
Rocky Enterprise Linux 9.2 Manual Pages on command 'gpgsm.1'

$ man gpgsm.1

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

NAME

 gpgsm - CMS encryption and signing tool

SYNOPSIS

 gpgsm [--homedir dir] [--options file] [options] command [args]

DESCRIPTION

 gpgsm is a tool similar to gpg to provide digital encryption and signing services on X.509

 certificates and the CMS protocol. It is mainly used as a backend for S/MIME mail pro?

 cessing. gpgsm includes a full featured certificate management and complies with all

 rules defined for the German Sphinx project.

COMMANDS

 Commands are not distinguished from options except for the fact that only one command is

 allowed.

 Commands not specific to the function

 --version

 Print the program version and licensing information. Note that you cannot abbrevi?

 ate this command.

 --help, -h

 Print a usage message summarizing the most useful command-line options. Note that

 you cannot abbreviate this command.

 --warranty

 Print warranty information. Note that you cannot abbreviate this command.

 --dump-options Page 1/18

 Print a list of all available options and commands. Note that you cannot abbrevi?

 ate this command.

 Commands to select the type of operation

 --encrypt

 Perform an encryption. The keys the data is encrypted to must be set using the op?

 tion --recipient.

 --decrypt

 Perform a decryption; the type of input is automatically determined. It may either

 be in binary form or PEM encoded; automatic determination of base-64 encoding is

 not done.

 --sign Create a digital signature. The key used is either the fist one found in the key?

 box or those set with the --local-user option.

 --verify

 Check a signature file for validity. Depending on the arguments a detached signa?

 ture may also be checked.

 --server

 Run in server mode and wait for commands on the stdin.

 --call-dirmngr command [args]

 Behave as a Dirmngr client issuing the request command with the optional list of

 args. The output of the Dirmngr is printed stdout. Please note that file names

 given as arguments should have an absolute file name (i.e. commencing with /) be?

 cause they are passed verbatim to the Dirmngr and the working directory of the

 Dirmngr might not be the same as the one of this client. Currently it is not pos?

 sible to pass data via stdin to the Dirmngr. command should not contain spaces.

 This is command is required for certain maintaining tasks of the dirmngr where a

 dirmngr must be able to call back to gpgsm. See the Dirmngr manual for details.

 --call-protect-tool arguments

 Certain maintenance operations are done by an external program call gpg-protect-

 tool; this is usually not installed in a directory listed in the PATH variable.

 This command provides a simple wrapper to access this tool. arguments are passed

 verbatim to this command; use ?--help? to get a list of supported operations.

 How to manage the certificates and keys

 --generate-key Page 2/18

 --gen-key

 This command allows the creation of a certificate signing request or a self-signed

 certificate. It is commonly used along with the --output option to save the cre?

 ated CSR or certificate into a file. If used with the --batch a parameter file is

 used to create the CSR or certificate and it is further possible to create non-

 self-signed certificates.

 --list-keys

 -k List all available certificates stored in the local key database. Note that the

 displayed data might be reformatted for better human readability and illegal char?

 acters are replaced by safe substitutes.

 --list-secret-keys

 -K List all available certificates for which a corresponding a secret key is avail?

 able.

 --list-external-keys pattern

 List certificates matching pattern using an external server. This utilizes the

 dirmngr service.

 --list-chain

 Same as --list-keys but also prints all keys making up the chain.

 --dump-cert

 --dump-keys

 List all available certificates stored in the local key database using a format

 useful mainly for debugging.

 --dump-chain

 Same as --dump-keys but also prints all keys making up the chain.

 --dump-secret-keys

 List all available certificates for which a corresponding a secret key is available

 using a format useful mainly for debugging.

 --dump-external-keys pattern

 List certificates matching pattern using an external server. This utilizes the

 dirmngr service. It uses a format useful mainly for debugging.

 --keydb-clear-some-cert-flags

 This is a debugging aid to reset certain flags in the key database which are used

 to cache certain certificate stati. It is especially useful if a bad CRL or a Page 3/18

 weird running OCSP responder did accidentally revoke certificate. There is no se?

 curity issue with this command because gpgsm always make sure that the validity of

 a certificate is checked right before it is used.

