
Rocky Enterprise Linux 9.2 Manual Pages on command 'gst-launch-1.0.1'

$ man gst-launch-1.0.1

GStreamer(1) General Commands Manual GStreamer(1)

NAME

 gst-launch-1.0 - build and run a GStreamer pipeline

SYNOPSIS

 gst-launch-1.0 [OPTION...] PIPELINE-DESCRIPTION

DESCRIPTION

 gst-launch-1.0 is a tool that builds and runs basic GStreamer pipelines.

 In simple form, a PIPELINE-DESCRIPTION is a list of elements separated by exclamation

 marks (!). Properties may be appended to elements, in the form property=value. A "preset"

 can also be set using the @preset=<preset name> syntax.

 For a complete description of possible PIPELINE-DESCRIPTIONS see the section pipeline de?

 scription below or consult the GStreamer documentation.

 Please note that gst-launch-1.0 is primarily a debugging tool for developers and users.

 You should not build applications on top of it. For applications, use the

 gst_parse_launch() function of the GStreamer API as an easy way to construct pipelines

 from pipeline descriptions.

OPTIONS

 gst-launch-1.0 accepts the following options:

 --help Print help synopsis and available FLAGS

 -v, --verbose

 Output status information and property notifications

 -q, --quiet

 Do not print any progress information Page 1/11

 -m, --messages

 Output messages posted on the pipeline's bus

 -t, --tags

 Output tags (also known as metadata)

 -e, --eos-on-shutdown

 Force an EOS event on sources before shutting the pipeline down. This is useful to

 make sure muxers create readable files when a muxing pipeline is shut down force?

 fully via Control-C.

 -i, --index

 Gather and print index statistics. This is mostly useful for playback or recording

 pipelines.

 -f, --no-fault

 Do not install a fault handler

 -T, --trace

 Print memory allocation traces. The feature must be enabled at compile time to

 work.

 --no-position

 Do not print current position of pipeline. If this option is unspecified, the po?

 sition will be printed when stdout is a TTY. To enable printing position when

 stdout is not a TTY, use "force-position" option.

 --force-position

 Allow printing current position of pipeline even if stdout is not a TTY. This op?

 tion has no effect if the "no-position" option is specified.

 GSTREAMER OPTIONS

 gst-launch-1.0 also accepts the following options that are common to all GStreamer

 applications:

 --gst-version

 Prints the version string of the GStreamer core library.

 --gst-fatal-warnings

 Causes GStreamer to abort if a warning message occurs. This is equivalent to set?

 ting the environment variable G_DEBUG to 'fatal_warnings' (see the section envi?

 ronment variables below for further information).

 --gst-debug=STRING Page 2/11

 A comma separated list of category_name:level pairs to specify debugging levels

 for each category. Level is in the range 0-9 where 0 will show no messages, and 9

 will show all messages. The wildcard * can be used to match category names. Note

 that the order of categories and levels is important, wildcards at the end may

 override levels set earlier. The log levels are: 1=ERROR, 2=WARNING, 3=FIXME,

 4=INFO, 5=DEBUG, 6=LOG, 7=TRACE, 9=MEMDUMP. Since GStreamer 1.2 one can also use

 the debug level names, e.g. --gst-debug=*sink:LOG. A full description of the vari?

 ous debug levels can be found in the GStreamer core library API documentation, in

 the "Running GStreamer Applications" section.

 Use --gst-debug-help to show category names

 Example: GST_CAT:5,GST_ELEMENT_*:3,oggdemux:5

 --gst-debug-level=LEVEL

 Sets the threshold for printing debugging messages. A higher level will print

 more messages. The useful range is 0-9, with the default being 0. Level 6 (LOG

 level) will show all information that is usually required for debugging purposes.

 Higher levels are only useful in very specific cases. See above for the full list

 of levels.

 --gst-debug-no-color

 GStreamer normally prints debugging messages so that the messages are color-coded

 when printed to a terminal that handles ANSI escape sequences. Using this option

 causes GStreamer to print messages without color. Setting the GST_DEBUG_NO_COLOR

 environment variable will achieve the same thing.

