-fd, or
passphrase-file) is used, the supplied passphrase is used for the new key
and the agent does not ask for it. To create a key without any protection
--passphrase " may be used.
To create an OpenPGP key from the keys available on the currently inserted

smartcard, the special string ““card" can be used for algo. If the card Page 13/76

features an encryption and a signing key, gpg will figure them out and cre?
ates an OpenPGP key consisting of the usual primary key and one subkey.
This works only with certain smartcards. Note that the interactive --full-
gen-key command allows to do the same but with greater flexibility in the
selection of the smartcard keys.
Note that it is possible to create a primary key and a subkey using non-de?
fault algorithms by using ““default" and changing the default parameters
using the option --default-new-key-algo.
--quick-set-expire fpr expire [*|subfprs]
With two arguments given, directly set the expiration time of the primary
key identified by fpr to expire. To remove the expiration time 0 can be
used. With three arguments and the third given as an asterisk, the expira?
tion time of all non-revoked and not yet expired subkeys are set to expire.
With more than two arguments and a list of fingerprints given for subfprs,
all non-revoked subkeys matching these fingerprints are set to expire.
--quick-add-key fpr [algo [usage [expire]]]
Directly add a subkey to the key identified by the fingerprint fpr. Without
the optional arguments an encryption subkey is added. If any of the argu?
ments are given a more specific subkey is added.
algo may be any of the supported algorithms or curve names given in the for?
mat as used by key listings. To use the default algorithm the string ““de?
fault" or *-" can be used. Supported algorithms are “‘rsa”, “‘dsa",
“elg”, T'ed25519", Tcv25519", and other ECC curves. For example the
string “rsa" adds an RSA key with the default key length; a string
“rsa4096" requests that the key length is 4096 bits. The string ~“future-
default" is an alias for the algorithm which will likely be used as default
algorithm in future versions of gpg. To list the supported ECC curves the
command gpg --with-colons --list-config curve can be used.
Depending on the given algo the subkey may either be an encryption subkey or
a signing subkey. If an algorithm is capable of signing and encryption and
such a subkey is desired, a usage string must be given. This string is ei?

N

ther “default” or to keep the default or a comma delimited list (or

space delimited list) of keywords: “sign” for a signing subkey, “auth” Page 14/76

for an authentication subkey, and ““encr" for an encryption subkey (" en?
crypt" can be used as alias for ““encr"). The valid combinations depend
on the algorithm.
The expire argument can be used to specify an expiration date for the key.
Several formats are supported; commonly the ISO formats “YYYY-MM-DD" or
“YYYYMMDDThhmmss" are used. To make the key expire in N seconds, N days,
N weeks, N months, or N years use ““seconds=N", "Nd", "Nw", "Nm", or
“Ny" respectively. Not specifying a value, or using -" results in a
key expiring in a reasonable default interval. The values never",
““none" can be used for no expiration date.

--generate-key

--gen-key
Generate a new key pair using the current default parameters. This is the
standard command to create a new key. In addition to the key a revocation
certificate is created and stored in the ?openpgp-revocs.d? directory below
the GnuPG home directory.

--full-generate-key

--full-gen-key
Generate a new key pair with dialogs for all options. This is an extended
version of --generate-key.
There is also a feature which allows you to create keys in batch mode. See
the manual section ““Unattended key generation" on how to use this.

--generate-revocation name

--gen-revoke name
Generate a revocation certificate for the complete key. To only revoke a
subkey or a key signature, use the --edit command.
This command merely creates the revocation certificate so that it can be
used to revoke the key if that is ever needed. To actually revoke a key the
created revocation certificate needs to be merged with the key to revoke.
This is done by importing the revocation certificate using the --import com?
mand. Then the revoked key needs to be published, which is best done by
sending the key to a keyserver (command --send-key) and by exporting (--ex?

port) it to a file which is then send to frequent communication partners.

Page 15/76

--generate-designated-revocation name
--desig-revoke name
Generate a designated revocation certificate for a key. This allows a user
(with the permission of the keyholder) to revoke someone else's key.
--edit-key

Present a menu which enables you to do most of the key management related

tasks. It expects the specification of a key on the command line.

uid n Toggle selection of user ID or photographic user ID with index n.
Use * to select all and 0 to deselect all.

key n Toggle selection of subkey with index n or key ID n. Use * to select
all and 0 to deselect all.

sign Make a signature on key of user name. If the key is not yet signed by
the default user (or the users given with -u), the program displays
the information of the key again, together with its fingerprint and
asks whether it should be signed. This question is repeated for all
users specified with -u.

Isign Same as "sign" but the signature is marked as non-exportable and will
therefore never be used by others. This may be used to make keys
valid only in the local environment.

nrsign Same as "sign" but the signature is marked as non-revocable and can
therefore never be revoked.

tsign Make a trust signature. This is a signature that combines the notions
of certification (like a regular signature), and trust (like the
"trust" command). It is generally only useful in distinct communities
or groups. For more information please read the sections “"Trust
Signature" and “"Regular Expression" in RFC-4880.

Note that "I' (for local / non-exportable), "nr" (for non-revocable, and "t"

(for trust) may be freely mixed and prefixed to "sign" to create a signature

of any type desired.

If the option --only-sign-text-ids is specified, then any non-text based user ids
(e.g., photo IDs) will not be selected for signing.
delsig Delete a signature. Note that it is not possible to retract a signa?

ture, once it has been send to the public (i.e. to a keyserver). In Page 16/76

that case you better use revsig.

revsig Revoke a signature. For every signature which has been generated by

one of the secret keys, GnuPG asks whether a revocation certificate
should be generated.

check Check the signatures on all selected user IDs. With the extra option
selfsig only self-signatures are shown.

adduid Create an additional user ID.

addphoto
Create a photographic user ID. This will prompt for a JPEG file that
will be embedded into the user ID. Note that a very large JPEG will
make for a very large key. Also note that some programs will display
your JPEG unchanged (GnuPG), and some programs will scale it to fit
in a dialog box (PGP).

showphoto
Display the selected photographic user ID.

deluid Delete a user ID or photographic user ID. Note that it is not possi?
ble to retract a user id, once it has been send to the public (i.e.
to a keyserver). In that case you better use revuid.

revuid Revoke a user ID or photographic user ID.

primary
Flag the current user id as the primary one, removes the primary user
id flag from all other user ids and sets the timestamp of all af?
fected self-signatures one second ahead. Note that setting a photo
user ID as primary makes it primary over other photo user IDs, and
setting a regular user ID as primary makes it primary over other reg?
ular user IDs.

keyserver
Set a preferred keyserver for the specified user ID(s). This allows
other users to know where you prefer they get your key from. See
--keyserver-options honor-keyserver-url for more on how this works.
Setting a value of "none" removes an existing preferred keyserver.

notation

Set a name=value notation for the specified user ID(s). See --cert-

Page 17/76

notation for more on how this works. Setting a value of "none" re?
moves all notations, setting a notation prefixed with a minus sign

(-) removes that notation, and setting a notation name (without the
=value) prefixed with a minus sign removes all notations with that

name.

pref List preferences from the selected user ID. This shows the actual

preferences, without including any implied preferences.

showpref

More verbose preferences listing for the selected user ID. This shows
the preferences in effect by including the implied preferences of

3DES (cipher), SHA-1 (digest), and Uncompressed (compression) if they
are not already included in the preference list. In addition, the

preferred keyserver and signature notations (if any) are shown.

setpref string

Set the list of user ID preferences to string for all (or just the
selected) user IDs. Calling setpref with no arguments sets the pref?
erence list to the default (either built-in or set via --default-
preference-list), and calling setpref with "none" as the argument

sets an empty preference list. Use gpg --version to get a list of
available algorithms. Note that while you can change the preferences
on an attribute user ID (aka "photo ID"), GnuPG does not select keys
via attribute user IDs so these preferences will not be used by
GnuPG.

When setting preferences, you should list the algorithms in the order
which you'd like to see them used by someone else when encrypting a
message to your key. If you don't include 3DES, it will be automati?
cally added at the end. Note that there are many factors that go

into choosing an algorithm (for example, your key may not be the only
recipient), and so the remote OpenPGP application being used to send
to you may or may not follow your exact chosen order for a given mes?
sage. It will, however, only choose an algorithm that is present on

the preference list of every recipient key. See also the INTEROPER?

ABILITY WITH OTHER OPENPGP PROGRAMS section below.

Page 18/76

addkey Add a subkey to this key.

addcardkey
Generate a subkey on a card and add it to this key.

keytocard
Transfer the selected secret subkey (or the primary key if no subkey
has been selected) to a smartcard. The secret key in the keyring will
be replaced by a stub if the key could be stored successfully on the
card and you use the save command later. Only certain key types may
be transferred to the card. A sub menu allows you to select on what
card to store the key. Note that it is not possible to get that key
back from the card - if the card gets broken your secret key will be
lost unless you have a backup somewhere.

bkuptocard file
Restore the given file to a card. This command may be used to restore
a backup key (as generated during card initialization) to a new card.
In almost all cases this will be the encryption key. You should use
this command only with the corresponding public key and make sure
that the file given as argument is indeed the backup to restore. You
should then select 2 to restore as encryption key. You will first be
asked to enter the passphrase of the backup key and then for the Ad?
min PIN of the card.

delkey Remove a subkey (secondary key). Note that it is not possible to re?
tract a subkey, once it has been send to the public (i.e. to a key?
server). In that case you better use revkey. Also note that this
only deletes the public part of a key.

revkey Revoke a subkey.

expire Change the key or subkey expiration time. If a subkey is selected,
the expiration time of this subkey will be changed. With no selec?
tion, the key expiration of the primary key is changed.

trust Change the owner trust value for the key. This updates the trust-db
immediately and no save is required.

disable

enable Disable or enable an entire key. A disabled key can not normally be

Page 19/76

used for encryption.
addrevoker
Add a designated revoker to the key. This takes one optional argu?

ment: "sensitive". If a designated revoker is marked as sensitive, it
will not be exported by default (see export-options).

passwd Change the passphrase of the secret key.

toggle This is dummy command which exists only for backward compatibility.

clean Compact (by removing all signatures except the selfsig) any user ID
that is no longer usable (e.g. revoked, or expired). Then, remove any
signatures that are not usable by the trust calculations. Specifi?
cally, this removes any signature that does not validate, any signa?
ture that is superseded by a later signature, revoked signatures, and
signatures issued by keys that are not present on the keyring.

minimize
Make the key as small as possible. This removes all signatures from
each user ID except for the most recent self-signature.

change-usage
Change the usage flags (capabilities) of the primary key or of sub?
keys. These usage flags (e.g. Certify, Sign, Authenticate, Encrypt)
are set during key creation. Sometimes it is useful to have the op?
portunity to change them (for example to add Authenticate) after they
have been created. Please take care when doing this; the allowed us?
age flags depend on the key algorithm.

cross-certify
Add cross-certification signatures to signing subkeys that may not
currently have them. Cross-certification signatures protect against a
subtle attack against signing subkeys. See --require-cross-certifica?
tion. All new keys generated have this signature by default, so this
command is only useful to bring older keys up to date.

save Save all changes to the keyrings and quit.

quit Quit the program without updating the keyrings.

The listing shows you the key with its secondary keys and all user IDs. The

primary user ID is indicated by a dot, and selected keys or user IDs are in?