 --delete-keys pattern

 Delete the keys matching pattern. Note that there is no command to delete the se?

 cret part of the key directly. In case you need to do this, you should run the

 command gpgsm --dump-secret-keys KEYID before you delete the key, copy the string

 of hex-digits in the ``keygrip'' line and delete the file consisting of these hex-

 digits and the suffix .key from the ?private-keys-v1.d? directory below our GnuPG

 home directory (usually ?~/.gnupg?).

 --export [pattern]

 Export all certificates stored in the Keybox or those specified by the optional

 pattern. Those pattern consist of a list of user ids (see: [how-to-specify-a-user-

 id]). When used along with the --armor option a few informational lines are

 prepended before each block. There is one limitation: As there is no commonly

 agreed upon way to pack more than one certificate into an ASN.1 structure, the bi?

 nary export (i.e. without using armor) works only for the export of one certifi?

 cate. Thus it is required to specify a pattern which yields exactly one certifi?

 cate. Ephemeral certificate are only exported if all pattern are given as finger?

 prints or keygrips.

 --export-secret-key-p12 key-id

 Export the private key and the certificate identified by key-id using the PKCS#12

 format. When used with the --armor option a few informational lines are prepended

 to the output. Note, that the PKCS#12 format is not very secure and proper trans?

 port security should be used to convey the exported key. (See: [option

 --p12-charset].)

 --export-secret-key-p8 key-id

 --export-secret-key-raw key-id

 Export the private key of the certificate identified by key-id with any encryption

 stripped. The ...-raw command exports in PKCS#1 format; the ...-p8 command exports

 in PKCS#8 format. When used with the --armor option a few informational lines are

 prepended to the output. These commands are useful to prepare a key for use on a

 TLS server. Page 4/18

 --import [files]

 Import the certificates from the PEM or binary encoded files as well as from

 signed-only messages. This command may also be used to import a secret key from a

 PKCS#12 file.

 --learn-card

 Read information about the private keys from the smartcard and import the certifi?

 cates from there. This command utilizes the gpg-agent and in turn the scdaemon.

 --change-passphrase user_id

 --passwd user_id

 Change the passphrase of the private key belonging to the certificate specified as

 user_id. Note, that changing the passphrase/PIN of a smartcard is not yet sup?

 ported.

OPTIONS

 GPGSM features a bunch of options to control the exact behaviour and to change the default

 configuration.

 How to change the configuration

 These options are used to change the configuration and are usually found in the option

 file.

 --options file

 Reads configuration from file instead of from the default per-user configuration

 file. The default configuration file is named ?gpgsm.conf? and expected in the

 ?.gnupg? directory directly below the home directory of the user.

 --homedir dir

 Set the name of the home directory to dir. If this option is not used, the home di?

 rectory defaults to ?~/.gnupg?. It is only recognized when given on the command

 line. It also overrides any home directory stated through the environment variable

 ?GNUPGHOME? or (on Windows systems) by means of the Registry entry HKCU\Soft?

 ware\GNU\GnuPG:HomeDir.

 On Windows systems it is possible to install GnuPG as a portable application. In

 this case only this command line option is considered, all other ways to set a home

 directory are ignored.

 To install GnuPG as a portable application under Windows, create an empty file

 named ?gpgconf.ctl? in the same directory as the tool ?gpgconf.exe?. The root of Page 5/18

 the installation is then that directory; or, if ?gpgconf.exe? has been installed

 directly below a directory named ?bin?, its parent directory. You also need to

 make sure that the following directories exist and are writable: ?ROOT/home? for

 the GnuPG home and ?ROOT/var/cache/gnupg? for internal cache files.

 -v

 --verbose

 Outputs additional information while running. You can increase the verbosity by

 giving several verbose commands to gpgsm, such as ?-vv?.

 --policy-file filename

 Change the default name of the policy file to filename.

 --agent-program file

 Specify an agent program to be used for secret key operations. The default value

 is determined by running the command gpgconf. Note that the pipe symbol (|) is

 used for a regression test suite hack and may thus not be used in the file name.

