
Rocky Enterprise Linux 9.2 Manual Pages on command 'hwclock.8'

$ man hwclock.8

HWCLOCK(8) System Administration HWCLOCK(8)

NAME

 hwclock - time clocks utility

SYNOPSIS

 hwclock [function] [option...]

DESCRIPTION

 hwclock is an administration tool for the time clocks. It can: display the Hardware Clock

 time; set the Hardware Clock to a specified time; set the Hardware Clock from the System

 Clock; set the System Clock from the Hardware Clock; compensate for Hardware Clock drift;

 correct the System Clock timescale; set the kernel?s timezone, NTP timescale, and epoch

 (Alpha only); and predict future Hardware Clock values based on its drift rate.

 Since v2.26 important changes were made to the --hctosys function and the --directisa

 option, and a new option --update-drift was added. See their respective descriptions

 below.

FUNCTIONS

 The following functions are mutually exclusive, only one can be given at a time. If none

 is given, the default is --show.

 -a, --adjust

 Add or subtract time from the Hardware Clock to account for systematic drift since the

 last time the clock was set or adjusted. See the discussion below, under The Adjust

 Function.

 --getepoch; --setepoch

 These functions are for Alpha machines only, and are only available through the Linux Page 1/17

 kernel RTC driver.

 They are used to read and set the kernel?s Hardware Clock epoch value. Epoch is the

 number of years into AD to which a zero year value in the Hardware Clock refers. For

 example, if the machine?s BIOS sets the year counter in the Hardware Clock to contain

 the number of full years since 1952, then the kernel?s Hardware Clock epoch value must

 be 1952.

 The --setepoch function requires using the --epoch option to specify the year. For

 example:

 hwclock --setepoch --epoch=1952

 The RTC driver attempts to guess the correct epoch value, so setting it may not be

 required.

 This epoch value is used whenever hwclock reads or sets the Hardware Clock on an Alpha

 machine. For ISA machines the kernel uses the fixed Hardware Clock epoch of 1900.

 --predict

 Predict what the Hardware Clock will read in the future based upon the time given by

 the --date option and the information in /etc/adjtime. This is useful, for example, to

 account for drift when setting a Hardware Clock wakeup (aka alarm). See rtcwake(8).

 Do not use this function if the Hardware Clock is being modified by anything other

 than the current operating system?s hwclock command, such as '11 minute mode' or from

 dual-booting another OS.

 -r, --show; --get

 Read the Hardware Clock and print its time to standard output in the ISO 8601 format.

 The time shown is always in local time, even if you keep your Hardware Clock in UTC.

 See the --localtime option.

 Showing the Hardware Clock time is the default when no function is specified.

 The --get function also applies drift correction to the time read, based upon the

 information in /etc/adjtime. Do not use this function if the Hardware Clock is being

 modified by anything other than the current operating system?s hwclock command, such

 as '11 minute mode' or from dual-booting another OS.

 -s, --hctosys

 Set the System Clock from the Hardware Clock. The time read from the Hardware Clock is

 compensated to account for systematic drift before using it to set the System Clock.

 See the discussion below, under The Adjust Function. Page 2/17

 The System Clock must be kept in the UTC timescale for date-time applications to work

 correctly in conjunction with the timezone configured for the system. If the Hardware

 Clock is kept in local time then the time read from it must be shifted to the UTC

 timescale before using it to set the System Clock. The --hctosys function does this

 based upon the information in the /etc/adjtime file or the command line arguments

 --localtime and --utc. Note: no daylight saving adjustment is made. See the discussion

 below, under LOCAL vs UTC.

 The kernel also keeps a timezone value, the --hctosys function sets it to the timezone

 configured for the system. The system timezone is configured by the TZ environment

 variable or the /etc/localtime file, as tzset(3) would interpret them. The obsolete

 tz_dsttime field of the kernel?s timezone value is set to zero. (For details on what

 this field used to mean, see settimeofday(2).)