 --gst-debug-color-mode

 GStreamer normally prints debugging messages so that the messages are color-coded

 when printed to a terminal that handles ANSI escape sequences (on *nix), or uses

 W32 console API to color the messages printed into a console (on W32). Using this

 option causes GStreamer to print messages without color ('off' or 'disable'),

 print messages with default colors ('on' or 'auto'), or print messages using ANSI

 escape sequences for coloring ('unix'). Setting the GST_DEBUG_COLOR_MODE environ?

 ment variable will achieve the same thing.

 --gst-debug-disable

 Disables debugging.

 --gst-debug-help Page 3/11

 Prints a list of available debug categories and their default debugging level.

 --gst-plugin-spew

 GStreamer info flags to set Enable printout of errors while loading GStreamer

 plugins

 --gst-plugin-path=PATH

 Add directories separated with ':' to the plugin search path

 --gst-plugin-load=PLUGINS

 Preload plugins specified in a comma-separated list. Another way to specify plug?

 ins to preload is to use the environment variable GST_PLUGIN_PATH

PIPELINE DESCRIPTION

 A pipeline consists elements and links. Elements can be put into bins of different sorts.

 Elements, links and bins can be specified in a pipeline description in any order.

 Elements

 ELEMENTTYPE [PROPERTY1 ...]

 Creates an element of type ELEMENTTYPE and sets the PROPERTIES.

 Properties

 PROPERTY=VALUE ...

 Sets the property to the specified value. You can use gst-inspect-1.0(1) to find out about

 properties and allowed values of different elements.

 Enumeration properties can be set by name, nick or value.

 Presets

 @preset=<preset name> ...

 Sets the preset on the element. you can use gst-inspect-1.0(1) to find out what presets

 are available for a specific element.

 Bins

 [BINTYPE.] ([PROPERTY1 ...] PIPELINE-DESCRIPTION)

 Specifies that a bin of type BINTYPE is created and the given properties are set. Every

 element between the braces is put into the bin. Please note the dot that has to be used

 after the BINTYPE. You will almost never need this functionality, it is only really useful

 for applications using the gst_launch_parse() API with 'bin' as bintype. That way it is

 possible to build partial pipelines instead of a full-fledged top-level pipeline.

 Links

 [[SRCELEMENT].[PAD1,...]] ! [[SINKELEMENT].[PAD1,...]] [[SRCELEMENT].[PAD1,...]] ! CAPS ! Page 4/11

 [[SINKELEMENT].[PAD1,...]] [[SRCELEMENT].[PAD1,...]] : [[SINKELEMENT].[PAD1,...]]

 [[SRCELEMENT].[PAD1,...]] : CAPS : [[SINKELEMENT].[PAD1,...]]

 Links the element with name SRCELEMENT to the element with name SINKELEMENT, using the

 caps specified in CAPS as a filter. Names can be set on elements with the name property.

 If the name is omitted, the element that was specified directly in front of or after the

 link is used. This works across bins. If a padname is given, the link is done with these

 pads. If no pad names are given all possibilities are tried and a matching pad is used.

 If multiple padnames are given, both sides must have the same number of pads specified and

 multiple links are done in the given order.

 So the simplest link is a simple exclamation mark, that links the element to the left of

 it to the element right of it.

 Linking using the : operator attempts to link all possible pads between the elements

 Caps

 MEDIATYPE [, PROPERTY[, PROPERTY ...]]] [; CAPS[; CAPS ...]]

 Creates a capability with the given media type and optionally with given properties. The

 media type can be escaped using " or '. If you want to chain caps, you can add more caps

 in the same format afterwards.