 --dirmngr-program file

 Specify a dirmngr program to be used for CRL checks. The default value is

 ?/usr/bin/dirmngr?.

 --prefer-system-dirmngr

 This option is obsolete and ignored.

 --disable-dirmngr

 Entirely disable the use of the Dirmngr.

 --no-autostart

 Do not start the gpg-agent or the dirmngr if it has not yet been started and its

 service is required. This option is mostly useful on machines where the connection

 to gpg-agent has been redirected to another machines. If dirmngr is required on

 the remote machine, it may be started manually using gpgconf --launch dirmngr.

 --no-secmem-warning

 Do not print a warning when the so called "secure memory" cannot be used.

 --log-file file

 When running in server mode, append all logging output to file. Use ?socket://? to

 log to socket.

 Certificate related options

 --enable-policy-checks Page 6/18

 --disable-policy-checks

 By default policy checks are enabled. These options may be used to change it.

 --enable-crl-checks

 --disable-crl-checks

 By default the CRL checks are enabled and the DirMngr is used to check for revoked

 certificates. The disable option is most useful with an off-line network connec?

 tion to suppress this check and also to avoid that new certificates introduce a web

 bug by including a certificate specific CRL DP. The disable option also disables

 an issuer certificate lookup via the authorityInfoAccess property of the certifi?

 cate; the --enable-issuer-key-retrieve can be used to make use of that property

 anyway.

 --enable-trusted-cert-crl-check

 --disable-trusted-cert-crl-check

 By default the CRL for trusted root certificates are checked like for any other

 certificates. This allows a CA to revoke its own certificates voluntary without

 the need of putting all ever issued certificates into a CRL. The disable option

 may be used to switch this extra check off. Due to the caching done by the Dirm?

 ngr, there will not be any noticeable performance gain. Note, that this also dis?

 ables possible OCSP checks for trusted root certificates. A more specific way of

 disabling this check is by adding the ``relax'' keyword to the root CA line of the

 ?trustlist.txt?

 --force-crl-refresh

 Tell the dirmngr to reload the CRL for each request. For better performance, the

 dirmngr will actually optimize this by suppressing the loading for short time in?

 tervals (e.g. 30 minutes). This option is useful to make sure that a fresh CRL is

 available for certificates hold in the keybox. The suggested way of doing this is

 by using it along with the option --with-validation for a key listing command.

 This option should not be used in a configuration file.

 --enable-issuer-based-crl-check

 Run a CRL check even for certificates which do not have any CRL distribution point.

 This requires that a suitable LDAP server has been configured in Dirmngr and that

 the CRL can be found using the issuer. This option reverts to what GnuPG did up to

 version 2.2.20. This option is in general not useful. Page 7/18

 --enable-ocsp

 --disable-ocsp

 By default OCSP checks are disabled. The enable option may be used to enable OCSP

 checks via Dirmngr. If CRL checks are also enabled, CRLs will be used as a fall?

 back if for some reason an OCSP request will not succeed. Note, that you have to

 allow OCSP requests in Dirmngr's configuration too (option --allow-ocsp) and con?

 figure Dirmngr properly. If you do not do so you will get the error code ?Not sup?

 ported?.

 --auto-issuer-key-retrieve

 If a required certificate is missing while validating the chain of certificates,

 try to load that certificate from an external location. This usually means that

 Dirmngr is employed to search for the certificate. Note that this option makes a

 "web bug" like behavior possible. LDAP server operators can see which keys you re?

 quest, so by sending you a message signed by a brand new key (which you naturally

 will not have on your local keybox), the operator can tell both your IP address and

 the time when you verified the signature.

 --validation-model name

 This option changes the default validation model. The only possible values are

 "shell" (which is the default), "chain" which forces the use of the chain model and

 "steed" for a new simplified model. The chain model is also used if an option in

 the ?trustlist.txt? or an attribute of the certificate requests it. However the

 standard model (shell) is in that case always tried first.

 --ignore-cert-extension oid

 Add oid to the list of ignored certificate extensions. The oid is expected to be

 in dotted decimal form, like 2.5.29.3. This option may be used more than once.