Page 20/76

dicated by an asterisk. The trust value is displayed with the primary key:
"trust" is the assigned owner trust and "validity" is the calculated valid?
ity of the key. Validity values are also displayed for all user IDs. For
possible values of trust, see: [trust-values].
--sign-key name
Signs a public key with your secret key. This is a shortcut version of the
subcommand "sign” from --edit.
--Isign-key name
Signs a public key with your secret key but marks it as non-exportable. This
is a shortcut version of the subcommand "Isign” from --edit-key.
--quick-sign-key fpr [names]
--quick-Isign-key fpr [names]
Directly sign a key from the passphrase without any further user interac?
tion. The fpr must be the verified primary fingerprint of a key in the lo?

cal keyring. If no names are given, all useful user ids are signed; with

given [names] only useful user ids matching one of theses names are signed.

By default, or if a name is prefixed with a ', a case insensitive sub?

string match is used. If a name is prefixed with a '=" a case sensitive ex?

act match is done.

The command --quick-Isign-key marks the signatures as non-exportable. If

such a non-exportable signature already exists the --quick-sign-key turns it

into a exportable signature.

This command uses reasonable defaults and thus does not provide the full

flexibility of the "sign" subcommand from --edit-key. Its intended use is

to help unattended key signing by utilizing a list of verified fingerprints.
--quick-add-uid user-id new-user-id

This command adds a new user id to an existing key. In contrast to the in?

teractive sub-command adduid of --edit-key the new-user-id is added verbatim

with only leading and trailing white space removed, it is expected to be
UTF-8 encoded, and no checks on its form are applied.

--quick-revoke-uid user-id user-id-to-revoke
This command revokes a user ID on an existing key. It cannot be used to re?

voke the last user ID on key (some non-revoked user ID must remain), with

Page 21/76

revocation reason “"User ID is no longer valid". If you want to specify a
different revocation reason, or to supply supplementary revocation text, you
should use the interactive sub-command revuid of --edit-key.
--quick-set-primary-uid user-id primary-user-id
This command sets or updates the primary user ID flag on an existing key.
user-id specifies the key and primary-user-id the user ID which shall be
flagged as the primary user ID. The primary user ID flag is removed from
all other user ids and the timestamp of all affected self-signatures is set
one second ahead.
--change-passphrase user-id
--passwd user-id
Change the passphrase of the secret key belonging to the certificate speci?
fied as user-id. This is a shortcut for the sub-command passwd of the edit
key menu. When using together with the option --dry-run this will not actu?
ally change the passphrase but check that the current passphrase is correct.
OPTIONS
gpg features a bunch of options to control the exact behaviour and to change the
default configuration.
Long options can be put in an options file (default "~/.gnupg/gpg.conf"). Short op?
tion names will not work - for example, "armor" is a valid option for the options
file, while "a"is not. Do not write the 2 dashes, but simply the name of the op?
tion and any required arguments. Lines with a hash (‘#) as the first non-white-
space character are ignored. Commands may be put in this file too, but that is not
generally useful as the command will execute automatically with every execution of
apg.
Please remember that option parsing stops as soon as a hon-option is encountered,
you can explicitly stop parsing by using the special option --.
How to change the configuration
These options are used to change the configuration and are usually found in the op?
tion file.
--default-key name
Use name as the default key to sign with. If this option is not used, the

default key is the first key found in the secret keyring. Note that -u or

Page 22/76

--local-user overrides this option. This option may be given multiple
times. In this case, the last key for which a secret key is available is

used. If there is no secret key available for any of the specified values,

GnuPG will not emit an error message but continue as if this option wasn't

given.
--default-recipient name
Use name as default recipient if option --recipient is not used and don't
ask if this is a valid one. name must be non-empty.
--default-recipient-self
Use the default key as default recipient if option --recipient is not used
and don't ask if this is a valid one. The default key is the first one from
the secret keyring or the one set with --default-key.
--no-default-recipient
Reset --default-recipient and --default-recipient-self.

-v, --verbose

Give more information during processing. If used twice, the input data is

listed in detail.
--no-verbose

Reset verbose level to 0.
-q, --quiet

Try to be as quiet as possible.
--batch

--no-batch

Use batch mode. Never ask, do not allow interactive commands. --no-batch

disables this option. Note that even with a filename given on the command

line, gpg might still need to read from STDIN (in particular if gpg figures

that the input is a detached signature and no data file has been specified).

Thus if you do not want to feed data via STDIN, you should connect STDIN to

g?/devinull?.

It is highly recommended to use this option along with the options --status-

fd and --with-colons for any unattended use of gpg.

--no-tty

Make sure that the TTY (terminal) is never used for any output. This option

Page 23/76

is needed in some cases because GnuPG sometimes prints warnings to the TTY
even if --batch is used.
--yes Assume "yes" on most questions.
--no Assume "no" on most questions.
--list-options parameters
This is a space or comma delimited string that gives options used when list?
ing keys and signatures (that is, --list-keys, --check-signatures, --list-
public-keys, --list-secret-keys, and the --edit-key functions). Options can
be prepended with a no- (after the two dashes) to give the opposite meaning.
The options are:
show-photos
Causes --list-keys, --check-signatures, --list-public-keys, and
--list-secret-keys to display any photo IDs attached to the key. De?
faults to no. See also --photo-viewer. Does not work with --with-
colons: see --attribute-fd for the appropriate way to get photo data
for scripts and other frontends.
show-usage
Show usage information for keys and subkeys in the standard key list?
ing. This is a list of letters indicating the allowed usage for a
key (E=encryption, S=signing, C=certification, A=authentication).
Defaults to yes.
show-policy-urls
Show policy URLs in the --check-signatures listings. Defaults to
no.
show-notations
show-std-notations
show-user-notations
Show all, IETF standard, or user-defined signature notations in the
--check-signatures listings. Defaults to no.
show-keyserver-urls
Show any preferred keyserver URL in the --check-signatures listings.
Defaults to no.

show-uid-validity

Page 24/76

Display the calculated validity of user IDs during key listings. De?
faults to yes.
show-unusable-uids
Show revoked and expired user IDs in key listings. Defaults to no.
show-unusable-subkeys
Show revoked and expired subkeys in key listings. Defaults to no.
show-keyring
Display the keyring name at the head of key listings to show which
keyring a given key resides on. Defaults to no.
show-sig-expire
Show signature expiration dates (if any) during --check-signatures
listings. Defaults to no.
show-sig-subpackets
Include signature subpackets in the key listing. This option can take
an optional argument list of the subpackets to list. If no argument
is passed, list all subpackets. Defaults to no. This option is only
meaningful when using --with-colons along with --check-signatures.
show-only-fpr-mbox
For each user-id which has a valid mail address print only the fin?

gerprint followed by the mail address.

--verify-options parameters

This is a space or comma delimited string that gives options used when veri?
fying signatures. Options can be prepended with a "no-' to give the opposite
meaning. The options are:
show-photos
Display any photo IDs present on the key that issued the signature.
Defaults to no. See also --photo-viewer.
show-policy-urls
Show policy URLSs in the signature being verified. Defaults to yes.
show-notations
show-std-notations
show-user-notations

Show all, IETF standard, or user-defined signature notations in the

Page 25/76

signature being verified. Defaults to IETF standard.
show-keyserver-urls
Show any preferred keyserver URL in the signature being verified.
Defaults to yes.
show-uid-validity
Display the calculated validity of the user IDs on the key that is?
sued the signature. Defaults to yes.
show-unusable-uids
Show revoked and expired user IDs during signature verification. De?
faults to no.
show-primary-uid-only
Show only the primary user ID during signature verification. That is
all the AKA lines as well as photo Ids are not shown with the signa?
ture verification status.
pka-lookups
Enable PKA lookups to verify sender addresses. Note that PKA is based
on DNS, and so enabling this option may disclose information on when
and what signatures are verified or to whom data is encrypted. This
is similar to the "web bug" described for the --auto-key-retrieve op?
tion.
pka-trust-increase
Raise the trust in a signature to full if the signature passes PKA
validation. This option is only meaningful if pka-lookups is set.
--enable-large-rsa
--disable-large-rsa
With --generate-key and --batch, enable the creation of RSA secret keys as
large as 8192 hit. Note: 8192 bit is more than is generally recommended.
These large keys don't significantly improve security, but they are more ex?
pensive to use, and their signatures and certifications are larger. This
option is only available if the binary was build with large-secmem support.
--enable-dsa2
--disable-dsa2

Enable hash truncation for all DSA keys even for old DSA Keys up to 1024

Page 26/76

bit. This is also the default with --openpgp. Note that older versions of
GnuPG also required this flag to allow the generation of DSA larger than
1024 bit.

--photo-viewer string
This is the command line that should be run to view a photo ID. "%i" will be
expanded to a filename containing the photo. "%I" does the same, except the
file will not be deleted once the viewer exits. Other flags are "%k" for
the key ID, "%K" for the long key ID, "%f" for the key fingerprint, "%t" for
the extension of the image type (e.g. "jpg"), "%T" for the MIME type of the
image (e.g. "image/jpeg"), "%V" for the single-character calculated validity
of the image being viewed (e.g. "f"), "%V" for the calculated validity as a
string (e.g. "full"), "%U" for a base32 encoded hash of the user ID, and
"%%" for an actual percent sign. If neither %i or %l are present, then the
photo will be supplied to the viewer on standard input.
On Unix the default viewer is xloadimage -fork -quiet -title 'KeylD 0x%k'
STDIN with a fallback to display -title 'KeyID 0x%k' %i and finally to xdg-
open %i. On Windows !ShellExecute 400 %i is used; here the command is a
meta command to use that API call followed by a wait time in milliseconds
which is used to give the viewer time to read the temporary image file be?
fore gpg deletes it again. Note that if your image viewer program is not
secure, then executing it from gpg does not make it secure.

--exec-path string
Sets a list of directories to search for photo viewers If not provided photo
viewers use the PATH environment variable.

--keyring file
Add file to the current list of keyrings. If file begins with a tilde and a
slash, these are replaced by the $HOME directory. If the filename does not
contain a slash, it is assumed to be in the GnuPG home directory ("~/.gnupg"
if --homedir or §GNUPGHOME is not used).
Note that this adds a keyring to the current list. If the intent is to use
the specified keyring alone, use --keyring along with --no-default-keyring.
If the option --no-keyring has been used no keyrings will be used at all.

--secret-keyring file Page 27/76

This is an obsolete option and ignored. All secret keys are stored in the
?private-keys-v1.d? directory below the GnuPG home directory.
--primary-keyring file
Designate file as the primary public keyring. This means that newly imported
keys (via --import or keyserver --recv-from) will go to this keyring.
--trustdb-name file
Use file instead of the default trustdb. If file begins with a tilde and a
slash, these are replaced by the $HOME directory. If the filename does not
contain a slash, it is assumed to be in the GnuPG home directory (?~/.gnupg?
if --homedir or §GNUPGHOME is not used).
--homedir dir
Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ?~/.gnupg?. Itis only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable ?7GNUPGHOME? or (on Windows systems) by means of the
Registry entry HKCU\Software\GNU\GnuPG:HomeDir.
On Windows systems it is possible to install GhnuPG as a portable applica?
tion. In this case only this command line option is considered, all other
ways to set a home directory are ignored.
To install GnuPG as a portable application under Windows, create an empty
file named ?gpgconf.ctl? in the same directory as the tool ?gpgconf.exe?.
The root of the installation is then that directory; or, if ?gpgconf.exe?
has been installed directly below a directory named ?hbin?, its parent direc?
tory. You also need to make sure that the following directories exist and
are writable: ?ROOT/home? for the GhuPG home and ?ROOT/var/cache/gnupg? for
internal cache files.
--display-charset name
Set the name of the native character set. This is used to convert some in?
formational strings like user IDs to the proper UTF-8 encoding. Note that
this has nothing to do with the character set of data to be encrypted or
signed; GnuPG does not recode user-supplied data. If this option is not
used, the default character set is determined from the current locale. A

verbosity level of 3 shows the chosen set. Valid values for name are: Page 28/76

iS0-8859-1
This is the Latin 1 set.
iS0-8859-2
The Latin 2 set.
iS0-8859-15
This is currently an alias for the Latin 1 set.
koi8-r The usual Russian set (RFC-1489).
utf-8 Bypass all translations and assume that the OS uses native UTF-8 en?
coding.
--utf8-strings
--no-utf8-strings
Assume that command line arguments are given as UTF-8 strings. The default
(--no-utf8-strings) is to assume that arguments are encoded in the character
set as specified by --display-charset. These options affect all following
arguments. Both options may be used multiple times.
--options file
Read options from file and do not try to read them from the default options
file in the homedir (see --homedir). This option is ignored if used in an
options file.
--no-options
Shortcut for --options /dev/null. This option is detected before an attempt
to open an option file. Using this option will also prevent the creation of
a ?~/.gnupg? homedir.
-zn
--compress-level n
--bzip2-compress-level n
Set compression level to n for the ZIP and ZLIB compression algorithms. The
default is to use the default compression level of zlib (normally 6).
--bzip2-compress-level sets the compression level for the BZIP2 compression
algorithm (defaulting to 6 as well). This is a different option from --com?
press-level since BZIP2 uses a significant amount of memory for each addi?
tional compression level. -z sets both. A value of O for n disables com?

pression.