 When used in a startup script, making the --hctosys function the first caller of

 settimeofday(2) from boot, it will set the NTP '11 minute mode' timescale via the

 persistent_clock_is_local kernel variable. If the Hardware Clock?s timescale

 configuration is changed then a reboot is required to inform the kernel. See the

 discussion below, under Automatic Hardware Clock Synchronization by the Kernel.

 This is a good function to use in one of the system startup scripts before the file

 systems are mounted read/write.

 This function should never be used on a running system. Jumping system time will cause

 problems, such as corrupted filesystem timestamps. Also, if something has changed the

 Hardware Clock, like NTP?s '11 minute mode', then --hctosys will set the time

 incorrectly by including drift compensation.

 Drift compensation can be inhibited by setting the drift factor in /etc/adjtime to

 zero. This setting will be persistent as long as the --update-drift option is not used

 with --systohc at shutdown (or anywhere else). Another way to inhibit this is by using

 the --noadjfile option when calling the --hctosys function. A third method is to

 delete the /etc/adjtime file. Hwclock will then default to using the UTC timescale for

 the Hardware Clock. If the Hardware Clock is ticking local time it will need to be

 defined in the file. This can be done by calling hwclock --localtime --adjust; when

 the file is not present this command will not actually adjust the Clock, but it will

 create the file with local time configured, and a drift factor of zero.

 A condition under which inhibiting hwclock's drift correction may be desired is when Page 3/17

 dual-booting multiple operating systems. If while this instance of Linux is stopped,

 another OS changes the Hardware Clock?s value, then when this instance is started

 again the drift correction applied will be incorrect.

 For hwclock's drift correction to work properly it is imperative that nothing changes

 the Hardware Clock while its Linux instance is not running.

 --set

 Set the Hardware Clock to the time given by the --date option, and update the

 timestamps in /etc/adjtime. With the --update-drift option also (re)calculate the

 drift factor. Try it without the option if --set fails. See --update-drift below.

 --systz

 This is an alternate to the --hctosys function that does not read the Hardware Clock

 nor set the System Clock; consequently there is not any drift correction. It is

 intended to be used in a startup script on systems with kernels above version 2.6

 where you know the System Clock has been set from the Hardware Clock by the kernel

 during boot.

 It does the following things that are detailed above in the --hctosys function:

 ? Corrects the System Clock timescale to UTC as needed. Only instead of

 accomplishing this by setting the System Clock, hwclock simply informs the kernel

 and it handles the change.

 ? Sets the kernel?s NTP '11 minute mode' timescale.

 ? Sets the kernel?s timezone.

 The first two are only available on the first call of settimeofday(2) after boot.

 Consequently this option only makes sense when used in a startup script. If the Hardware

 Clocks timescale configuration is changed then a reboot would be required to inform the

 kernel.

 -w, --systohc

 Set the Hardware Clock from the System Clock, and update the timestamps in

 /etc/adjtime. With the --update-drift option also (re)calculate the drift factor. Try

 it without the option if --systohc fails. See --update-drift below.

 -V, --version

 Display version information and exit.

 -h, --help

 Display help text and exit. Page 4/17

OPTIONS

 --adjfile=filename

 Override the default /etc/adjtime file path.

 --date=date_string

 This option must be used with the --set or --predict functions, otherwise it is

 ignored.

 hwclock --set --date='16:45'

 hwclock --predict --date='2525-08-14 07:11:05'

 The argument must be in local time, even if you keep your Hardware Clock in UTC. See

 the --localtime option. Therefore, the argument should not include any timezone

 information. It also should not be a relative time like "+5 minutes", because

 hwclock's precision depends upon correlation between the argument?s value and when the

 enter key is pressed. Fractional seconds are silently dropped. This option is capable

 of understanding many time and date formats, but the previous parameters should be

 observed.

 --delay=seconds

 This option can be used to overwrite the internally used delay when setting the clock

 time. The default is 0.5 (500ms) for rtc_cmos, for another RTC types the delay is 0.