 Critical flagged certificate extensions matching one of the OIDs in the list are

 treated as if they are actually handled and thus the certificate will not be re?

 jected due to an unknown critical extension. Use this option with care because ex?

 tensions are usually flagged as critical for a reason.

 Input and Output

 --armor

 -a Create PEM encoded output. Default is binary output.

 --base64 Page 8/18

 Create Base-64 encoded output; i.e. PEM without the header lines.

 --assume-armor

 Assume the input data is PEM encoded. Default is to autodetect the encoding but

 this is may fail.

 --assume-base64

 Assume the input data is plain base-64 encoded.

 --assume-binary

 Assume the input data is binary encoded.

 --p12-charset name

 gpgsm uses the UTF-8 encoding when encoding passphrases for PKCS#12 files. This

 option may be used to force the passphrase to be encoded in the specified encoding

 name. This is useful if the application used to import the key uses a different

 encoding and thus will not be able to import a file generated by gpgsm. Commonly

 used values for name are Latin1 and CP850. Note that gpgsm itself automagically

 imports any file with a passphrase encoded to the most commonly used encodings.

 --default-key user_id

 Use user_id as the standard key for signing. This key is used if no other key has

 been defined as a signing key. Note, that the first --local-users option also sets

 this key if it has not yet been set; however --default-key always overrides this.

 --local-user user_id

 -u user_id

 Set the user(s) to be used for signing. The default is the first secret key found

 in the database.

 --recipient name

 -r Encrypt to the user id name. There are several ways a user id may be given (see:

 [how-to-specify-a-user-id]).

 --output file

 -o file

 Write output to file. The default is to write it to stdout.

 --with-key-data

 Displays extra information with the --list-keys commands. Especially a line tagged

 grp is printed which tells you the keygrip of a key. This string is for example

 used as the file name of the secret key. Implies --with-colons. Page 9/18

 --with-validation

 When doing a key listing, do a full validation check for each key and print the re?

 sult. This is usually a slow operation because it requires a CRL lookup and other

 operations.

 When used along with --import, a validation of the certificate to import is done

 and only imported if it succeeds the test. Note that this does not affect an al?

 ready available certificate in the DB. This option is therefore useful to simply

 verify a certificate.

 --with-md5-fingerprint

 For standard key listings, also print the MD5 fingerprint of the certificate.

 --with-keygrip

 Include the keygrip in standard key listings. Note that the keygrip is always

 listed in --with-colons mode.

 --with-secret

 Include info about the presence of a secret key in public key listings done with

 --with-colons.

 How to change how the CMS is created

 --include-certs n

 Using n of -2 includes all certificate except for the root cert, -1 includes all

 certs, 0 does not include any certs, 1 includes only the signers cert and all other

 positive values include up to n certificates starting with the signer cert. The

 default is -2.

 --cipher-algo oid

 Use the cipher algorithm with the ASN.1 object identifier oid for encryption. For

 convenience the strings 3DES, AES and AES256 may be used instead of their OIDs.

 The default is AES (2.16.840.1.101.3.4.1.2).

 --digest-algo name

 Use name as the message digest algorithm. Usually this algorithm is deduced from

 the respective signing certificate. This option forces the use of the given algo?

 rithm and may lead to severe interoperability problems.

 Doing things one usually do not want to do

 --extra-digest-algo name

 Sometimes signatures are broken in that they announce a different digest algorithm Page 10/18

 than actually used. gpgsm uses a one-pass data processing model and thus needs to

 rely on the announced digest algorithms to properly hash the data. As a workaround

 this option may be used to tell gpgsm to also hash the data using the algorithm

 name; this slows processing down a little bit but allows verification of such bro?

 ken signatures. If gpgsm prints an error like ``digest algo 8 has not been en?

 abled'' you may want to try this option, with ?SHA256? for name.

 --faked-system-time epoch

 This option is only useful for testing; it sets the system time back or forth to

 epoch which is the number of seconds elapsed since the year 1970. Alternatively

 epoch may be given as a full ISO time string (e.g. "20070924T154812").