Page 29/76

--bzip2-decompress-lowmem
Use a different decompression method for BZIP2 compressed files. This alter?
nate method uses a bit more than half the memory, but also runs at half the
speed. This is useful under extreme low memory circumstances when the file
was originally compressed at a high --bzip2-compress-level.

--mangle-dos-filenames

--no-mangle-dos-filenames
Older version of Windows cannot handle filenames with more than one dot.
--mangle-dos-filenames causes GnuPG to replace (rather than add to) the ex?
tension of an output filename to avoid this problem. This option is off by
default and has no effect on non-Windows platforms.

--ask-cert-level

--no-ask-cert-level
When making a key signature, prompt for a certification level. If this op?
tion is not specified, the certification level used is set via --default-
cert-level. See --default-cert-level for information on the specific levels
and how they are used. --no-ask-cert-level disables this option. This option
defaults to no.

--default-cert-level n
The default to use for the check level when signing a key.
0 means you make no particular claim as to how carefully you verified the
key.
1 means you believe the key is owned by the person who claims to own it but
you could not, or did not verify the key at all. This is useful for a "per?
sona" verification, where you sign the key of a pseudonymous user.
2 means you did casual verification of the key. For example, this could mean
that you verified the key fingerprint and checked the user ID on the key
against a photo ID.
3 means you did extensive verification of the key. For example, this could
mean that you verified the key fingerprint with the owner of the key in per?
son, and that you checked, by means of a hard to forge document with a photo
ID (such as a passport) that the name of the key owner matches the name in

the user ID on the key, and finally that you verified (by exchange of email)

Page 30/76

that the email address on the key belongs to the key owner.
Note that the examples given above for levels 2 and 3 are just that: exam?
ples. In the end, it is up to you to decide just what "casual” and "exten?
sive" mean to you.
This option defaults to 0 (no particular claim).
--min-cert-level
When building the trust database, treat any signatures with a certification
level below this as invalid. Defaults to 2, which disregards level 1 signa?
tures. Note that level 0 "no particular claim" signatures are always ac?
cepted.
--trusted-key long key ID
Assume that the specified key (which must be given as a full 8 byte key ID)
is as trustworthy as one of your own secret keys. This option is useful if
you don't want to keep your secret keys (or one of them) online but still
want to be able to check the validity of a given recipient's or signator's
key.
--trust-model {pgp|classic|tofu|tofu+pgp|direct|always|auto}
Set what trust model GnuPG should follow. The models are:
pgp This is the Web of Trust combined with trust signatures as used in
PGP 5.x and later. This is the default trust model when creating a
new trust database.
classic
This is the standard Web of Trust as introduced by PGP 2.
tofu
TOFU stands for Trust On First Use. In this trust model, the first
time a key is seen, itis memorized. If later another key with a
user id with the same email address is seen, both keys are marked as
suspect. In that case, the next time either is used, a warning is
displayed describing the conflict, why it might have occurred (either
the user generated a new key and failed to cross sign the old and new
keys, the key is forgery, or a man-in-the-middle attack is being at?
tempted), and the user is prompted to manually confirm the validity

of the key in question. Page 31/76

Because a potential attacker is able to control the email address and
thereby circumvent the conflict detection algorithm by using an email
address that is similar in appearance to a trusted email address,
whenever a message is verified, statistics about the number of mes?
sages signed with the key are shown. In this way, a user can easily
identify attacks using fake keys for regular correspondents.
When compared with the Web of Trust, TOFU offers significantly weaker
security guarantees. In particular, TOFU only helps ensure consis?
tency (that is, that the binding between a key and email address
doesn't change). A major advantage of TOFU is that it requires lit?
tle maintenance to use correctly. To use the web of trust properly,
you need to actively sign keys and mark users as trusted introducers.
This is a time-consuming process and anecdotal evidence suggests that
even security-conscious users rarely take the time to do this thor?
oughly and instead rely on an ad-hoc TOFU process.
In the TOFU model, policies are associated with bindings between keys
and email addresses (which are extracted from user ids and normal?
ized). There are five policies, which can be set manually using the
--tofu-policy option. The default policy can be set using the
--tofu-default-policy option.
The TOFU policies are: auto, good, unknown, bad and ask. The auto
policy is used by default (unless overridden by --tofu-default-pol?
icy) and marks a binding as marginally trusted. The good, unknown
and bad policies mark a binding as fully trusted, as having unknown
trust or as having trust never, respectively. The unknown policy is
useful for just using TOFU to detect conflicts, but to never assign
positive trust to a binding. The final policy, ask prompts the user
to indicate the binding's trust. If batch mode is enabled (or input
is inappropriate in the context), then the user is not prompted and
the undefined trust level is returned.

tofu+pgp
This trust model combines TOFU with the Web of Trust. This is done

by computing the trust level for each model and then taking the maxi? Page 32/76

mum trust level where the trust levels are ordered as follows: un?
known < undefined < marginal < fully < ultimate < expired < never.
By setting --tofu-default-policy=unknown, this model can be used to
implement the web of trust with TOFU's conflict detection algorithm,
but without its assignment of positive trust values, which some secu?
rity-conscious users don't like.
direct Key validity is set directly by the user and not calculated via the
Web of Trust. This model is solely based on the key and does not
distinguish user IDs. Note that when changing to another trust model
the trust values assigned to a key are transformed into ownertrust
values, which also indicate how you trust the owner of the key to
sign other keys.
always Skip key validation and assume that used keys are always fully valid.
You generally won't use this unless you are using some external vali?
dation scheme. This option also suppresses the "[uncertain]" tag
printed with signature checks when there is no evidence that the user
ID is bound to the key. Note that this trust model still does not
allow the use of expired, revoked, or disabled keys.
auto Select the trust model depending on whatever the internal trust data?
base says. This is the default model if such a database already ex?
ists. Note that a tofu trust model is not considered here and must
be enabled explicitly.
--auto-key-locate mechanisms
--no-auto-key-locate
GnuPG can automatically locate and retrieve keys as needed using this op?
tion. This happens when encrypting to an email address (in the "user@exam?
ple.com" form), and there are no "user@example.com" keys on the local
keyring. This option takes any number of the mechanisms listed below, in
the order they are to be tried. Instead of listing the mechanisms as comma
delimited arguments, the option may also be given several times to add more
mechanism. The option --no-auto-key-locate or the mechanism "clear" resets
the list. The default is "local,wkd".

cert Locate a key using DNS CERT, as specified in RFC-4398. Page 33/76

pka Locate a key using DNS PKA.

dane Locate a key using DANE, as specified in draft-ietf-dane-openpgp?
key-05.txt.

wkd Locate a key using the Web Key Directory protocol.

Idap Using DNS Service Discovery, check the domain in question for any
LDAP keyservers to use. If this fails, attempt to locate the key us?
ing the PGP Universal method of checking ?ldap://keys.(thedomain)?.

keyserver
Locate a key using a keyserver.

keyserver-URL
In addition, a keyserver URL as used in the dirmngr configuration may
be used here to query that particular keyserver.

local Locate the key using the local keyrings. This mechanism allows the
user to select the order alocal key lookup is done. Thus using
?--auto-key-locate local? is identical to --no-auto-key-locate.

nodefault
This flag disables the standard local key lookup, done before any of
the mechanisms defined by the --auto-key-locate are tried. The posi?
tion of this mechanism in the list does not matter. It is not re?
quired if local is also used.

clear Clear all defined mechanisms. This is useful to override mechanisms
given in a config file. Note that a nodefault in mechanisms will
also be cleared unless it is given after the clear.

--auto-key-retrieve
--no-auto-key-retrieve

These options enable or disable the automatic retrieving of keys from a key?

server when verifying signatures made by keys that are not on the local

keyring. The default is --no-auto-key-retrieve.

The order of methods tried to lookup the key is:

1. If a preferred keyserver is specified in the signature and the option

honor-keyserver-url is active (which is not the default), that keyserver is

tried. Note that the creator of the signature uses the option --sig-key?

server-url to specify the preferred keyserver for data signatures. Page 34/76

2. If the signature has the Signer's UID set (e.g. using --sender while cre?
ating the signature) a Web Key Directory (WKD) lookup is done. This is the
default configuration but can be disabled by removing WKD from the auto-key-
locate list or by using the option --disable-signer-uid.
3. If the option honor-pka-record is active, the legacy PKA method is used.
4. If any keyserver is configured and the Issuer Fingerprint is part of the
signature (since GnuPG 2.1.16), the configured keyservers are tried.
Note that this option makes a "web bug" like behavior possible. Keyserver
or Web Key Directory operators can see which keys you request, so by sending
you a message signed by a brand new key (which you naturally will not have
on your local keyring), the operator can tell both your IP address and the
time when you verified the signature.

--keyid-format {none|short|Oxshort|long|Oxlong}
Select how to display key IDs. "none" does not show the key ID at all but
shows the fingerprint in a separate line. "short" is the traditional
8-character key ID. "long"is the more accurate (but less convenient)
16-character key ID. Add an "0x" to either to include an "Ox" at the begin?
ning of the key ID, as in 0x99242560. Note that this option is ignored if
the option --with-colons is used.

--keyserver name
This option is deprecated - please use the --keyserver in ?2dirmngr.conf? in?
stead.
Use name as your keyserver. This is the server that --receive-keys, --send-
keys, and --search-keys will communicate with to receive keys from, send
keys to, and search for keys on. The format of the name is a URI:
“scheme:[//]keyservernamel[:port]' The scheme is the type of keyserver: "hkp"
for the HTTP (or compatible) keyservers, "ldap" for the LDAP keyservers, or
"mailto" for the Graff email keyserver. Note that your particular installa?
tion of GhuPG may have other keyserver types available as well. Keyserver
schemes are case-insensitive. After the keyserver name, optional keyserver
configuration options may be provided. These are the same as the global
--keyserver-options from below, but apply only to this particular keyserver.