 Properties

 NAME=[(TYPE)]VALUE

 in lists and ranges: [(TYPE)]VALUE

 Sets the requested property in capabilities. The name is an alphanumeric value and the

 type can have the following case-insensitive values:

 - i or int for integer values or ranges

 - f or float for float values or ranges

 - b, bool or boolean for boolean values

 - s, str or string for strings

 - fraction for fractions (framerate, pixel-aspect-ratio)

 - l or list for lists

 If no type was given, the following order is tried: integer, float, boolean, string.

 Integer values must be parsable by strtol(), floats by strtod(). FOURCC values may either

 be integers or strings. Boolean values are (case insensitive) yes, no, true or false and

 may like strings be escaped with " or '.

 Ranges are in this format: [VALUE, VALUE] Page 5/11

 Lists use this format: { VALUE [, VALUE ...] }

PIPELINE EXAMPLES

 The examples below assume that you have the correct plug-ins available. In general,

 "pulsesink" can be substituted with another audio output plug-in such as "alsasink" or

 "osxaudiosink" Likewise, "xvimagesink" can be substituted with "ximagesink", "glima?

 gesink", or "osxvideosink". Keep in mind though that different sinks might accept differ?

 ent formats and even the same sink might accept different formats on different machines,

 so you might need to add converter elements like audioconvert and audioresample (for au?

 dio) or videoconvert (for video) in front of the sink to make things work.

 Audio playback

 Play the mp3 music file "music.mp3" using a libmpg123-based plug-in and output to an

 Pulseaudio device

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse ! mpg123audiodec ! au?

 dioconvert ! audioresample ! pulsesink

 Play an Ogg Vorbis format file

 gst-launch-1.0 filesrc location=music.ogg ! oggdemux ! vorbisdec ! audioconvert !

 audioresample ! pulsesink

 Play an mp3 file or an http stream using GIO

 gst-launch-1.0 giosrc location=music.mp3 ! mpegaudioparse ! mpg123audiodec ! au?

 dioconvert ! pulsesink

 gst-launch-1.0 giosrc location=http://domain.com/music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 Use GIO to play an mp3 file located on an SMB server

 gst-launch-1.0 giosrc location=smb://computer/music.mp3 ! mpegaudioparse !

 mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 Format conversion

 Convert an mp3 music file to an Ogg Vorbis file

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse ! mpg123audiodec ! au?

 dioconvert ! vorbisenc ! oggmux ! filesink location=music.ogg

 Convert to the FLAC format

 gst-launch-1.0 filesrc location=music.mp3 ! mpegaudioparse ! mpg123audiodec ! au?

 dioconvert ! flacenc ! filesink location=test.flac

 Other Page 6/11

 Plays a .WAV file that contains raw audio data (PCM).

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audioconvert ! audioresam?

 ple ! pulsesink

 Convert a .WAV file containing raw audio data into an Ogg Vorbis or mp3 file

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audioconvert ! vorbisenc !

 oggmux ! filesink location=music.ogg

 gst-launch-1.0 filesrc location=music.wav ! wavparse ! audioconvert ! lamemp3enc !

 filesink location=music.mp3

 Rips all tracks from compact disc and convert them into a single mp3 file

 gst-launch-1.0 cdparanoiasrc mode=continuous ! audioconvert ! lamemp3enc ! mpegau?

 dioparse ! id3v2mux ! filesink location=cd.mp3

 Rips track 5 from the CD and converts it into a single mp3 file

 gst-launch-1.0 cdparanoiasrc track=5 ! audioconvert ! lamemp3enc ! mpegaudioparse

 ! id3v2mux ! filesink location=track5.mp3

 Using gst-inspect-1.0(1), it is possible to discover settings like the above for cdpara?

 noiasrc that will tell it to rip the entire cd or only tracks of it. Alternatively, you

 can use an URI and gst-launch-1.0 will find an element (such as cdparanoia) that supports

 that protocol for you, e.g.:

 gst-launch-1.0 cdda://5 ! lamemp3enc vbr=new vbr-quality=6 ! filesink loca?

 tion=track5.mp3

 Records sound from your audio input and encodes it into an ogg file

 gst-launch-1.0 pulsesrc ! audioconvert ! vorbisenc ! oggmux ! filesink loca?