 --with-ephemeral-keys

 Include ephemeral flagged keys in the output of key listings. Note that they are

 included anyway if the key specification for a listing is given as fingerprint or

 keygrip.

 --debug-level level

 Select the debug level for investigating problems. level may be a numeric value or

 by a keyword:

 none No debugging at all. A value of less than 1 may be used instead of the key?

 word.

 basic Some basic debug messages. A value between 1 and 2 may be used instead of

 the keyword.

 advanced

 More verbose debug messages. A value between 3 and 5 may be used instead of

 the keyword.

 expert Even more detailed messages. A value between 6 and 8 may be used instead of

 the keyword.

 guru All of the debug messages you can get. A value greater than 8 may be used

 instead of the keyword. The creation of hash tracing files is only enabled

 if the keyword is used.

 How these messages are mapped to the actual debugging flags is not specified and may

 change with newer releases of this program. They are however carefully selected to best

 aid in debugging.

 --debug flags Page 11/18

 This option is only useful for debugging and the behaviour may change at any time

 without notice; using --debug-levels is the preferred method to select the debug

 verbosity. FLAGS are bit encoded and may be given in usual C-Syntax. The currently

 defined bits are:

 0 (1) X.509 or OpenPGP protocol related data

 1 (2) values of big number integers

 2 (4) low level crypto operations

 5 (32) memory allocation

 6 (64) caching

 7 (128)

 show memory statistics

 9 (512)

 write hashed data to files named dbgmd-000*

 10 (1024)

 trace Assuan protocol

 Note, that all flags set using this option may get overridden by --debug-level.

 --debug-all

 Same as --debug=0xffffffff

 --debug-allow-core-dump

 Usually gpgsm tries to avoid dumping core by well written code and by disabling

 core dumps for security reasons. However, bugs are pretty durable beasts and to

 squash them it is sometimes useful to have a core dump. This option enables core

 dumps unless the Bad Thing happened before the option parsing.

 --debug-no-chain-validation

 This is actually not a debugging option but only useful as such. It lets gpgsm by?

 pass all certificate chain validation checks.

 --debug-ignore-expiration

 This is actually not a debugging option but only useful as such. It lets gpgsm ig?

 nore all notAfter dates, this is used by the regression tests.

 --passphrase-fd n

 Read the passphrase from file descriptor n. Only the first line will be read from

 file descriptor n. If you use 0 for n, the passphrase will be read from STDIN. This

 can only be used if only one passphrase is supplied. Page 12/18

 Note that this passphrase is only used if the option --batch has also been given.

 --pinentry-mode mode

 Set the pinentry mode to mode. Allowed values for mode are:

 default

 Use the default of the agent, which is ask.

 ask Force the use of the Pinentry.

 cancel Emulate use of Pinentry's cancel button.

 error Return a Pinentry error (``No Pinentry'').

 loopback

 Redirect Pinentry queries to the caller. Note that in contrast to Pinentry

 the user is not prompted again if he enters a bad password.

 --request-origin origin

 Tell gpgsm to assume that the operation ultimately originated at origin. Depending

 on the origin certain restrictions are applied and the Pinentry may include an ex?

 tra note on the origin. Supported values for origin are: local which is the de?

 fault, remote to indicate a remote origin or browser for an operation requested by

 a web browser.

 --no-common-certs-import

 Suppress the import of common certificates on keybox creation.

 All the long options may also be given in the configuration file after stripping off the

 two leading dashes.

HOW TO SPECIFY A USER ID

 There are different ways to specify a user ID to GnuPG. Some of them are only valid for

 gpg others are only good for gpgsm. Here is the entire list of ways to specify a key:

 By key Id.

 This format is deduced from the length of the string and its content or 0x prefix.

 The key Id of an X.509 certificate are the low 64 bits of its SHA-1 fingerprint.

 The use of key Ids is just a shortcut, for all automated processing the fingerprint

 should be used.

 When using gpg an exclamation mark (!) may be appended to force using the specified

 primary or secondary key and not to try and calculate which primary or secondary

 key to use.

 The last four lines of the example give the key ID in their long form as internally Page 13/18

 used by the OpenPGP protocol. You can see the long key ID using the option --with-

 colons.