Most keyservers synchronize with each other, so there is generally no need Page 35/76

to send keys to more than one server. The keyserver hkp://keys.gnupg.net
uses round robin DNS to give a different keyserver each time you use it.
--keyserver-options {name=value}
This is a space or comma delimited string that gives options for the key?
server. Options can be prefixed with a "no-' to give the opposite meaning.
Valid import-options or export-options may be used here as well to apply to
importing (--recv-key) or exporting (--send-key) a key from a keyserver.
While not all options are available for all keyserver types, some common op?
tions are:
include-revoked
When searching for a key with --search-keys, include keys that are
marked on the keyserver as revoked. Note that not all keyservers dif?
ferentiate between revoked and unrevoked keys, and for such key?
servers this option is meaningless. Note also that most keyservers do
not have cryptographic verification of key revocations, and so turn?
ing this option off may result in skipping keys that are incorrectly
marked as revoked.
include-disabled
When searching for a key with --search-keys, include keys that are
marked on the keyserver as disabled. Note that this option is not
used with HKP keyservers.
auto-key-retrieve
This is an obsolete alias for the option auto-key-retrieve. Please
do not use it; it will be removed in future versions..
honor-keyserver-url
When using --refresh-keys, if the key in question has a preferred
keyserver URL, then use that preferred keyserver to refresh the key
from. In addition, if auto-key-retrieve is set, and the signature be?
ing verified has a preferred keyserver URL, then use that preferred
keyserver to fetch the key from. Note that this option introduces a
"web bug": The creator of the key can see when the keys is refreshed.
Thus this option is not enabled by default.

honor-pka-record Page 36/76

If --auto-key-retrieve is used, and the signature being verified has
a PKA record, then use the PKA information to fetch the key. Defaults
to "yes".
include-subkeys
When receiving a key, include subkeys as potential targets. Note that
this option is not used with HKP keyservers, as they do not support
retrieving keys by subkey id.
timeout
http-proxy=value
verbose
debug
check-cert
ca-cert-file
These options have no more function since GnuPG 2.1. Use the dirmngr
configuration options instead.
The default list of options is: "self-sigs-only, repair-keys, repair-pks-subkey-
bug, export-attributes, honor-pka-record".
--completes-needed n
Number of completely trusted users to introduce a new key signer (defaults
to 1).
--marginals-needed n
Number of marginally trusted users to introduce a new key signer (defaults
to 3)
--tofu-default-policy {auto|good|unknown|bad|ask}
The default TOFU policy (defaults to auto). For more information about the
meaning of this option, see: [trust-model-toful].
--max-cert-depth n
Maximum depth of a certification chain (default is 5).
--no-sig-cache
Do not cache the verification status of key signatures. Caching gives a
much better performance in key listings. However, if you suspect that your
public keyring is not safe against write modifications, you can use this op?

tion to disable the caching. It probably does not make sense to disable it Page 37/76

because all kind of damage can be done if someone else has write access to
your public keyring.

--auto-check-trustdb

--no-auto-check-trustdb
If GnuPG feels that its information about the Web of Trust has to be up?
dated, it automatically runs the --check-trustdb command internally. This
may be atime consuming process. --no-auto-check-trustdb disables this op?
tion.

--use-agent

--no-use-agent
This is dummy option. gpg always requires the agent.

--gpg-agent-info
This is dummy option. It has no effect when used with gpg.

--agent-program file
Specify an agent program to be used for secret key operations. The default
value is determined by running gpgconf with the option --list-dirs. Note
that the pipe symbol (]) is used for a regression test suite hack and may
thus not be used in the file name.

--dirmngr-program file
Specify a dirmngr program to be used for keyserver access. The default
value is ?/usr/bin/dirmngr?.

--disable-dirmngr
Entirely disable the use of the Dirmngr.

--no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been started and
its service is required. This option is mostly useful on machines where the
connection to gpg-agent has been redirected to another machines. If dirmngr
is required on the remote machine, it may be started manually using gpgconf
--launch dirmngr.

--lock-once
Lock the databases the first time a lock is requested and do not release the
lock until the process terminates.

--lock-multiple

Page 38/76

Release the locks every time a lock is no longer needed. Use this to over?
ride a previous --lock-once from a config file.

--lock-never
Disable locking entirely. This option should be used only in very special
environments, where it can be assured that only one process is accessing
those files. A bootable floppy with a stand-alone encryption system will
probably use this. Improper usage of this option may lead to data and key
corruption.

--exit-on-status-write-error
This option will cause write errors on the status FD to immediately termi?
nate the process. That should in fact be the default but it never worked
this way and thus we need an option to enable this, so that the change won't
break applications which close their end of a status fd connected pipe too
early. Using this option along with --enable-progress-filter may be used to
cleanly cancel long running gpg operations.

--limit-card-insert-tries n
With n greater than 0 the number of prompts asking to insert a smartcard
gets limited to N-1. Thus with a value of 1 gpg won't at all ask to insert a
card if none has been inserted at startup. This option is useful in the con?
figuration file in case an application does not know about the smartcard
support and waits ad infinitum for an inserted card.

--no-random-seed-file
GnuPG uses a file to store its internal random pool over invocations. This
makes random generation faster; however sometimes write operations are not
desired. This option can be used to achieve that with the cost of slower
random generation.

--no-greeting
Suppress the initial copyright message.

--no-secmem-warning
Suppress the warning about "using insecure memory".

--no-permission-warning
Suppress the warning about unsafe file and home directory (--homedir) per?

missions. Note that the permission checks that GnuPG performs are not in? Page 39/76

tended to be authoritative, but rather they simply warn about certain common
permission problems. Do not assume that the lack of a warning means that
your system is secure.
Note that the warning for unsafe --homedir permissions cannot be suppressed
in the gpg.conf file, as this would allow an attacker to place an unsafe
gpg.conf file in place, and use this file to suppress warnings about itself.
The --homedir permissions warning may only be suppressed on the command
line.

--require-secmem

--no-require-secmem
Refuse to run if GnuPG cannot get secure memory. Defaults to no (i.e. run,
but give a warning).

--require-cross-certification

--no-require-cross-certification
When verifying a signature made from a subkey, ensure that the cross certi?
fication "back signature" on the subkey is present and valid. This protects
against a subtle attack against subkeys that can sign. Defaults to --re?
quire-cross-certification for gpg.

--expert

--no-expert
Allow the user to do certain nonsensical or "silly" things like signing an
expired or revoked key, or certain potentially incompatible things like gen?
erating unusual key types. This also disables certain warning messages about
potentially incompatible actions. As the name implies, this option is for
experts only. If you don't fully understand the implications of what it al?
lows you to do, leave this off. --no-expert disables this option.

Key related options

--recipient name

-r Encrypt for user id name. If this option or --hidden-recipient is not speci?
fied, GnuPG asks for the user-id unless --default-recipient is given.

--hidden-recipient name

-R Encrypt for user ID name, but hide the key ID of this user's key. This op?

tion helps to hide the receiver of the message and is a limited countermea? Page 40/76

sure against traffic analysis. If this option or --recipient is not speci?
fied, GnuPG asks for the user ID unless --default-recipient is given.
--recipient-file file
-f This option is similar to --recipient except that it encrypts to a key
stored in the given file. file must be the name of a file containing ex?
actly one key. gpg assumes that the key in this file is fully valid.
--hidden-recipient-file file
-F This option is similar to --hidden-recipient except that it encrypts to a
key stored in the given file. file must be the name of a file containing
exactly one key. gpg assumes that the key in this file is fully valid.
--encrypt-to name
Same as --recipient but this one is intended for use in the options file and
may be used with your own user-id as an "encrypt-to-self'. These keys are
only used when there are other recipients given either by use of --recipient
or by the asked user id. No trust checking is performed for these user ids
and even disabled keys can be used.
--hidden-encrypt-to name
Same as --hidden-recipient but this one is intended for use in the options
file and may be used with your own user-id as a hidden "encrypt-to-self".
These keys are only used when there are other recipients given either by use
of --recipient or by the asked user id. No trust checking is performed for
these user ids and even disabled keys can be used.
--no-encrypt-to
Disable the use of all --encrypt-to and --hidden-encrypt-to keys.
--group {name=value}
Sets up a named group, which is similar to aliases in email programs. Any
time the group name is a recipient (-r or --recipient), it will be expanded
to the values specified. Multiple groups with the same name are automati?
cally merged into a single group.
The values are key IDs or fingerprints, but any key description is accepted.
Note that a value with spaces in it will be treated as two different values.
Note also there is only one level of expansion --- you cannot make an group

that points to another group. When used from the command line, it may be

Page 41/76

necessary to quote the argument to this option to prevent the shell from
treating it as multiple arguments.

--ungroup name
Remove a given entry from the --group list.

--no-groups
Remove all entries from the --group list.

--local-user name

-u Use name as the key to sign with. Note that this option overrides --default-
key.

--sender mbox
This option has two purposes. mbox must either be a complete user id with a
proper mail address or just a mail address. When creating a signature this
option tells gpg the user id of a key used to make a signature if the key
was not directly specified by a user id. When verifying a signature the
mbox is used to restrict the information printed by the TOFU code to match?
ing user ids.

--try-secret-key name
For hidden recipients GPG needs to know the keys to use for trial decryp?
tion. The key set with --default-key is always tried first, but this is of?
ten not sufficient. This option allows setting more keys to be used for
trial decryption. Although any valid user-id specification may be used for
name it makes sense to use at least the long keyid to avoid ambiguities.
Note that gpg-agent might pop up a pinentry for a lot keys to do the trial
decryption. If you want to stop all further trial decryption you may use
close-window button instead of the cancel button.

--try-all-secrets
Don't look at the key ID as stored in the message but try all secret keys in
turn to find the right decryption key. This option forces the behaviour as
used by anonymous recipients (created by using --throw-keyids or --hidden-
recipient) and might come handy in case where an encrypted message contains
a bogus key ID.

--skip-hidden-recipients

--no-skip-hidden-recipients

Page 42/76

During decryption skip all anonymous recipients. This option helps in the
case that people use the hidden recipients feature to hide their own en?
crypt-to key from others. If one has many secret keys this may lead to a
major annoyance because all keys are tried in turn to decrypt something
which was not really intended for it. The drawback of this option is that
it is currently not possible to decrypt a message which includes real anony?
mous recipients.
Input and Output

--armor

-a Create ASCII armored output. The default is to create the binary OpenPGP
format.

--no-armor
Assume the input data is not in ASCII armored format.

--output file

-0 file
Write output to file. To write to stdout use - as the filename.

--max-output n
This option sets a limit on the number of bytes that will be generated when
processing a file. Since OpenPGP supports various levels of compression, it
is possible that the plaintext of a given message may be significantly
larger than the original OpenPGP message. While GnuPG works properly with
such messages, there is often a desire to set a maximum file size that will
be generated before processing is forced to stop by the OS limits. Defaults
to 0, which means "no limit".

--input-size-hint n
This option can be used to tell GPG the size of the input data in bytes. n
must be a positive base-10 number. This option is only useful if the input
is not taken from a file. GPG may use this hint to optimize its buffer al?
location strategy. It is also used by the --status-fd line "PROGRESS" to
provide a value for ““total" if that is not available by other means.

--key-origin string[,url]
gpg can track the origin of a key. Certain origins are implicitly known

(e.g. keyserver, web key directory) and set. For a standard import the ori? Page 43/76

gin of the keys imported can be set with this option. To list the possible

values use "help" for string. Some origins can store an optional url argu?

ment. That URL can appended to string after a comma.

--import-options parameters

This is a space or comma delimited string that gives options for importing

keys. Options can be prepended with a "no-' to give the opposite meaning.