 tion=input.ogg

 Video

 Display only the video portion of an MPEG-1 video file, outputting to an X display window

 gst-launch-1.0 filesrc location=JB_FF9_TheGravityOfLove.mpg ! dvddemux !

 mpegvideoparse ! mpeg2dec ! xvimagesink

 Display the video portion of a .vob file (used on DVDs), outputting to an SDL window

 gst-launch-1.0 filesrc location=/flflfj.vob ! dvddemux ! mpegvideoparse ! mpeg2dec

 ! sdlvideosink

 Play both video and audio portions of an MPEG movie

 gst-launch-1.0 filesrc location=movie.mpg ! dvddemux name=demuxer demuxer. !

 queue ! mpegvideoparse ! mpeg2dec ! sdlvideosink demuxer. ! queue ! mpegaudioparse ! Page 7/11

 mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 Play an AVI movie with an external text subtitle stream

 gst-launch-1.0 filesrc location=movie.mpg ! mpegdemux name=demuxer demuxer. !

 queue ! mpegvideoparse ! mpeg2dec ! videoconvert ! sdlvideosink demuxer. ! queue ! mpe?

 gaudioparse ! mpg123audiodec ! audioconvert ! audioresample ! pulsesink

 This example also shows how to refer to specific pads by name if an element (here: tex?

 toverlay) has multiple sink or source pads.

 gst-launch-1.0 textoverlay name=overlay ! videoconvert ! videoscale ! au?

 tovideosink filesrc location=movie.avi ! decodebin ! videoconvert ! overlay.video_sink

 filesrc location=movie.srt ! subparse ! overlay.text_sink

 Play an AVI movie with an external text subtitle stream using playbin

 gst-launch-1.0 playbin uri=file:///path/to/movie.avi sub?

 uri=file:///path/to/movie.srt

 Network streaming

 Stream video using RTP and network elements.

 This command would be run on the transmitter

 gst-launch-1.0 v4l2src ! video/x-raw,width=128,height=96,format=UYVY ! videocon?

 vert ! ffenc_h263 ! video/x-h263 ! rtph263ppay pt=96 ! udpsink host=192.168.1.1 port=5000

 Use this command on the receiver

 gst-launch-1.0 udpsrc port=5000 ! application/x-rtp, clock-rate=90000,payload=96 !

 rtph263pdepay queue-delay=0 ! ffdec_h263 ! xvimagesink

 Diagnostic

 Generate a null stream and ignore it (and print out details).

 gst-launch-1.0 -v fakesrc num-buffers=16 ! fakesink

 Generate a pure sine tone to test the audio output

 gst-launch-1.0 audiotestsrc ! audioconvert ! audioresample ! pulsesink

 Generate a familiar test pattern to test the video output

 gst-launch-1.0 videotestsrc ! xvimagesink

 gst-launch-1.0 videotestsrc ! ximagesink

 Automatic linking

 You can use the decodebin element to automatically select the right elements to get a

 working pipeline.

 Play any supported audio format Page 8/11

 gst-launch-1.0 filesrc location=musicfile ! decodebin ! audioconvert ! audioresam?

 ple ! pulsesink

 Play any supported video format with video and audio output. Threads are used automati?

 cally. To make this even easier, you can use the playbin element:

 gst-launch-1.0 filesrc location=videofile ! decodebin name=decoder decoder. !

 queue ! audioconvert ! audioresample ! pulsesink decoder. ! videoconvert ! xvimagesink

 gst-launch-1.0 playbin uri=file:///home/joe/foo.avi

 Filtered connections

 These examples show you how to use filtered caps.