 234567C4

 0F34E556E

 01347A56A

 0xAB123456

 234AABBCC34567C4

 0F323456784E56EAB

 01AB3FED1347A5612

 0x234AABBCC34567C4

 By fingerprint.

 This format is deduced from the length of the string and its content or the 0x pre?

 fix. Note, that only the 20 byte version fingerprint is available with gpgsm (i.e.

 the SHA-1 hash of the certificate).

 When using gpg an exclamation mark (!) may be appended to force using the specified

 primary or secondary key and not to try and calculate which primary or secondary

 key to use.

 The best way to specify a key Id is by using the fingerprint. This avoids any am?

 biguities in case that there are duplicated key IDs.

 1234343434343434C434343434343434

 123434343434343C3434343434343734349A3434

 0E12343434343434343434EAB3484343434343434

 0xE12343434343434343434EAB3484343434343434

 gpgsm also accepts colons between each pair of hexadecimal digits because this is the de-

 facto standard on how to present X.509 fingerprints. gpg also allows the use of the space

 separated SHA-1 fingerprint as printed by the key listing commands.

 By exact match on OpenPGP user ID.

 This is denoted by a leading equal sign. It does not make sense for X.509 certifi?

 cates.

 =Heinrich Heine <heinrichh@uni-duesseldorf.de>

 By exact match on an email address.

 This is indicated by enclosing the email address in the usual way with left and

 right angles. Page 14/18

 <heinrichh@uni-duesseldorf.de>

 By partial match on an email address.

 This is indicated by prefixing the search string with an @. This uses a substring

 search but considers only the mail address (i.e. inside the angle brackets).

 @heinrichh

 By exact match on the subject's DN.

 This is indicated by a leading slash, directly followed by the RFC-2253 encoded DN

 of the subject. Note that you can't use the string printed by gpgsm --list-keys

 because that one has been reordered and modified for better readability; use

 --with-colons to print the raw (but standard escaped) RFC-2253 string.

 /CN=Heinrich Heine,O=Poets,L=Paris,C=FR

 By exact match on the issuer's DN.

 This is indicated by a leading hash mark, directly followed by a slash and then di?

 rectly followed by the RFC-2253 encoded DN of the issuer. This should return the

 Root cert of the issuer. See note above.

 #/CN=Root Cert,O=Poets,L=Paris,C=FR

 By exact match on serial number and issuer's DN.

 This is indicated by a hash mark, followed by the hexadecimal representation of the

 serial number, then followed by a slash and the RFC-2253 encoded DN of the issuer.

 See note above.

 #4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

 By keygrip.

 This is indicated by an ampersand followed by the 40 hex digits of a keygrip.

 gpgsm prints the keygrip when using the command --dump-cert.

 &D75F22C3F86E355877348498CDC92BD21010A480

 By substring match.

 This is the default mode but applications may want to explicitly indicate this by

 putting the asterisk in front. Match is not case sensitive.

 Heine

 *Heine

 . and + prefixes

 These prefixes are reserved for looking up mails anchored at the end and for a word

 search mode. They are not yet implemented and using them is undefined. Page 15/18

 Please note that we have reused the hash mark identifier which was used in old

 GnuPG versions to indicate the so called local-id. It is not anymore used and

 there should be no conflict when used with X.509 stuff.

 Using the RFC-2253 format of DNs has the drawback that it is not possible to map

 them back to the original encoding, however we don't have to do this because our

 key database stores this encoding as meta data.

EXAMPLES

 $ gpgsm -er goo@bar.net <plaintext >ciphertext

FILES

 There are a few configuration files to control certain aspects of gpgsm's operation. Un?

 less noted, they are expected in the current home directory (see: [option --homedir]).

 gpgsm.conf

 This is the standard configuration file read by gpgsm on startup. It may contain

 any valid long option; the leading two dashes may not be entered and the option may

 not be abbreviated. This default name may be changed on the command line (see:

 [gpgsm-option --options]). You should backup this file.

 policies.txt

 This is a list of allowed CA policies. This file should list the object identi?

 fiers of the policies line by line. Empty lines and lines starting with a hash

 mark are ignored. Policies missing in this file and not marked as critical in the

 certificate will print only a warning; certificates with policies marked as criti?

 cal and not listed in this file will fail the signature verification. You should

 backup this file.