The options are:

import-local-sigs
Allow importing key signatures marked as "local". This is not gener?
ally useful unless a shared keyring scheme is being used. Defaults
to no.

keep-ownertrust
Normally possible still existing ownertrust values of a key are
cleared if a key is imported. This is in general desirable so that a
formerly deleted key does not automatically gain an ownertrust values
merely due to import. On the other hand it is sometimes necessary to
re-import a trusted set of keys again but keeping already assigned
ownertrust values. This can be achieved by using this option.

repair-pks-subkey-bug
During import, attempt to repair the damage caused by the PKS key?
server bug (pre version 0.9.6) that mangles keys with multiple sub?
keys. Note that this cannot completely repair the damaged key as some
crucial data is removed by the keyserver, but it does at least give
you back one subkey. Defaults to no for regular --import and to yes
for keyserver --receive-keys.

import-show

show-only
Show a listing of the key as imported right before it is stored.
This can be combined with the option --dry-run to only look at keys;
the option show-only is a shortcut for this combination. The command
--show-keys is another shortcut for this. Note that suffixes like
'#' for "sec" and "sbb" lines may or may not be printed.

import-export Page 44/76

Run the entire import code but instead of storing the key to the lo?
cal keyring write it to the output. The export options export-pka
and export-dane affect the output. This option can be used to remove
all invalid parts from a key without the need to store it.

merge-only
During import, allow key updates to existing keys, but do not allow
any new keys to be imported. Defaults to no.

import-clean
After import, compact (remove all signatures except the self-signa?
ture) any user IDs from the new key that are not usable. Then, re?
move any signatures from the new key that are not usable. This in?
cludes signatures that were issued by keys that are not present on
the keyring. This option is the same as running the --edit-key com?
mand "clean" after import. Defaults to no.

self-sigs-only
Accept only self-signatures while importing a key. All other key
signatures are skipped at an early import stage. This option can be
used with keyserver-options to mitigate attempts to flood a key with
bogus signatures from a keyserver. The drawback is that all other
valid key signatures, as required by the Web of Trust are also not
imported. Note that when using this option along with import-clean
it suppresses the final clean step after merging the imported key
into the existing key.

repair-keys
After import, fix various problems with the keys. For example, this
reorders signatures, and strips duplicate signatures. Defaults to
yes.

import-minimal
Import the smallest key possible. This removes all signatures except
the most recent self-signature on each user ID. This option is the
same as running the --edit-key command "minimize" after import. De?
faults to no.

restore Page 45/76

import-restore
Import in key restore mode. This imports all data which is usually
skipped during import; including all GhnuPG specific data. All other
contradicting options are overridden.
--import-filter {name=expr}
--export-filter {name=expr}
These options define an import/export filter which are applied to the im?
ported/exported keyblock right before it will be stored/written. name de?
fines the type of filter to use, expr the expression to evaluate. The op?
tion can be used several times which then appends more expression to the
same name.
The available filter types are:
keep-uid
This filter will keep a user id packet and its dependent packets in
the keyblock if the expression evaluates to true.
drop-subkey
This filter drops the selected subkeys. Currently only implemented
for --export-filter.
drop-sig
This filter drops the selected key signatures on user ids. Self-sig?
natures are not considered. Currently only implemented for --import-
filter.
For the syntax of the expression see the chapter "FILTER EXPRESSIONS". The prop?
erty names for the expressions depend on the actual filter type and are indicated
in the following table.
The available properties are:
uid A string with the user id. (keep-uid)
mbox The addr-spec part of a user id with mailbox or the empty string.
(keep-uid)
key algo
A number with the public key algorithm of a key or subkey packet.
(drop-subkey)

key_created Page 46/76

key created_d
The first is the timestamp a public key or subkey packet was created.
The second is the same but given as an ISO string, e.g. "2016-08-17".
(drop-subkey)

primary
Boolean indicating whether the user id is the primary one. (keep-
uid)

expired
Boolean indicating whether a user id (keep-uid), a key (drop-subkey),
or a signature (drop-sig) expired.

revoked
Boolean indicating whether a user id (keep-uid) or a key (drop-sub?
key) has been revoked.

disabled
Boolean indicating whether a primary key is disabled. (not used)

secret Boolean indicating whether a key or subkey is a secret one. (drop-
subkey)

usage A string indicating the usage flags for the subkey, from the sequence
“ecsa?". For example, a subkey capable of just signing and authen?
tication would be an exact match for “sa". (drop-subkey)

sig_created

sig_created_d
The first is the timestamp a signature packet was created. The sec?
ond is the same but given as an ISO date string, e.g. "2016-08-17".
(drop-sig)

sig_algo
A number with the public key algorithm of a signature packet. (drop-
sig)

sig_digest_algo
A number with the digest algorithm of a signature packet. (drop-sig)

--export-options parameters
This is a space or comma delimited string that gives options for exporting

keys. Options can be prepended with a ‘no-' to give the opposite meaning. Page 47/76

The options are:

export-local-sigs
Allow exporting key signatures marked as "local". This is not gener?
ally useful unless a shared keyring scheme is being used. Defaults
to no.

export-attributes
Include attribute user IDs (photo IDs) while exporting. Not including
attribute user IDs is useful to export keys that are going to be used
by an OpenPGP program that does not accept attribute user IDs. De?
faults to yes.

export-sensitive-revkeys
Include designated revoker information that was marked as "sensi?
tive". Defaults to no.

backup

export-backup
Export for use as a backup. The exported data includes all data
which is needed to restore the key or keys later with GnuPG. The
format is basically the OpenPGP format but enhanced with GhuPG spe?
cific data. All other contradicting options are overridden.

export-clean
Compact (remove all signatures from) user IDs on the key being ex?
ported if the user IDs are not usable. Also, do not export any signa?
tures that are not usable. This includes signatures that were issued
by keys that are not present on the keyring. This option is the same
as running the --edit-key command "clean" before export except that
the local copy of the key is not modified. Defaults to no.

export-minimal
Export the smallest key possible. This removes all signatures except
the most recent self-signature on each user ID. This option is the
same as running the --edit-key command "minimize" before export ex?
cept that the local copy of the key is not modified. Defaults to no.

export-pka

Instead of outputting the key material output PKA records suitable to

Page 48/76

put into DNS zone files. An ORIGIN line is printed before each
record to allow diverting the records to the corresponding zone file.
export-dane
Instead of outputting the key material output OpenPGP DANE records
suitable to putinto DNS zone files. An ORIGIN line is printed be?
fore each record to allow diverting the records to the corresponding
zone file.
--with-colons
Print key listings delimited by colons. Note that the output will be encoded
in UTF-8 regardless of any --display-charset setting. This format is useful
when GnuPG is called from scripts and other programs as it is easily machine
parsed. The details of this format are documented in the file ?7doc/DETAILS?,
which is included in the GnuPG source distribution.
--fixed-list-mode
Do not merge primary user ID and primary key in --with-colon listing mode
and print all timestamps as seconds since 1970-01-01. Since GnuPG 2.0.10,
this mode is always used and thus this option is obsolete; it does not harm
to use it though.
--legacy-list-mode
Revert to the pre-2.1 public key list mode. This only affects the human
readable output and not the machine interface (i.e. --with-colons). Note
that the legacy format does not convey suitable information for elliptic
curves.
--with-fingerprint
Same as the command --fingerprint but changes only the format of the output
and may be used together with another command.
--with-subkey-fingerprint
If a fingerprint is printed for the primary key, this option forces printing
of the fingerprint for all subkeys. This could also be achieved by using
the --with-fingerprint twice but by using this option along with keyid-for?
mat "none" a compact fingerprint is printed.
--with-icao-spelling

Print the ICAO spelling of the fingerprint in addition to the hex digits. Page 49/76

--with-keygrip
Include the keygrip in the key listings. In --with-colons mode this is im?
plicitly enable for secret keys.

--with-key-origin
Include the locally held information on the origin and last update of a key
in akey listing. In --with-colons mode this is always printed. This data
is currently experimental and shall not be considered part of the stable
API.

--with-wkd-hash
Print a Web Key Directory identifier along with each user ID in key list?
ings. This is an experimental feature and semantics may change.

--with-secret
Include info about the presence of a secret key in public key listings done
with --with-colons.

OpenPGP protocol specific options

-t, --textmode

--no-textmode
Treat input files as text and store them in the OpenPGP canonical text form
with standard "CRLF" line endings. This also sets the necessary flags to in?
form the recipient that the encrypted or signed data is text and may need
its line endings converted back to whatever the local system uses. This op?
tion is useful when communicating between two platforms that have different
line ending conventions (UNIX-like to Mac, Mac to Windows, etc). --no-
textmode disables this option, and is the default.

--force-v3-sigs

--no-force-v3-sigs

--force-v4-certs

--no-force-v4-certs
These options are obsolete and have no effect since GnuPG 2.1.

--force-mdc

--disable-mdc
These options are obsolete and have no effect since GnuPG 2.2.8. The MDC is

always used. But note: If the creation of a legacy non-MDC message is ex? Page 50/76

ceptionally required, the option --rfc2440 allows for this.
--disable-signer-uid
By default the user ID of the signing key is embedded in the data signature.
As of now this is only done if the signing key has been specified with lo?
cal-user using a mail address, or with sender. This information can be
helpful for verifier to locate the key; see option --auto-key-retrieve.
--personal-cipher-preferences string
Set the list of personal cipher preferences to string. Use gpg --version to
get a list of available algorithms, and use none to set no preference at
all. This allows the user to safely override the algorithm chosen by the
recipient key preferences, as GPG will only select an algorithm that is us?
able by all recipients. The most highly ranked cipher in this list is also
used for the --symmetric encryption command.
--personal-digest-preferences string
Set the list of personal digest preferences to string. Use gpg --version to
get a list of available algorithms, and use none to set no preference at
all. This allows the user to safely override the algorithm chosen by the
recipient key preferences, as GPG will only select an algorithm that is us?
able by all recipients. The most highly ranked digest algorithm in this
list is also used when signing without encryption (e.g. --clear-sign or
--sign).
--personal-compress-preferences string
Set the list of personal compression preferences to string. Use gpg --ver?
sion to get a list of available algorithms, and use none to set no prefer?
ence at all. This allows the user to safely override the algorithm chosen
by the recipient key preferences, as GPG will only select an algorithm that
is usable by all recipients. The most highly ranked compression algorithm
in this list is also used when there are no recipient keys to consider (e.g.
--symmetric).
--s2k-cipher-algo name
Use name as the cipher algorithm for symmetric encryption with a passphrase
if --personal-cipher-preferences and --cipher-algo are not given. The de?

fault is AES-128. Page 51/76

--s2k-digest-algo name
Use name as the digest algorithm used to mangle the passphrases for symmet?
ric encryption. The default is SHA-1.

--s2k-mode n
Selects how passphrases for symmetric encryption are mangled. If n is 0 a
plain passphrase (which is in general not recommended) will be used, a 1
adds a salt (which should not be used) to the passphrase and a 3 (the de?
fault) iterates the whole process a number of times (see --s2k-count).

--s2k-count n
Specify how many times the passphrases mangling for symmetric encryption is
repeated. This value may range between 1024 and 65011712 inclusive. The
default is inquired from gpg-agent. Note that not all values in the
1024-65011712 range are legal and if an illegal value is selected, GnuPG
will round up to the nearest legal value. This option is only meaningful if
--s2k-mode is set to the default of 3.

Compliance options

These options control what GnuPG is compliant to. Only one of these options may be

active at atime. Note that the default setting of this is nearly always the cor?

rect one. See the INTEROPERABILITY WITH OTHER OPENPGP PROGRAMS section below before

using one of these options.

