
Rocky Enterprise Linux 9.2 Manual Pages on command 'ioctl_console.2'

$ man ioctl_console.2

IOCTL_CONSOLE(2) Linux Programmer's Manual IOCTL_CONSOLE(2)

NAME

 ioctl_console - ioctls for console terminal and virtual consoles

DESCRIPTION

 The following Linux-specific ioctl(2) requests are supported for console terminals and

 virtual consoles. Each requires a third argument, assumed here to be argp.

 KDGETLED

 Get state of LEDs. argp points to a char. The lower three bits of *argp are set

 to the state of the LEDs, as follows:

 LED_CAP 0x04 caps lock led

 LED_NUM 0x02 num lock led

 LED_SCR 0x01 scroll lock led

 KDSETLED

 Set the LEDs. The LEDs are set to correspond to the lower three bits of the un?

 signed long integer in argp. However, if a higher order bit is set, the LEDs re?

 vert to normal: displaying the state of the keyboard functions of caps lock, num

 lock, and scroll lock.

 Before Linux 1.1.54, the LEDs just reflected the state of the corresponding keyboard

 flags, and KDGETLED/KDSETLED would also change the keyboard flags. Since Linux 1.1.54 the

 LEDs can be made to display arbitrary information, but by default they display the key?

 board flags. The following two ioctls are used to access the keyboard flags.

 KDGKBLED

 Get keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp points to a Page 1/12

 char which is set to the flag state. The low order three bits (mask 0x7) get the

 current flag state, and the low order bits of the next nibble (mask 0x70) get the

 default flag state. (Since Linux 1.1.54.)

 KDSKBLED

 Set keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp is an unsigned

 long integer that has the desired flag state. The low order three bits (mask 0x7)

 have the flag state, and the low order bits of the next nibble (mask 0x70) have the

 default flag state. (Since Linux 1.1.54.)

 KDGKBTYPE

 Get keyboard type. This returns the value KB_101, defined as 0x02.

 KDADDIO

 Add I/O port as valid. Equivalent to ioperm(arg,1,1).

 KDDELIO

 Delete I/O port as valid. Equivalent to ioperm(arg,1,0).

 KDENABIO

 Enable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 1).

 KDDISABIO

 Disable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 0).

 KDSETMODE

 Set text/graphics mode. argp is an unsigned integer containing one of:

 KD_TEXT 0x00

 KD_GRAPHICS 0x01

 KDGETMODE

 Get text/graphics mode. argp points to an int which is set to one of the values

 shown above for KDSETMODE.

 KDMKTONE

 Generate tone of specified length. The lower 16 bits of the unsigned long integer

 in argp specify the period in clock cycles, and the upper 16 bits give the duration

 in msec. If the duration is zero, the sound is turned off. Control returns imme?

 diately. For example, argp = (125<<16) + 0x637 would specify the beep normally as?

 sociated with a ctrl-G. (Thus since Linux 0.99pl1; broken in Linux 2.1.49-50.)

 KIOCSOUND

 Start or stop sound generation. The lower 16 bits of argp specify the period in Page 2/12

 clock cycles (that is, argp = 1193180/frequency). argp = 0 turns sound off. In

 either case, control returns immediately.

 GIO_CMAP

 Get the current default color map from kernel. argp points to a 48-byte array.

 (Since Linux 1.3.3.)

 PIO_CMAP

 Change the default text-mode color map. argp points to a 48-byte array which con?

 tains, in order, the Red, Green, and Blue values for the 16 available screen col?

 ors: 0 is off, and 255 is full intensity. The default colors are, in order: black,

 dark red, dark green, brown, dark blue, dark purple, dark cyan, light grey, dark

 grey, bright red, bright green, yellow, bright blue, bright purple, bright cyan and

 white. (Since Linux 1.3.3.)

 GIO_FONT

 Gets 256-character screen font in expanded form. argp points to an 8192-byte ar?

 ray. Fails with error code EINVAL if the currently loaded font is a 512-character

 font, or if the console is not in text mode.

 GIO_FONTX

 Gets screen font and associated information. argp points to a struct consolefont?

 desc (see PIO_FONTX). On call, the charcount field should be set to the maximum

 number of characters that would fit in the buffer pointed to by chardata. On re?

 turn, the charcount and charheight are filled with the respective data for the cur?

 rently loaded font, and the chardata array contains the font data if the initial

 value of charcount indicated enough space was available; otherwise the buffer is

 untouched and errno is set to ENOMEM. (Since Linux 1.3.1.)

 PIO_FONT

 Sets 256-character screen font. Load font into the EGA/VGA character generator.

 argp points to an 8192-byte map, with 32 bytes per character. Only the first N of

 them are used for an 8xN font (0 < N <= 32). This call also invalidates the Uni?

 code mapping.

