PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'inet_makeaddr.3'

$ man inet_makeaddr.3
INET(3) Linux Programmer's Manual INET(3)
NAME

inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_Inaof, inet_netof - In?

ternet address manipulation routines
SYNOPSIS

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpalinet.h>

int inet_aton(const char *cp, struct in_addr *inp);

in_addr_t inet_addr(const char *cp);

in_addr_t inet_network(const char *cp);

char *inet_ntoa(struct in_addr in);

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t host);

in_addr_t inet_Inaof(struct in_addr in);

in_addr_t inet_netof(struct in_addr in);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
inet_aton(), inet_ntoa():
Since glibc 2.19:
_DEFAULT_SOURCE
In glibc up to and including 2.19:
_BSD_SOURCE || _BSD_SOURCE

DESCRIPTION

inet_aton() converts the Internet host address cp from the IPv4 numbers-and-dots notation Page 1/5

into binary form (in network byte order) and stores it in the structure that inp points

to. inet_aton() returns nonzero if the address is valid, zero if not. The address sup?

plied in cp can have one of the following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the address; the bytes are
assigned in left-to-right order to produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address. Part cis in?
terpreted as a 16-bit value that defines the rightmost two bytes of the binary
address. This notation is suitable for specifying (outmoded) Class B network
addresses.

a.b Part a specifies the first byte of the binary address. Part b is interpreted as
a 24-bit value that defines the rightmost three bytes of the binary address.

This notation is suitable for specifying (outmoded) Class A network addresses.

a The value a is interpreted as a 32-bit value that is stored directly into the
binary address without any byte rearrangement.

In all of the above forms, components of the dotted address can be specified in decimal,

octal (with a leading 0), or hexadecimal, with a leading 0X). Addresses in any of these

forms are collectively termed IPV4 numbers-and-dots notation. The form that uses exactly
four decimal numbers is referred to as IPv4 dotted-decimal notation (or sometimes: IPv4
dotted-quad notation).

inet_aton() returns 1 if the supplied string was successfully interpreted, or 0 if the

string is invalid (errno is not set on error).

The inet_addr() function converts the Internet host address cp from IPv4 numbers-and-dots

notation into binary data in network byte order. If the input is invalid, INADDR_NONE

(usually -1) is returned. Use of this function is problematic because -1 is a valid ad?

dress (255.255.255.255). Avoid its use in favor of inet_aton(), inet_pton(3), or getad?

drinfo(3), which provide a cleaner way to indicate error return.

The inet_network() function converts cp, a string in IPv4 numbers-and-dots notation, into

a number in host byte order suitable for use as an Internet network address. On success,

the converted address is returned. If the input is invalid, -1 is returned.

The inet_ntoa() function converts the Internet host address in, given in network byte or?

der, to a string in IPv4 dotted-decimal notation. The string is returned in a statically

allocated buffer, which subsequent calls will overwrite.

The inet_Inaof() function returns the local network address part of the Internet address Page 2/5

in. The returned value is in host byte order.
The inet_netof() function returns the network number part of the Internet address in. The
returned value is in host byte order.
The inet_makeaddr() function is the converse of inet_netof() and inet_Inaof(). It returns
an Internet host address in network byte order, created by combining the network number
net with the local address host, both in host byte order.
The structure in_addr as used in inet_ntoa(), inet_makeaddr(), inet_Inaof(), and
inet_netof() is defined in <netinet/in.h> as:

typedef uint32_t in_addr_t;

struct in_addr {

in_addr_ts_addr;
h
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 7?7?7??7?7?7?7?7?7??7?77

?Interface ? Attribute ? Value ?

PPV 7?7?7??7?7?7?7?7?7??7?77

?inet_aton(), inet_addr(), ? Thread safety ? MT-Safe locale ?
?inet_network(), inet_ntoa() ? ? ?

PP 7????7??7????7?7??7?7?77??7?7?7?7??7??7?7?77?7

?inet_makeaddr(), inet_Inaof(), ? Thread safety ? MT-Safe ?
?inet_netof() ? ? ?

PPV 2??2??727??7?7??7???7?7?7??7??7?777

CONFORMING TO
inet_addr(), inet_ntoa(): POSIX.1-2001, POSIX.1-2008, 4.3BSD.
inet_aton() is not specified in POSIX.1, but is available on most systems.

NOTES
On x86 architectures, the host byte order is Least Significant Byte first (little endian),
whereas the network byte order, as used on the Internet, is Most Significant Byte first
(big endian).
inet_Inaof(), inet_netof(), and inet_makeaddr() are legacy functions that assume they are
dealing with classful network addresses. Classful networking divides IPv4 network ad?

dresses into host and network components at byte boundaries, as follows: Page 3/5

Class A This address type is indicated by the value 0 in the most significant bit of the
(network byte ordered) address. The network address is contained in the most
significant byte, and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in the most significant
two bits of the address. The network address is contained in the two most sig?
nificant bytes, and the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in the most significant
three bits of the address. The network address is contained in the three most
significant bytes, and the host address occupies the remaining byte.

Classful network addresses are now obsolete, having been superseded by Classless Inter-Do?

main Routing (CIDR), which divides addresses into network and host components at arbitrary

bit (rather than byte) boundaries.
EXAMPLES
An example of the use of inet_aton() and inet_ntoa() is shown below. Here are some exam?
ple runs:
$.Ja.out 226.000.000.037 # Last byte is in octal
226.0.0.31
$ Ja.out Ox7f.1 # First byte is in hex
127.0.0.1
Program source

#define_ BSD_SOURCE

#include <arpalinet.h>

#include <stdio.h>

#include <stdlib.h>

int

main(int argc, char *argv[])

{
struct in_addr addr;
if (argc 1= 2) {
fprintf(stderr, "%s <dotted-address>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (inet_aton(argv[1], &addr) == 0) { Page 4/5

fprintf(stderr, "Invalid address\n®);
exit(EXIT_FAILURE);
}
printf("%s\n", inet_ntoa(addr));
exit(EXIT_SUCCESS);
}
SEE ALSO
byteorder(3), getaddrinfo(3), gethostbyname(3), getnameinfo(3), getnetent(3),
inet_net_pton(3), inet_ntop(3), inet_pton(3), hosts(5), networks(5)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 INET(3)

Page 5/5