--gnupg
Use standard GnuPG behavior. This is essentially OpenPGP behavior (see
--openpgp), but with some additional workarounds for common compatibility
problems in different versions of PGP. This is the default option, so it is
not generally needed, but it may be useful to override a different compli?
ance option in the gpg.conf file.

--o0penpgp
Reset all packet, cipher and digest options to strict OpenPGP behavior. Use
this option to reset all previous options like --s2k-*, --cipher-algo, --di?
gest-algo and --compress-algo to OpenPGP compliant values. All PGP work?
arounds are disabled.

--rfc4880

Reset all packet, cipher and digest options to strict RFC-4880 behavior. Page 52/76

Note that this is currently the same thing as --openpgp.

--rfc4880bis

Enable experimental features from proposed updates to RFC-4880. This option

can be used in addition to the other compliance options. Warning: The be?

havior may change with any GnuPG release and created keys or data may not be

usable with future GnuPG versions.
--rfc2440
Reset all packet, cipher and digest options to strict RFC-2440 behavior.

Note that by using this option encryption packets are created in a legacy

mode without MDC protection. This is dangerous and should thus only be used

for experiments. See also option --ignore-mdc-error.
--pgp6 Set up all options to be as PGP 6 compliant as possible. This restricts you

to the ciphers IDEA (if the IDEA plugin is installed), 3DES, and CAST5, the

hashes MD5, SHA1 and RIPEMD160, and the compression algorithms none and ZIP.

This also disables --throw-keyids, and making signatures with signing sub?
keys as PGP 6 does not understand signatures made by signing subkeys.
This option implies --escape-from-lines.

--pgp7 Set up all options to be as PGP 7 compliant as possible. This is identical
to --pgp6 except that MDCs are not disabled, and the list of allowable ci?
phers is expanded to add AES128, AES192, AES256, and TWOFISH.

--pgp8 Set up all options to be as PGP 8 compliant as possible. PGP 8 is a lot
closer to the OpenPGP standard than previous versions of PGP, so all this
does is disable --throw-keyids and set --escape-from-lines. All algorithms
are allowed except for the SHA224, SHA384, and SHA512 digests.

--compliance string
This option can be used instead of one of the options above. Valid values
for string are the above option names (without the double dash) and possibly
others as shown when using "help" for value.

Doing things one usually doesn't want to do

-n

--dry-run
Don't make any changes (this is not completely implemented).

--list-only

Page 53/76

Changes the behaviour of some commands. This is like --dry-run but different
in some cases. The semantic of this option may be extended in the future.
Currently it only skips the actual decryption pass and therefore enables a

fast listing of the encryption keys.

--interactive

Prompt before overwriting any files.

--debug-level level

Select the debug level for investigating problems. level may be a numeric

value or by a keyword:

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used in?
stead of the keyword.

advanced
More verbose debug messages. A value between 3 and 5 may be used in?
stead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be used in?
stead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may be
used instead of the keyword. The creation of hash tracing files is

only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified and

may change with newer releases of this program. They are however carefully selected

to best aid in debugging.

--debug flags

Set debugging flags. All flags are or-ed and flags may be given in C syntax
(e.g. 0x0042) or as a comma separated list of flag names. To get a list of

all supported flags the single word "help" can be used.

--debug-all

Set all useful debugging flags.

--debug-iolbf

Set stdout into line buffered mode. This option is only honored when given

Page 54/76

on the command line.
--faked-system-time epoch

This option is only useful for testing; it sets the system time back or

forth to epoch which is the number of seconds elapsed since the year 1970.

Alternatively epoch may be given as a full 1ISO time string (e.g.
"20070924T7154812").

If you suffix epoch with an exclamation mark (!), the system time will ap?
pear to be frozen at the specified time.

--enable-progress-filter

Enable certain PROGRESS status outputs. This option allows frontends to dis?

play a progress indicator while gpg is processing larger files. There is a
slight performance overhead using it.
--status-fd n
Write special status strings to the file descriptor n. See the file DETAILS
in the documentation for a listing of them.
--status-file file
Same as --status-fd, except the status data is written to file file.
--logger-fd n
Write log output to file descriptor n and not to STDERR.
--log-file file
--logger-file file
Same as --logger-fd, except the logger data is written to file file. Use
?socket://? to log to a socket. Note that in this version of gpg the option
has only an effect if --batch is also used.
--attribute-fd n
Write attribute subpackets to the file descriptor n. This is most useful for
use with --status-fd, since the status messages are needed to separate out
the various subpackets from the stream delivered to the file descriptor.
--attribute-file file
Same as --attribute-fd, except the attribute data is written to file file.
--comment string
--no-comments

Use string as a comment string in cleartext signatures and ASCIl armored

Page 55/76

messages or keys (see --armor). The default behavior is not to use a comment
string. --comment may be repeated multiple times to get multiple comment
strings. --no-comments removes all comments. It is a good idea to keep the
length of a single comment below 60 characters to avoid problems with mail
programs wrapping such lines. Note that comment lines, like all other
header lines, are not protected by the signature.

--emit-version

--no-emit-version
Force inclusion of the version string in ASCIl armored output. If given
once only the name of the program and the major number is emitted, given
twice the minor is also emitted, given thrice the micro is added, and given
four times an operating system identification is also emitted. --no-emit-
version (default) disables the version line.

--sig-notation {name=value}

--cert-notation {name=value}

-N, --set-notation {name=value}
Put the name value pair into the signature as notation data. name must con?
sist only of printable characters or spaces, and must contain a ‘@' charac?
ter in the form keyname@domain.example.com (substituting the appropriate
keyname and domain name, of course). This is to help prevent pollution of
the IETF reserved notation namespace. The --expert flag overrides the '@’
check. value may be any printable string; it will be encoded in UTF-8, so
you should check that your --display-charset is set correctly. If you prefix
name with an exclamation mark (!), the notation data will be flagged as
critical (rfc4880:5.2.3.16). --sig-notation sets a notation for data signa?
tures. --cert-notation sets a notation for key signatures (certifications).
--set-notation sets both.
There are special codes that may be used in notation names. "%k" will be ex?
panded into the key ID of the key being signed, "%K" into the long key ID of
the key being signed, "%f" into the fingerprint of the key being signed,
"%s" into the key ID of the key making the signature, "%S" into the long key
ID of the key making the signature, "%g" into the fingerprint of the key

making the signature (which might be a subkey), "%p" into the fingerprint of Page 56/76

the primary key of the key making the signature, "%c" into the signature

count from the OpenPGP smartcard, and "%%" results in a single "%". %k, %K,

and %f are only meaningful when making a key signature (certification), and
%c is only meaningful when using the OpenPGP smartcard.
--known-notation name
Adds name to a list of known critical signature notations. The effect of
this is that gpg will not mark a signature with a critical signature nota?
tion of that name as bad. Note that gpg already knows by default about a
few critical signatures notation names.
--sig-policy-url string
--cert-policy-url string
--set-policy-url string
Use string as a Policy URL for signatures (rfc4880:5.2.3.20). If you prefix
it with an exclamation mark (!), the policy URL packet will be flagged as
critical. --sig-policy-url sets a policy url for data signatures. --cert-
policy-url sets a policy url for key signatures (certifications). --set-pol?
icy-url sets both.
The same %-expandos used for notation data are available here as well.
--sig-keyserver-url string
Use string as a preferred keyserver URL for data signatures. If you prefix
it with an exclamation mark (!), the keyserver URL packet will be flagged as
critical.
The same %-expandos used for notation data are available here as well.
--set-filename string
Use string as the filename which is stored inside messages. This overrides
the default, which is to use the actual filename of the file being en?
crypted. Using the empty string for string effectively removes the filename
from the output.
--for-your-eyes-only
--no-for-your-eyes-only
Set the “for your eyes only' flag in the message. This causes GnuPG to
refuse to save the file unless the --output option is given, and PGP to use

a "secure viewer" with a claimed Tempest-resistant font to display the mes?

Page 57/76

sage. This option overrides --set-filename. --no-for-your-eyes-only dis?
ables this option.

--use-embedded-filename

--no-use-embedded-filename
Try to create a file with a name as embedded in the data. This can be a dan?
gerous option as it enables overwriting files. Defaults to no. Note that
the option --output overrides this option.

--cipher-algo name
Use name as cipher algorithm. Running the program with the command --version
yields a list of supported algorithms. If this is not used the cipher algo?
rithm is selected from the preferences stored with the key. In general, you
do not want to use this option as it allows you to violate the OpenPGP stan?
dard. --personal-cipher-preferences is the safe way to accomplish the same
thing.

--digest-algo name
Use name as the message digest algorithm. Running the program with the com?
mand --version yields a list of supported algorithms. In general, you do not
want to use this option as it allows you to violate the OpenPGP standard.
--personal-digest-preferences is the safe way to accomplish the same thing.

--compress-algo name
Use compression algorithm name. "zlib" is RFC-1950 ZLIB compression. "zip"
is RFC-1951 ZIP compression which is used by PGP. "bzip2"is a more modern
compression scheme that can compress some things better than zip or zlib,
but at the cost of more memory used during compression and decompression.
"uncompressed" or "none" disables compression. If this option is not used,
the default behavior is to examine the recipient key preferences to see
which algorithms the recipient supports. If all else fails, ZIP is used for
maximum compatibility.
ZLIB may give better compression results than ZIP, as the compression window
size is not limited to 8k. BZIP2 may give even better compression results
than that, but will use a significantly larger amount of memory while com?
pressing and decompressing. This may be significant in low memory situa?

tions. Note, however, that PGP (all versions) only supports ZIP compression. Page 58/76

Using any algorithm other than ZIP or "none" will make the message unread?
able with PGP. In general, you do not want to use this option as it allows
you to violate the OpenPGP standard. --personal-compress-preferences is the
safe way to accomplish the same thing.
--cert-digest-algo name
Use name as the message digest algorithm used when signing a key. Running
the program with the command --version yields a list of supported algo?
rithms. Be aware that if you choose an algorithm that GnuPG supports but
other OpenPGP implementations do not, then some users will not be able to
use the key signatures you make, or quite possibly your entire key.
--disable-cipher-algo name
Never allow the use of name as cipher algorithm. The given name will not be
checked so that a later loaded algorithm will still get disabled.
--disable-pubkey-algo name
Never allow the use of name as public key algorithm. The given name will
not be checked so that a later loaded algorithm will still get disabled.
--throw-keyids
--no-throw-keyids
Do not put the recipient key IDs into encrypted messages. This helps to hide
the receivers of the message and is a limited countermeasure against traffic
analysis. ([Using a little social engineering anyone who is able to decrypt
the message can check whether one of the other recipients is the one he sus?
pects.]) On the receiving side, it may slow down the decryption process be?
cause all available secret keys must be tried. --no-throw-keyids disables
this option. This option is essentially the same as using --hidden-recipient
for all recipients.
--not-dash-escaped
This option changes the behavior of cleartext signatures so that they can be
used for patch files. You should not send such an armored file via email be?
cause all spaces and line endings are hashed too. You can not use this op?
tion for data which has 5 dashes at the beginning of a line, patch files
don't have this. A special armor header line tells GhuPG about this cleart?

ext signature option. Page 59/76

--escape-from-lines

--no-escape-from-lines
Because some mailers change lines starting with "From " to ">From " it is
good to handle such lines in a special way when creating cleartext signa?
tures to prevent the mail system from breaking the signature. Note that all
other PGP versions do it this way too. Enabled by default. --no-escape-
from-lines disables this option.

--passphrase-repeat n
Specify how many times gpg will request a new passphrase be repeated. This
is useful for helping memorize a passphrase. Defaults to 1 repetition.