 For example, to allow only the policy 2.289.9.9, the file should look like this:

 # Allowed policies

 2.289.9.9

 qualified.txt

 This is the list of root certificates used for qualified certificates. They are

 defined as certificates capable of creating legally binding signatures in the same

 way as handwritten signatures are. Comments start with a hash mark and empty lines

 are ignored. Lines do have a length limit but this is not a serious limitation as

 the format of the entries is fixed and checked by gpgsm: A non-comment line starts

 with optional whitespace, followed by exactly 40 hex characters, white space and a Page 16/18

 lowercased 2 letter country code. Additional data delimited with by a white space

 is current ignored but might late be used for other purposes.

 Note that even if a certificate is listed in this file, this does not mean that the

 certificate is trusted; in general the certificates listed in this file need to be

 listed also in ?trustlist.txt?.

 This is a global file an installed in the data directory (e.g.

 ?/usr/share/gnupg/qualified.txt?). GnuPG installs a suitable file with root cer?

 tificates as used in Germany. As new Root-CA certificates may be issued over time,

 these entries may need to be updated; new distributions of this software should

 come with an updated list but it is still the responsibility of the Administrator

 to check that this list is correct.

 Every time gpgsm uses a certificate for signing or verification this file will be

 consulted to check whether the certificate under question has ultimately been is?

 sued by one of these CAs. If this is the case the user will be informed that the

 verified signature represents a legally binding (``qualified'') signature. When

 creating a signature using such a certificate an extra prompt will be issued to let

 the user confirm that such a legally binding signature shall really be created.

 Because this software has not yet been approved for use with such certificates, ap?

 propriate notices will be shown to indicate this fact.

 help.txt

 This is plain text file with a few help entries used with pinentry as well as a

 large list of help items for gpg and gpgsm. The standard file has English help

 texts; to install localized versions use filenames like ?help.LL.txt? with LL de?

 noting the locale. GnuPG comes with a set of predefined help files in the data di?

 rectory (e.g. ?/usr/share/gnupg/gnupg/help.de.txt?) and allows overriding of any

 help item by help files stored in the system configuration directory (e.g.

 ?/etc/gnupg/help.de.txt?). For a reference of the help file's syntax, please see

 the installed ?help.txt? file.

 com-certs.pem

 This file is a collection of common certificates used to populated a newly created

 ?pubring.kbx?. An administrator may replace this file with a custom one. The for?

 mat is a concatenation of PEM encoded X.509 certificates. This global file is in?

 stalled in the data directory (e.g. ?/usr/share/gnupg/com-certs.pem?). Page 17/18

 Note that on larger installations, it is useful to put predefined files into the directory

 ?/etc/skel/.gnupg/? so that newly created users start up with a working configuration.

 For existing users a small helper script is provided to create these files (see: [ad?

 dgnupghome]).

 For internal purposes gpgsm creates and maintains a few other files; they all live in the

 current home directory (see: [option --homedir]). Only gpgsm may modify these files.

 pubring.kbx

 This a database file storing the certificates as well as meta information. For de?

 bugging purposes the tool kbxutil may be used to show the internal structure of

 this file. You should backup this file.

 random_seed

 This content of this file is used to maintain the internal state of the random num?

 ber generator across invocations. The same file is used by other programs of this

 software too.

 S.gpg-agent

 If this file exists gpgsm will first try to connect to this socket for accessing

 gpg-agent before starting a new gpg-agent instance. Under Windows this socket

 (which in reality be a plain file describing a regular TCP listening port) is the

 standard way of connecting the gpg-agent.

SEE ALSO

 gpg2(1), gpg-agent(1)

 The full documentation for this tool is maintained as a Texinfo manual. If GnuPG and the

 info program are properly installed at your site, the command

 info gnupg

 should give you access to the complete manual including a menu structure and an index.

GnuPG 2.2.27 2020-12-21 GPGSM(1)

Page 18/18