 If RTC type is impossible to determine (from sysfs) then it defaults also to 0.5 to be

 backwardly compatible.

 The 500ms default is based on commonly used MC146818A-compatible (x86) hardware clock.

 This Hardware Clock can only be set to any integer time plus one half second. The

 integer time is required because there is no interface to set or get a fractional

 second. The additional half second delay is because the Hardware Clock updates to the

 following second precisely 500 ms after setting the new time. Unfortunately, this

 behavior is hardware specific and in same cases another delay is required.

 -D, --debug

 Use --verbose. The --debug option has been deprecated and may be repurposed or removed

 in a future release.

 --directisa

 This option is meaningful for ISA compatible machines in the x86 and x86_64 family.

 For other machines, it has no effect. This option tells hwclock to use explicit I/O

 instructions to access the Hardware Clock. Without this option, hwclock will use the Page 5/17

 rtc device file, which it assumes to be driven by the Linux RTC device driver. As of

 v2.26 it will no longer automatically use directisa when the rtc driver is

 unavailable; this was causing an unsafe condition that could allow two processes to

 access the Hardware Clock at the same time. Direct hardware access from userspace

 should only be used for testing, troubleshooting, and as a last resort when all other

 methods fail. See the --rtc option.

 --epoch=year

 This option is required when using the --setepoch function. The minimum year value is

 1900. The maximum is system dependent (ULONG_MAX - 1).

 -f, --rtc=filename

 Override hwclock's default rtc device file name. Otherwise it will use the first one

 found in this order: /dev/rtc0, /dev/rtc, /dev/misc/rtc. For IA-64: /dev/efirtc

 /dev/misc/efirtc

 -l, --localtime; -u, --utc

 Indicate which timescale the Hardware Clock is set to.

 The Hardware Clock may be configured to use either the UTC or the local timescale, but

 nothing in the clock itself says which alternative is being used. The --localtime or

 --utc options give this information to the hwclock command. If you specify the wrong

 one (or specify neither and take a wrong default), both setting and reading the

 Hardware Clock will be incorrect.

 If you specify neither --utc nor --localtime then the one last given with a set

 function (--set, --systohc, or --adjust), as recorded in /etc/adjtime, will be used.

 If the adjtime file doesn?t exist, the default is UTC.

 Note: daylight saving time changes may be inconsistent when the Hardware Clock is kept

 in local time. See the discussion below, under LOCAL vs UTC.

 --noadjfile

 Disable the facilities provided by /etc/adjtime. hwclock will not read nor write to

 that file with this option. Either --utc or --localtime must be specified when using

 this option.

 --test

 Do not actually change anything on the system, that is, the Clocks or /etc/adjtime

 (--verbose is implicit with this option).

 --update-drift Page 6/17

 Update the Hardware Clock?s drift factor in /etc/adjtime. It can only be used with

 --set or --systohc.

 A minimum four hour period between settings is required. This is to avoid invalid

 calculations. The longer the period, the more precise the resulting drift factor will

 be.

 This option was added in v2.26, because it is typical for systems to call hwclock

 --systohc at shutdown; with the old behavior this would automatically (re)calculate

 the drift factor which caused several problems:

 ? When using NTP with an '11 minute mode' kernel the drift factor would be clobbered

 to near zero.

 ? It would not allow the use of 'cold' drift correction. With most configurations

 using 'cold' drift will yield favorable results. Cold, means when the machine is

 turned off which can have a significant impact on the drift factor.

 ? (Re)calculating drift factor on every shutdown delivers suboptimal results. For

 example, if ephemeral conditions cause the machine to be abnormally hot the drift

 factor calculation would be out of range.

 ? Significantly increased system shutdown times (as of v2.31 when not using

 --update-drift the RTC is not read).