--passphrase-fd n
Read the passphrase from file descriptor n. Only the first line will be read
from file descriptor n. If you use 0 for n, the passphrase will be read from
STDIN. This can only be used if only one passphrase is supplied.
Note that since Version 2.0 this passphrase is only used if the option
--batch has also been given. Since Version 2.1 the --pinentry-mode also
needs to be set to loopback.

--passphrase-file file
Read the passphrase from file file. Only the first line will be read from
file file. This can only be used if only one passphrase is supplied. Obvi?
ously, a passphrase stored in a file is of questionable security if other
users can read this file. Don't use this option if you can avoid it.
Note that since Version 2.0 this passphrase is only used if the option
--batch has also been given. Since Version 2.1 the --pinentry-mode also
needs to be set to loopback.

--passphrase string
Use string as the passphrase. This can only be used if only one passphrase
is supplied. Obviously, this is of very questionable security on a multi-
user system. Don't use this option if you can avoid it.
Note that since Version 2.0 this passphrase is only used if the option
--batch has also been given. Since Version 2.1 the --pinentry-mode also

needs to be set to loopback.

--pinentry-mode mode

Page 60/76

Set the pinentry mode to mode. Allowed values for mode are:
default
Use the default of the agent, which is ask.
ask Force the use of the Pinentry.
cancel Emulate use of Pinentry's cancel button.
error Return a Pinentry error (""No Pinentry").
loopback
Redirect Pinentry queries to the caller. Note that in contrast to
Pinentry the user is not prompted again if he enters a bad password.
--no-symkey-cache
Disable the passphrase cache used for symmetrical en- and decryption. This
cache is based on the message specific salt value (cf. --s2k-mode).
--request-origin origin
Tell gpg to assume that the operation ultimately originated at origin. De?
pending on the origin certain restrictions are applied and the Pinentry may
include an extra note on the origin. Supported values for origin are: local
which is the default, remote to indicate a remote origin or browser for an
operation requested by a web browser.
--command-fd n
This is a replacement for the deprecated shared-memory IPC mode. If this
option is enabled, user input on questions is not expected from the TTY but
from the given file descriptor. It should be used together with --status-fd.
See the file doc/DETAILS in the source distribution for details on how to
use it.
--command-file file
Same as --command-fd, except the commands are read out of file file
--allow-non-selfsigned-uid
--no-allow-non-selfsigned-uid
Allow the import and use of keys with user IDs which are not self-signed.
This is not recommended, as a non self-signed user ID is trivial to forge.
--no-allow-non-selfsigned-uid disables.
--allow-freeform-uid

Disable all checks on the form of the user ID while generating a new one. Page 61/76

This option should only be used in very special environments as it does not
ensure the de-facto standard format of user IDs.

--ignore-time-conflict
GnuPG normally checks that the timestamps associated with keys and signa?
tures have plausible values. However, sometimes a signature seems to be
older than the key due to clock problems. This option makes these checks
just a warning. See also --ignore-valid-from for timestamp issues on sub?
keys.

--ignore-valid-from
GnuPG normally does not select and use subkeys created in the future. This
option allows the use of such keys and thus exhibits the pre-1.0.7 behav?
iour. You should not use this option unless there is some clock problem. See
also --ignore-time-conflict for timestamp issues with signatures.

--ignore-crc-error
The ASCIlI armor used by OpenPGP is protected by a CRC checksum against
transmission errors. Occasionally the CRC gets mangled somewhere on the
transmission channel but the actual content (which is protected by the
OpenPGP protocol anyway) is still okay. This option allows GnuPG to ignore
CRC errors.

--ignore-mdc-error
This option changes a MDC integrity protection failure into a warning. It
is required to decrypt old messages which did not use an MDC. It may also
be useful if a message is partially garbled, but it is necessary to get as
much data as possible out of that garbled message. Be aware that a missing
or failed MDC can be an indication of an attack. Use with great caution;
see also option --rfc2440.

--allow-weak-digest-algos
Signatures made with known-weak digest algorithms are normally rejected with
an “invalid digest algorithm" message. This option allows the verifica?
tion of signatures made with such weak algorithms. MD5 is the only digest
algorithm considered weak by default. See also --weak-digest to reject
other digest algorithms.

--weak-digest name Page 62/76

Treat the specified digest algorithm as weak. Signatures made over weak di?
gests algorithms are normally rejected. This option can be supplied multiple
times if multiple algorithms should be considered weak. See also --allow-
weak-digest-algos to disable rejection of weak digests. MD5 is always con?
sidered weak, and does not need to be listed explicitly.

--allow-weak-key-signatures
To avoid a minor risk of collision attacks on third-party key signatures
made using SHA-1, those key signatures are considered invalid. This options
allows to override this restriction.

--no-default-keyring
Do not add the default keyrings to the list of keyrings. Note that GnuPG
will not operate without any keyrings, so if you use this option and do not
provide alternate keyrings via --keyring or --secret-keyring, then GnuPG
will still use the default public or secret keyrings.

--no-keyring
Do not use any keyring at all. This overrides the default and all options
which specify keyrings.

--skip-verify
Skip the signature verification step. This may be used to make the decryp?
tion faster if the signature verification is not needed.

--with-key-data
Print key listings delimited by colons (like --with-colons) and print the
public key data.

--list-signatures

--list-sigs
Same as --list-keys, but the signatures are listed too. This command has
the same effect as using --list-keys with --with-sig-list. Note that in
contrast to --check-signatures the key signatures are not verified. This
command can be used to create a list of signing keys missing in the local
keyring; for example:
gpg --list-sigs --with-colons USERID |\

awk -F: '$1=="sig" && $2=="?" {if($13){print $13}else{print $5}}'

--fast-list-mode Page 63/76

Changes the output of the list commands to work faster; this is achieved by
leaving some parts empty. Some applications don't need the user ID and the
trust information given in the listings. By using this options they can get
a faster listing. The exact behaviour of this option may change in future
versions. If you are missing some information, don't use this option.

--no-literal
This is not for normal use. Use the source to see for what it might be use?
ful.

--set-filesize
This is not for normal use. Use the source to see for what it might be use?
ful.

--show-session-key
Display the session key used for one message. See --override-session-key for
the counterpart of this option.
We think that Key Escrow is a Bad Thing; however the user should have the
freedom to decide whether to go to prison or to reveal the content of one
specific message without compromising all messages ever encrypted for one
secret key.
You can also use this option if you receive an encrypted message which is
abusive or offensive, to prove to the administrators of the messaging system
that the ciphertext transmitted corresponds to an inappropriate plaintext so
they can take action against the offending user.

--override-session-key string

--override-session-key-fd fd
Don't use the public key but the session key string respective the session
key taken from the first line read from file descriptor fd. The format of
this string is the same as the one printed by --show-session-key. This op?
tion is normally not used but comes handy in case someone forces you to re?
veal the content of an encrypted message; using this option you can do this
without handing out the secret key. Note that using --override-session-key
may reveal the session key to all local users via the global process table.
Often it is useful to combine this option with --no-keyring.

--ask-sig-expire Page 64/76

--no-ask-sig-expire
When making a data signature, prompt for an expiration time. If this option
is not specified, the expiration time set via --default-sig-expire is used.
--no-ask-sig-expire disables this option.

--default-sig-expire
The default expiration time to use for signature expiration. Valid values
are "0" for no expiration, a number followed by the letter d (for days), w
(for weeks), m (for months), or y (for years) (for example "2m" for two
months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD.
Defaults to "0".

--ask-cert-expire

--no-ask-cert-expire
When making a key signature, prompt for an expiration time. If this option
is not specified, the expiration time set via --default-cert-expire is used.
--no-ask-cert-expire disables this option.

--default-cert-expire
The default expiration time to use for key signature expiration. Valid val?
ues are "0" for no expiration, a number followed by the letter d (for days),
w (for weeks), m (for months), or y (for years) (for example "2m" for two
months, or "5y" for five years), or an absolute date in the form YYYY-MM-DD.
Defaults to "0".

--default-new-key-algo string
This option can be used to change the default algorithms for key generation.
The string is similar to the arguments required for the command --quick-add-
key but slightly different. For example the current default of
"rsa2048/cert,sign+rsa2048/encr" (or "rsa3072") can be changed to the value
of what we currently call future default, which s
"ed25519/cert,sign+cv25519/encr”. You need to consult the source code to
learn the details. Note that the advanced key generation commands can al?
ways be used to specify a key algorithm directly.

--allow-secret-key-import
This is an obsolete option and is not used anywhere.

--allow-multiple-messages Page 65/76

--no-allow-multiple-messages
Allow processing of multiple OpenPGP messages contained in a single file or
stream. Some programs that call GPG are not prepared to deal with multiple
messages being processed together, so this option defaults to no. Note that
versions of GPG prior to 1.4.7 always allowed multiple messages.
Warning: Do not use this option unless you need it as a temporary work?
around!

--enable-special-filenames
This option enables a mode in which filenames of the form ?-&n?, where n is
a non-negative decimal number, refer to the file descriptor n and not to a
file with that name.

--no-expensive-trust-checks
Experimental use only.

--preserve-permissions
Don't change the permissions of a secret keyring back to user read/write
only. Use this option only if you really know what you are doing.

--default-preference-list string
Set the list of default preferences to string. This preference listis used
for new keys and becomes the default for "setpref" in the edit menu.

--default-keyserver-url name
Set the default keyserver URL to name. This keyserver will be used as the
keyserver URL when writing a new self-signature on a key, which includes key
generation and changing preferences.

--list-config
Display various internal configuration parameters of GhnuPG. This option is
intended for external programs that call GhuPG to perform tasks, and is thus
not generally useful. See the file 27doc/DETAILS? in the source distribution
for the details of which configuration items may be listed. --list-config is
only usable with --with-colons set.

--list-gcrypt-config
Display various internal configuration parameters of Libgcrypt.

--gpgconf-list

This command is similar to --list-config but in general only internally used

Page 66/76

by the gpgconf tool.

--gpgconf-test
This is more or less dummy action. However it parses the configuration file
and returns with failure if the configuration file would prevent gpg from
startup. Thus it may be used to run a syntax check on the configuration
file.

Deprecated options

--show-photos

--no-show-photos
Causes --list-keys, --list-signatures, --list-public-keys, --list-secret-
keys, and verifying a signature to also display the photo ID attached to the
key, if any. See also --photo-viewer. These options are deprecated. Use
--list-options [no-]show-photos and/or --verify-options [no-Jshow-photos in?
stead.

--show-keyring
Display the keyring name at the head of key listings to show which keyring a
given key resides on. This option is deprecated: use --list-options
[no-]show-keyring instead.

--always-trust
Identical to --trust-model always. This option is deprecated.

--show-notation

--no-show-notation
Show signature notations in the --list-signatures or --check-signatures
listings as well as when verifying a signature with a notation in it. These
options are deprecated. Use --list-options [no-]show-notation and/or --ver?
ify-options [no-]show-notation instead.

--show-policy-url

--no-show-policy-url
Show policy URLSs in the --list-signatures or --check-signatures listings as
well as when verifying a signature with a policy URL in it. These options
are deprecated. Use --list-options [no-]show-policy-url and/or --verify-op?
tions [no-]show-policy-url instead.