 Show a test image and use the YUY2 or YV12 video format for this.

 gst-launch-1.0 videotestsrc ! 'video/x-raw,format=YUY2;video/x-raw,format=YV12' !

 xvimagesink

 Record audio and write it to a .wav file. Force usage of signed 16 to 32 bit samples and a

 sample rate between 32kHz and 64KHz.

 gst-launch-1.0 pulsesrc ! 'audio/x-raw,rate=[32000,64000],for?

 mat={S16LE,S24LE,S32LE}' ! wavenc ! filesink location=recording.wav

ENVIRONMENT VARIABLES

 GST_DEBUG

 Comma-separated list of debug categories and levels (e.g. GST_DEBUG=totem:4,type?

 find:5). '*' is allowed as a wildcard as part of debug category names (e.g. GST_DE?

 BUG=*sink:6,*audio*:6). Since 1.2.0 it is also possible to specify the log level by

 name (1=ERROR, 2=WARN, 3=FIXME, 4=INFO, 5=DEBUG, 6=LOG, 7=TRACE, 9=MEMDUMP) (e.g.

 GST_DEBUG=*audio*:LOG)

 GST_DEBUG_NO_COLOR

 When this environment variable is set, coloured debug output is disabled.

 GST_DEBUG_DUMP_DOT_DIR

 When set to a filesystem path, store 'dot' files of pipeline graphs there. These

 can then later be converted into an image using the 'dot' utility from the graphviz

 set of tools, like this: dot foo.dot -Tsvg -o foo.svg (png or jpg are also possible

 as output format). There is also a utility called 'xdot' which allows you to view

 the .dot file directly without converting it first.

 When the pipeline changes state through NULL to PLAYING and back to NULL, a dot

 file is generated on each state change. To write a snapshot of the pipeline state, Page 9/11

 send a SIGHUP to the process.

 GST_REGISTRY

 Path of the plugin registry file. Default is ~/.cache/gstreamer-1.0/reg?

 istry-CPU.bin where CPU is the machine/cpu type GStreamer was compiled for, e.g.

 'i486', 'i686', 'x86-64', 'ppc', etc. (check the output of "uname -i" and "uname

 -m" for details).

 GST_REGISTRY_UPDATE

 Set to "no" to force GStreamer to assume that no plugins have changed, been added

 or been removed. This will make GStreamer skip the initial check whether a rebuild

 of the registry cache is required or not. This may be useful in embedded environ?

 ments where the installed plugins never change. Do not use this option in any other

 setup.

 GST_PLUGIN_PATH

 Specifies a list of directories to scan for additional plugins. These take prece?

 dence over the system plugins.

 GST_PLUGIN_SYSTEM_PATH

 Specifies a list of plugins that are always loaded by default. If not set, this

 defaults to the system-installed path, and the plugins installed in the user's home

 directory

 GST_DEBUG_FILE

 Set this variable to a file path to redirect all GStreamer debug messages to this

 file. If left unset, debug messages with be output unto the standard error.

 ORC_CODE

 Useful Orc environment variable. Set ORC_CODE=debug to enable debuggers such as gdb

 to create useful backtraces from Orc-generated code. Set ORC_CODE=backup or

 ORC_CODE=emulate if you suspect Orc's SIMD code generator is producing incorrect

 code. (Quite a few important GStreamer plugins like videotestsrc, audioconvert or

 audioresample use Orc).

 G_DEBUG

 Useful GLib environment variable. Set G_DEBUG=fatal_warnings to make GStreamer pro?

 grams abort when a critical warning such as an assertion failure occurs. This is

 useful if you want to find out which part of the code caused that warning to be

 triggered and under what circumstances. Simply set G_DEBUG as mentioned above and Page 10/11

 run the program in gdb (or let it core dump). Then get a stack trace in the usual

 way.

FILES

 ~/.cache/gstreamer-1.0/registry-*.bin

 The plugin cache; can be deleted at any time, will be re-created automatically

 when it does not exist yet or plugins change. Based on XDG_CACHE_DIR, so may be in

 a different location than the one suggested.

SEE ALSO

 gst-inspect-1.0(1), gst-launch-1.0(1),

AUTHOR

 The GStreamer team at http://gstreamer.freedesktop.org/

 May 2007 GStreamer(1)

Page 11/11