 Having hwclock calculate the drift factor is a good starting point, but for optimal

 results it will likely need to be adjusted by directly editing the /etc/adjtime file. For

 most configurations once a machine?s optimal drift factor is crafted it should not need to

 be changed. Therefore, the old behavior to automatically (re)calculate drift was changed

 and now requires this option to be used. See the discussion below, under The Adjust

 Function.

 This option requires reading the Hardware Clock before setting it. If it cannot be read,

 then this option will cause the set functions to fail. This can happen, for example, if

 the Hardware Clock is corrupted by a power failure. In that case, the clock must first be

 set without this option. Despite it not working, the resulting drift correction factor

 would be invalid anyway.

 -v, --verbose

 Display more details about what hwclock is doing internally.

NOTES

 Clocks in a Linux System Page 7/17

 There are two types of date-time clocks:

 The Hardware Clock: This clock is an independent hardware device, with its own power

 domain (battery, capacitor, etc), that operates when the machine is powered off, or even

 unplugged.

 On an ISA compatible system, this clock is specified as part of the ISA standard. A

 control program can read or set this clock only to a whole second, but it can also detect

 the edges of the 1 second clock ticks, so the clock actually has virtually infinite

 precision.

 This clock is commonly called the hardware clock, the real time clock, the RTC, the BIOS

 clock, and the CMOS clock. Hardware Clock, in its capitalized form, was coined for use by

 hwclock. The Linux kernel also refers to it as the persistent clock.

 Some non-ISA systems have a few real time clocks with only one of them having its own

 power domain. A very low power external I2C or SPI clock chip might be used with a backup

 battery as the hardware clock to initialize a more functional integrated real-time clock

 which is used for most other purposes.

 The System Clock: This clock is part of the Linux kernel and is driven by a timer

 interrupt. (On an ISA machine, the timer interrupt is part of the ISA standard.) It has

 meaning only while Linux is running on the machine. The System Time is the number of

 seconds since 00:00:00 January 1, 1970 UTC (or more succinctly, the number of seconds

 since 1969 UTC). The System Time is not an integer, though. It has virtually infinite

 precision.

 The System Time is the time that matters. The Hardware Clock?s basic purpose is to keep

 time when Linux is not running so that the System Clock can be initialized from it at

 boot. Note that in DOS, for which ISA was designed, the Hardware Clock is the only real

 time clock.

 It is important that the System Time not have any discontinuities such as would happen if

 you used the date(1) program to set it while the system is running. You can, however, do

 whatever you want to the Hardware Clock while the system is running, and the next time

 Linux starts up, it will do so with the adjusted time from the Hardware Clock. Note:

 currently this is not possible on most systems because hwclock --systohc is called at

 shutdown.

 The Linux kernel?s timezone is set by hwclock. But don?t be misled ? almost nobody cares

 what timezone the kernel thinks it is in. Instead, programs that care about the timezone Page 8/17

 (perhaps because they want to display a local time for you) almost always use a more

 traditional method of determining the timezone: They use the TZ environment variable or

 the /etc/localtime file, as explained in the man page for tzset(3). However, some programs

 and fringe parts of the Linux kernel such as filesystems use the kernel?s timezone value.

 An example is the vfat filesystem. If the kernel timezone value is wrong, the vfat

 filesystem will report and set the wrong timestamps on files. Another example is the

 kernel?s NTP '11 minute mode'. If the kernel?s timezone value and/or the

 persistent_clock_is_local variable are wrong, then the Hardware Clock will be set

 incorrectly by '11 minute mode'. See the discussion below, under Automatic Hardware Clock

 Synchronization by the Kernel.

 hwclock sets the kernel?s timezone to the value indicated by TZ or /etc/localtime with the

 --hctosys or --systz functions.

 The kernel?s timezone value actually consists of two parts: 1) a field tz_minuteswest

 indicating how many minutes local time (not adjusted for DST) lags behind UTC, and 2) a

 field tz_dsttime indicating the type of Daylight Savings Time (DST) convention that is in

 effect in the locality at the present time. This second field is not used under Linux and

 is always zero. See also settimeofday(2).