EXAMPLES Page 67/76

gpg -se -r Bob file
sign and encrypt for user Bob
gpg --clear-sign file
make a cleartext signature
gpg -sb file
make a detached signature
gpg -u 0x12345678 -sb file
make a detached signature with the key 0x12345678
gpg --list-keys user_ID
show keys
gpg --fingerprint user_ID
show fingerprint
gpg --verify pgpfile
gpg --verify sigfile [datafile]
Verify the signature of the file but do not output the data unless re?
quested. The second form is used for detached signatures, where sigfile is
the detached signature (either ASCII armored or binary) and datafile are the
signed data; if this is not given, the name of the file holding the signed
data is constructed by cutting off the extension (".asc" or ".sig") of sig?
file or by asking the user for the filename. If the option --output is also
used the signed data is written to the file specified by that option; use -
to write the signed data to stdout.
HOW TO SPECIFY A USER ID
There are different ways to specify a user ID to GnuPG. Some of them are only
valid for gpg others are only good for gpgsm. Here is the entire list of ways to
specify a key:
By key Id.
This format is deduced from the length of the string and its content or 0x
prefix. The key Id of an X.509 certificate are the low 64 bits of its SHA-1
fingerprint. The use of key Ids is just a shortcut, for all automated pro?
cessing the fingerprint should be used.
When using gpg an exclamation mark (!) may be appended to force using the

specified primary or secondary key and not to try and calculate which pri? Page 68/76

mary or secondary key to use.
The last four lines of the example give the key ID in their long form as in?
ternally used by the OpenPGP protocol. You can see the long key ID using the
option --with-colons.
234567C4
OF34E556E
01347A56A
0xAB123456
234AABBCC34567C4
0F323456784E56EAB
01AB3FED1347A5612
0x234AABBCC34567C4
By fingerprint.
This format is deduced from the length of the string and its content or the
Ox prefix. Note, that only the 20 byte version fingerprint is available
with gpgsm (i.e. the SHA-1 hash of the certificate).
When using gpg an exclamation mark (!) may be appended to force using the
specified primary or secondary key and not to try and calculate which pri?
mary or secondary key to use.
The best way to specify a key Id is by using the fingerprint. This avoids
any ambiguities in case that there are duplicated key IDs.
1234343434343434C434343434343434
123434343434343C3434343434343734349A3434
OE12343434343434343434EAB3484343434343434
0xE12343434343434343434EAB3484343434343434
gpgsm also accepts colons between each pair of hexadecimal digits because this is
the de-facto standard on how to present X.509 fingerprints. gpg also allows the
use of the space separated SHA-1 fingerprint as printed by the key listing com?
mands.
By exact match on OpenPGP user ID.
This is denoted by a leading equal sign. It does not make sense for X.509
certificates.

=Heinrich Heine <heinrichh@uni-duesseldorf.de> Page 69/76

By exact match on an email address.
This is indicated by enclosing the email address in the usual way with left
and right angles.
<heinrichh@uni-duesseldorf.de>
By partial match on an email address.
This is indicated by prefixing the search string with an @. This uses a
substring search but considers only the mail address (i.e. inside the angle
brackets).
@heinrichh
By exact match on the subject's DN.
This is indicated by a leading slash, directly followed by the RFC-2253 en?
coded DN of the subject. Note that you can't use the string printed by
gpgsm --list-keys because that one has been reordered and modified for bet?
ter readability; use --with-colons to print the raw (but standard escaped)
RFC-2253 string.
/CN=Heinrich Heine,O=Poets,L=Paris,C=FR
By exact match on the issuer's DN.
This is indicated by a leading hash mark, directly followed by a slash and
then directly followed by the RFC-2253 encoded DN of the issuer. This
should return the Root cert of the issuer. See note above.
#/CN=Root Cert,0=Poets,L=Paris,C=FR
By exact match on serial number and issuer's DN.
This is indicated by a hash mark, followed by the hexadecimal representation
of the serial number, then followed by a slash and the RFC-2253 encoded DN
of the issuer. See note above.
#4F03/CN=Root Cert,0=Poets,L=Paris,C=FR
By keygrip.
This is indicated by an ampersand followed by the 40 hex digits of a key?
grip. gpgsm prints the keygrip when using the command --dump-cert.
&D75F22C3F86E355877348498CDC92BD21010A480
By substring match.
This is the default mode but applications may want to explicitly indicate

this by putting the asterisk in front. Match is not case sensitive. Page 70/76

Heine
*Heine
. and + prefixes
These prefixes are reserved for looking up mails anchored at the end and for
a word search mode. They are not yet implemented and using them is unde?
fined.
Please note that we have reused the hash mark identifier which was used in
old GnuPG versions to indicate the so called local-id. It is not anymore
used and there should be no conflict when used with X.509 stuff.
Using the RFC-2253 format of DNs has the drawback that it is not possible to
map them back to the original encoding, however we don't have to do this be?
cause our key database stores this encoding as meta data.
FILTER EXPRESSIONS
The options --import-filter and --export-filter use expressions with this syntax
(square brackets indicate an optional part and curly braces a repetition, white
space between the elements are allowed):
[lc] {[{flag}] PROPNAME op VALUE [Ic]}
The name of a property (PROPNAME) may only consist of letters, digits and under?
scores. The description for the filter type describes which properties are de?
fined. If an undefined property is used it evaluates to the empty string. Unless
otherwise noted, the VALUE must always be given and may not be the empty string.
No quoting is defined for the value, thus the value may not contain the strings &&
or ||, which are used as logical connection operators. The flag -- can be used to
remove this restriction.
Numerical values are computed as long int; standard C notation applies. Ic is the
logical connection operator; either && for a conjunction or || for a disjunction.
A conjunction is assumed at the begin of an expression. Conjunctions have higher
precedence than disjunctions. If VALUE starts with one of the characters used in
any op a space after the op is required.
The supported operators (op) are:
=~ Substring must match.
I~ Substring must not match.

= The full string must match. Page 71/76

<> The full string must not match.
== The numerical value must match.
= The numerical value must not match.
<= The numerical value of the field must be LE than the value.
< The numerical value of the field must be LT than the value.
> The numerical value of the field must be GT than the value.
>= The numerical value of the field must be GE than the value.
-le The string value of the field must be less or equal than the value.
-It The string value of the field must be less than the value.
-gt The string value of the field must be greater than the value.
-ge The string value of the field must be greater or equal than the value.
-n True if value is not empty (no value allowed).
-z True if value is empty (no value allowed).
-t Alias for "PROPNAME != 0" (no value allowed).
-f Alias for "PROPNAME == 0" (no value allowed).
Values for flag must be space separated. The supported flags are:
-- VALUE spans to the end of the expression.
-c The string match in this part is done case-sensitive.
The filter options concatenate several specifications for a filter of the same
type. For example the four options in this example:
--import-filter keep-uid="uid =~ Alfa"
--import-filter keep-uid="&& uid !~ Test"
--import-filter keep-uid="|| uid =~ Alpha"
--import-filter keep-uid="uid !~ Test"
which is equivalent to
--import-filter \
keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"
imports only the user ids of a key containing the strings "Alfa" or "Alpha" but not
the string "test".
TRUST VALUES
Trust values are used to indicate ownertrust and validity of keys and user IDs.

They are displayed with letters or strings:

- Page 72/76

unknown

No ownertrust assigned / not yet calculated.

e
expired

Trust calculation has failed; probably due to an expired key.
q

undefined, undef
Not enough information for calculation.

n

never Never trust this key.

m

marginal
Marginally trusted.

f

full Fully trusted.

u

ultimate
Ultimately trusted.

r

revoked
For validity only: the key or the user ID has been revoked.

?

err The program encountered an unknown trust value.

FILES

There are a few configuration files to control certain aspects of gpg's operation.

Unless noted, they are expected in the current home directory (see: [option --home?

dir]).

gpg.conf
This is the standard configuration file read by gpg on startup. It may con?
tain any valid long option; the leading two dashes may not be entered and
the option may not be abbreviated. This default name may be changed on the
command line (see: [gpg-option --options]). You should backup this file.

Note that on larger installations, it is useful to put predefined files into the Page 73/76

directory ?/etc/skel/.gnupg? so that newly created users start up with a working
configuration. For existing users a small helper script is provided to create
these files (see: [addgnupghome]).
For internal purposes gpg creates and maintains a few other files; They all live in
the current home directory (see: [option --homedir]). Only the gpg program may
modify these files.
~/.gnupg
This is the default home directory which is used if neither the environment
variable GNUPGHOME nor the option --homedir is given.
~/.gnupg/pubring.gpg
The public keyring. You should backup this file.
~/.gnupg/pubring.gpg.lock
The lock file for the public keyring.
~/.gnupg/pubring.kbx
The public keyring using a different format. This file is shared with
gpgsm. You should backup this file.
~/.gnupg/pubring.kbx.lock
The lock file for ?pubring.kbx?.
~/.gnupg/secring.gpg
A secret keyring as used by GnuPG versions before 2.1. Itis not used by
GnuPG 2.1 and later.
~/.gnupg/secring.gpg.lock
The lock file for the secret keyring.
~/.gnupg/.gpg-v21-migrated
File indicating that a migration to GnuPG 2.1 has been done.
~/.gnupg/trustdb.gpg
The trust database. There is no need to backup this file; it is better to
backup the ownertrust values (see: [option --export-ownertrust]).
~/.gnupg/trustdb.gpg.lock
The lock file for the trust database.
~/.gnupg/random_seed
A file used to preserve the state of the internal random pool.

~/.gnupg/openpgp-revocs.d/ Page 74/76

This is the directory where gpg stores pre-generated revocation certifi?
cates. The file name corresponds to the OpenPGP fingerprint of the respec?
tive key. It is suggested to backup those certificates and if the primary
private key is not stored on the disk to move them to an external storage
device. Anyone who can access theses files is able to revoke the corre?
sponding key. You may want to print them out. You should backup all files
in this directory and take care to keep this backup closed away.

Operation is further controlled by a few environment variables:

HOME Used to locate the default home directory.

GNUPGHOME
If set directory used instead of "~/.gnupg".

GPG_AGENT_INFO
This variable is obsolete; it was used by GnuPG versions before 2.1.

PINENTRY_USER_DATA
This value is passed via gpg-agent to pinentry. It is useful to convey ex?
tra information to a custom pinentry.

COLUMNS

LINES Used to size some displays to the full size of the screen.

LANGUAGE
Apart from its use by GNU, itis used in the W32 version to override the
language selection done through the Registry. If used and set to a valid
and available language name (langid), the file with the translation is
loaded from gpgdir/gnupg.nis/langid.mo. Here gpgdir is the directory out of
which the gpg binary has been loaded. If it can't be loaded the Registry is
tried and as last resort the native Windows locale system is used.

When calling the gpg-agent component gpg sends a set of environment variables to

gpg-agent. The names of these variables can be listed using the command:

gpg-connect-agent 'getinfo std_env_names' /bye | awk '$1=="D" {print $2}'
BUGS

On older systems this program should be installed as setuid(root). This is neces?

sary to lock memory pages. Locking memory pages prevents the operating system from

writing memory pages (which may contain passphrases or other sensitive material) to

disk. If you get no warning message about insecure memory your operating system Page 75/76

supports locking without being root. The program drops root privileges as soon as
locked memory is allocated.
Note also that some systems (especially laptops) have the ability to ““suspend to
disk" (also known as "“safe sleep" or “hibernate"). This writes all memory to
disk before going into a low power or even powered off mode. Unless measures are
taken in the operating system to protect the saved memory, passphrases or other
sensitive material may be recoverable from it later.
Before you report a bug you should first search the mailing list archives for simi?
lar problems and second check whether such a bug has already been reported to our
bug tracker at https://bugs.gnupg.org.

SEE ALSO
gpgv(1), gpgsm(1), gpg-agent(1)
The full documentation for this tool is maintained as a Texinfo manual. If GnuPG
and the info program are properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an in?
dex.

GnuPG 2.2.19 2019-11-23 GPG(1)

Page 76/76