 Hardware Clock Access Methods

 hwclock uses many different ways to get and set Hardware Clock values. The most normal way

 is to do I/O to the rtc device special file, which is presumed to be driven by the rtc

 device driver. Also, Linux systems using the rtc framework with udev, are capable of

 supporting multiple Hardware Clocks. This may bring about the need to override the default

 rtc device by specifying one with the --rtc option.

 However, this method is not always available as older systems do not have an rtc driver.

 On these systems, the method of accessing the Hardware Clock depends on the system

 hardware.

 On an ISA compatible system, hwclock can directly access the "CMOS memory" registers that

 constitute the clock, by doing I/O to Ports 0x70 and 0x71. It does this with actual I/O

 instructions and consequently can only do it if running with superuser effective userid.

 This method may be used by specifying the --directisa option.

 This is a really poor method of accessing the clock, for all the reasons that userspace

 programs are generally not supposed to do direct I/O and disable interrupts. hwclock

 provides it for testing, troubleshooting, and because it may be the only method available Page 9/17

 on ISA systems which do not have a working rtc device driver.

 The Adjust Function

 The Hardware Clock is usually not very accurate. However, much of its inaccuracy is

 completely predictable - it gains or loses the same amount of time every day. This is

 called systematic drift. hwclock's --adjust function lets you apply systematic drift

 corrections to the Hardware Clock.

 It works like this: hwclock keeps a file, /etc/adjtime, that keeps some historical

 information. This is called the adjtime file.

 Suppose you start with no adjtime file. You issue a hwclock --set command to set the

 Hardware Clock to the true current time. hwclock creates the adjtime file and records in

 it the current time as the last time the clock was calibrated. Five days later, the clock

 has gained 10 seconds, so you issue a hwclock --set --update-drift command to set it back

 10 seconds. hwclock updates the adjtime file to show the current time as the last time the

 clock was calibrated, and records 2 seconds per day as the systematic drift rate. 24 hours

 go by, and then you issue a hwclock --adjust command. hwclock consults the adjtime file

 and sees that the clock gains 2 seconds per day when left alone and that it has been left

 alone for exactly one day. So it subtracts 2 seconds from the Hardware Clock. It then

 records the current time as the last time the clock was adjusted. Another 24 hours go by

 and you issue another hwclock --adjust. hwclock does the same thing: subtracts 2 seconds

 and updates the adjtime file with the current time as the last time the clock was

 adjusted.

 When you use the --update-drift option with --set or --systohc, the systematic drift rate

 is (re)calculated by comparing the fully drift corrected current Hardware Clock time with

 the new set time, from that it derives the 24 hour drift rate based on the last calibrated

 timestamp from the adjtime file. This updated drift factor is then saved in /etc/adjtime.

 A small amount of error creeps in when the Hardware Clock is set, so --adjust refrains

 from making any adjustment that is less than 1 second. Later on, when you request an

 adjustment again, the accumulated drift will be more than 1 second and --adjust will make

 the adjustment including any fractional amount.

 hwclock --hctosys also uses the adjtime file data to compensate the value read from the

 Hardware Clock before using it to set the System Clock. It does not share the 1 second

 limitation of --adjust, and will correct sub-second drift values immediately. It does not

 change the Hardware Clock time nor the adjtime file. This may eliminate the need to use Page 10/17

 --adjust, unless something else on the system needs the Hardware Clock to be compensated.

 The Adjtime File

 While named for its historical purpose of controlling adjustments only, it actually

 contains other information used by hwclock from one invocation to the next.

 The format of the adjtime file is, in ASCII:

 Line 1: Three numbers, separated by blanks: 1) the systematic drift rate in seconds per

 day, floating point decimal; 2) the resulting number of seconds since 1969 UTC of most

 recent adjustment or calibration, decimal integer; 3) zero (for compatibility with

 clock(8)) as a floating point decimal.

 Line 2: One number: the resulting number of seconds since 1969 UTC of most recent

 calibration. Zero if there has been no calibration yet or it is known that any previous

 calibration is moot (for example, because the Hardware Clock has been found, since that

 calibration, not to contain a valid time). This is a decimal integer.

 Line 3: "UTC" or "LOCAL". Tells whether the Hardware Clock is set to Coordinated Universal

 Time or local time. You can always override this value with options on the hwclock command

 line.

 You can use an adjtime file that was previously used with the clock(8) program with

 hwclock.

 Automatic Hardware Clock Synchronization by the Kernel

 You should be aware of another way that the Hardware Clock is kept synchronized in some

 systems. The Linux kernel has a mode wherein it copies the System Time to the Hardware

 Clock every 11 minutes. This mode is a compile time option, so not all kernels will have

 this capability. This is a good mode to use when you are using something sophisticated

 like NTP to keep your System Clock synchronized. (NTP is a way to keep your System Time

 synchronized either to a time server somewhere on the network or to a radio clock hooked

 up to your system. See RFC 1305.)

 If the kernel is compiled with the '11 minute mode' option it will be active when the

 kernel?s clock discipline is in a synchronized state. When in this state, bit 6 (the bit

 that is set in the mask 0x0040) of the kernel?s time_status variable is unset. This value

 is output as the 'status' line of the adjtimex --print or ntptime commands.

 It takes an outside influence, like the NTP daemon to put the kernel?s clock discipline

 into a synchronized state, and therefore turn on '11 minute mode'. It can be turned off by

 running anything that sets the System Clock the old fashioned way, including hwclock Page 11/17

 --hctosys. However, if the NTP daemon is still running, it will turn '11 minute mode' back

 on again the next time it synchronizes the System Clock.

 If your system runs with '11 minute mode' on, it may need to use either --hctosys or

 --systz in a startup script, especially if the Hardware Clock is configured to use the

 local timescale. Unless the kernel is informed of what timescale the Hardware Clock is

 using, it may clobber it with the wrong one. The kernel uses UTC by default.

 The first userspace command to set the System Clock informs the kernel what timescale the

 Hardware Clock is using. This happens via the persistent_clock_is_local kernel variable.

 If --hctosys or --systz is the first, it will set this variable according to the adjtime

 file or the appropriate command-line argument. Note that when using this capability and

 the Hardware Clock timescale configuration is changed, then a reboot is required to notify

 the kernel.

 hwclock --adjust should not be used with NTP '11 minute mode'.

 ISA Hardware Clock Century value

 There is some sort of standard that defines CMOS memory Byte 50 on an ISA machine as an

 indicator of what century it is. hwclock does not use or set that byte because there are

 some machines that don?t define the byte that way, and it really isn?t necessary anyway,

 since the year-of-century does a good job of implying which century it is.

 If you have a bona fide use for a CMOS century byte, contact the hwclock maintainer; an

 option may be appropriate.

 Note that this section is only relevant when you are using the "direct ISA" method of

 accessing the Hardware Clock. ACPI provides a standard way to access century values, when

 they are supported by the hardware.

DATE-TIME CONFIGURATION

 Keeping Time without External Synchronization

 This discussion is based on the following conditions:

 ? Nothing is running that alters the date-time clocks, such as NTP daemon or a cron

 job."

 ? The system timezone is configured for the correct local time. See below, under POSIX

 vs 'RIGHT'.

 ? Early during startup the following are called, in this order: adjtimex --tick value

 --frequency value hwclock --hctosys

 ? During shutdown the following is called: hwclock --systohc Page 12/17

 ? Systems without adjtimex may use ntptime.

 Whether maintaining precision time with NTP daemon or not, it makes sense to configure the

 system to keep reasonably good date-time on its own.

 The first step in making that happen is having a clear understanding of the big picture.

 There are two completely separate hardware devices running at their own speed and drifting

 away from the 'correct' time at their own rates. The methods and software for drift

 correction are different for each of them. However, most systems are configured to

 exchange values between these two clocks at startup and shutdown. Now the individual

 device?s time keeping errors are transferred back and forth between each other. Attempt to

 configure drift correction for only one of them, and the other?s drift will be overlaid

 upon it.

 This problem can be avoided when configuring drift correction for the System Clock by

 simply not shutting down the machine. This, plus the fact that all of hwclock's precision

 (including calculating drift factors) depends upon the System Clock?s rate being correct,

 means that configuration of the System Clock should be done first.

 The System Clock drift is corrected with the adjtimex(8) command?s --tick and --frequency

 options. These two work together: tick is the coarse adjustment and frequency is the fine

 adjustment. (For systems that do not have an adjtimex package, ntptime -f ppm may be used

 instead.)

 Some Linux distributions attempt to automatically calculate the System Clock drift with

 adjtimex's compare operation. Trying to correct one drifting clock by using another

 drifting clock as a reference is akin to a dog trying to catch its own tail. Success may

 happen eventually, but great effort and frustration will likely precede it. This

 automation may yield an improvement over no configuration, but expecting optimum results

 would be in error. A better choice for manual configuration would be adjtimex's --log

 options.

 It may be more effective to simply track the System Clock drift with sntp, or date -Ins

 and a precision timepiece, and then calculate the correction manually.

 After setting the tick and frequency values, continue to test and refine the adjustments

 until the System Clock keeps good time. See adjtimex(2) for more information and the

 example demonstrating manual drift calculations.

 Once the System Clock is ticking smoothly, move on to the Hardware Clock.

 As a rule, cold drift will work best for most use cases. This should be true even for 24/7 Page 13/17

 machines whose normal downtime consists of a reboot. In that case the drift factor value

 makes little difference. But on the rare occasion that the machine is shut down for an

 extended period, then cold drift should yield better results.

 Steps to calculate cold drift:

 1

 Ensure that NTP daemon will not be launched at startup.

 2

 The System Clock time must be correct at shutdown!

 3

 Shut down the system.

 4

 Let an extended period pass without changing the Hardware Clock.

 5

 Start the system.

 6

 Immediately use hwclock to set the correct time, adding the --update-drift option.

 Note: if step 6 uses --systohc, then the System Clock must be set correctly (step 6a) just

 before doing so.

 Having hwclock calculate the drift factor is a good starting point, but for optimal

 results it will likely need to be adjusted by directly editing the /etc/adjtime file.

 Continue to test and refine the drift factor until the Hardware Clock is corrected

 properly at startup. To check this, first make sure that the System Time is correct before

 shutdown and then use sntp, or date -Ins and a precision timepiece, immediately after

 startup.

 LOCAL vs UTC

 Keeping the Hardware Clock in a local timescale causes inconsistent daylight saving time

 results:

 ? If Linux is running during a daylight saving time change, the time written to the

 Hardware Clock will be adjusted for the change.

 ? If Linux is NOT running during a daylight saving time change, the time read from the

 Hardware Clock will NOT be adjusted for the change.

 The Hardware Clock on an ISA compatible system keeps only a date and time, it has no

 concept of timezone nor daylight saving. Therefore, when hwclock is told that it is in Page 14/17

 local time, it assumes it is in the 'correct' local time and makes no adjustments to the

 time read from it.

 Linux handles daylight saving time changes transparently only when the Hardware Clock is

 kept in the UTC timescale. Doing so is made easy for system administrators as hwclock uses

 local time for its output and as the argument to the --date option.

 POSIX systems, like Linux, are designed to have the System Clock operate in the UTC

 timescale. The Hardware Clock?s purpose is to initialize the System Clock, so also keeping

 it in UTC makes sense.

 Linux does, however, attempt to accommodate the Hardware Clock being in the local

 timescale. This is primarily for dual-booting with older versions of MS Windows. From

 Windows 7 on, the RealTimeIsUniversal registry key is supposed to be working properly so

 that its Hardware Clock can be kept in UTC.

 POSIX vs 'RIGHT'

 A discussion on date-time configuration would be incomplete without addressing timezones,

 this is mostly well covered by tzset(3). One area that seems to have no documentation is

 the 'right' directory of the Time Zone Database, sometimes called tz or zoneinfo.

 There are two separate databases in the zoneinfo system, posix and 'right'. 'Right' (now

 named zoneinfo-leaps) includes leap seconds and posix does not. To use the 'right'

 database the System Clock must be set to (UTC + leap seconds), which is equivalent to (TAI

 - 10). This allows calculating the exact number of seconds between two dates that cross a

 leap second epoch. The System Clock is then converted to the correct civil time, including

 UTC, by using the 'right' timezone files which subtract the leap seconds. Note: this

 configuration is considered experimental and is known to have issues.

 To configure a system to use a particular database all of the files located in its

 directory must be copied to the root of /usr/share/zoneinfo. Files are never used directly

 from the posix or 'right' subdirectories, e.g., TZ='right/Europe/Dublin'. This habit was

 becoming so common that the upstream zoneinfo project restructured the system?s file tree

 by moving the posix and 'right' subdirectories out of the zoneinfo directory and into

 sibling directories:

 /usr/share/zoneinfo, /usr/share/zoneinfo-posix, /usr/share/zoneinfo-leaps

 Unfortunately, some Linux distributions are changing it back to the old tree structure in

 their packages. So the problem of system administrators reaching into the 'right'

 subdirectory persists. This causes the system timezone to be configured to include leap Page 15/17

 seconds while the zoneinfo database is still configured to exclude them. Then when an

 application such as a World Clock needs the South_Pole timezone file; or an email MTA, or

 hwclock needs the UTC timezone file; they fetch it from the root of /usr/share/zoneinfo ,

 because that is what they are supposed to do. Those files exclude leap seconds, but the

 System Clock now includes them, causing an incorrect time conversion.

 Attempting to mix and match files from these separate databases will not work, because

 they each require the System Clock to use a different timescale. The zoneinfo database

 must be configured to use either posix or 'right', as described above, or by assigning a

 database path to the TZDIR environment variable.

EXIT STATUS

 One of the following exit values will be returned:

 EXIT_SUCCESS ('0' on POSIX systems)

 Successful program execution.

 EXIT_FAILURE ('1' on POSIX systems)

 The operation failed or the command syntax was not valid.

ENVIRONMENT

 TZ

 If this variable is set its value takes precedence over the system configured

 timezone.

 TZDIR

 If this variable is set its value takes precedence over the system configured timezone

 database directory path.

FILES

 /etc/adjtime

 The configuration and state file for hwclock.

 /etc/localtime

 The system timezone file.

 /usr/share/zoneinfo/

 The system timezone database directory.

 Device files hwclock may try for Hardware Clock access: /dev/rtc0 /dev/rtc /dev/misc/rtc

 /dev/efirtc /dev/misc/efirtc

SEE ALSO

 date(1), adjtimex(8), gettimeofday(2), settimeofday(2), crontab(1p), tzset(3) Page 16/17

AUTHORS

 Written by Bryan Henderson <bryanh@giraffe-data.com>, September 1996, based on work done

 on the clock(8) program by Charles Hedrick, Rob Hooft, and Harald Koenig. See the source

 code for complete history and credits.

REPORTING BUGS

 For bug reports, use the issue tracker at https://github.com/karelzak/util-linux/issues.

AVAILABILITY

 The hwclock command is part of the util-linux package which can be downloaded from Linux

 Kernel Archive <https://www.kernel.org/pub/linux/utils/util-linux/>.

util-linux 2.37.2 2021-06-02 HWCLOCK(8)

Page 17/17