 PIO_FONTX

 Sets screen font and associated rendering information. argp points to a

 struct consolefontdesc {

 unsigned short charcount; /* characters in font Page 3/12

 (256 or 512) */

 unsigned short charheight; /* scan lines per

 character (1-32) */

 char *chardata; /* font data in

 expanded form */

 };

 If necessary, the screen will be appropriately resized, and SIGWINCH sent to the

 appropriate processes. This call also invalidates the Unicode mapping. (Since

 Linux 1.3.1.)

 PIO_FONTRESET

 Resets the screen font, size and Unicode mapping to the bootup defaults. argp is

 unused, but should be set to NULL to ensure compatibility with future versions of

 Linux. (Since Linux 1.3.28.)

 GIO_SCRNMAP

 Get screen mapping from kernel. argp points to an area of size E_TABSZ, which is

 loaded with the font positions used to display each character. This call is likely

 to return useless information if the currently loaded font is more than 256 charac?

 ters.

 GIO_UNISCRNMAP

 Get full Unicode screen mapping from kernel. argp points to an area of size

 E_TABSZ*sizeof(unsigned short), which is loaded with the Unicodes each character

 represent. A special set of Unicodes, starting at U+F000, are used to represent

 "direct to font" mappings. (Since Linux 1.3.1.)

 PIO_SCRNMAP

 Loads the "user definable" (fourth) table in the kernel which maps bytes into con?

 sole screen symbols. argp points to an area of size E_TABSZ.

 PIO_UNISCRNMAP

 Loads the "user definable" (fourth) table in the kernel which maps bytes into Uni?

 codes, which are then translated into screen symbols according to the currently

 loaded Unicode-to-font map. Special Unicodes starting at U+F000 can be used to map

 directly to the font symbols. (Since Linux 1.3.1.)

 GIO_UNIMAP

 Get Unicode-to-font mapping from kernel. argp points to a Page 4/12

 struct unimapdesc {

 unsigned short entry_ct;

 struct unipair *entries;

 };

 where entries points to an array of

 struct unipair {

 unsigned short unicode;

 unsigned short fontpos;

 };

 (Since Linux 1.1.92.)

 PIO_UNIMAP

 Put unicode-to-font mapping in kernel. argp points to a struct unimapdesc. (Since

 Linux 1.1.92)

 PIO_UNIMAPCLR

 Clear table, possibly advise hash algorithm. argp points to a

 struct unimapinit {

 unsigned short advised_hashsize; /* 0 if no opinion */

 unsigned short advised_hashstep; /* 0 if no opinion */

 unsigned short advised_hashlevel; /* 0 if no opinion */

 };

 (Since Linux 1.1.92.)

 KDGKBMODE

 Gets current keyboard mode. argp points to a long which is set to one of these:

 K_RAW 0x00 /* Raw (scancode) mode */

 K_XLATE 0x01 /* Translate keycodes using keymap */

 K_MEDIUMRAW 0x02 /* Medium raw (scancode) mode */

 K_UNICODE 0x03 /* Unicode mode */

 K_OFF 0x04 /* Disabled mode; since Linux 2.6.39 */

 KDSKBMODE

 Sets current keyboard mode. argp is a long equal to one of the values shown for

 KDGKBMODE.

 KDGKBMETA

 Gets meta key handling mode. argp points to a long which is set to one of these: Page 5/12

 K_METABIT 0x03 set high order bit

 K_ESCPREFIX 0x04 escape prefix

 KDSKBMETA

 Sets meta key handling mode. argp is a long equal to one of the values shown above

 for KDGKBMETA.

 KDGKBENT

 Gets one entry in key translation table (keycode to action code). argp points to a

 struct kbentry {

 unsigned char kb_table;

 unsigned char kb_index;

 unsigned short kb_value;

 };

 with the first two members filled in: kb_table selects the key table (0 <= kb_table

 < MAX_NR_KEYMAPS), and kb_index is the keycode (0 <= kb_index < NR_KEYS). kb_value

 is set to the corresponding action code, or K_HOLE if there is no such key, or

 K_NOSUCHMAP if kb_table is invalid.

 KDSKBENT

 Sets one entry in translation table. argp points to a struct kbentry.

 KDGKBSENT

 Gets one function key string. argp points to a

 struct kbsentry {

 unsigned char kb_func;

 unsigned char kb_string[512];

 };

 kb_string is set to the (null-terminated) string corresponding to the kb_functh

 function key action code.

 KDSKBSENT

 Sets one function key string entry. argp points to a struct kbsentry.

 KDGKBDIACR

 Read kernel accent table. argp points to a

 struct kbdiacrs {

 unsigned int kb_cnt;

 struct kbdiacr kbdiacr[256]; Page 6/12

 };

 where kb_cnt is the number of entries in the array, each of which is a

 struct kbdiacr {

 unsigned char diacr;

 unsigned char base;

 unsigned char result;

 };

 KDGETKEYCODE

 Read kernel keycode table entry (scan code to keycode). argp points to a

 struct kbkeycode {

 unsigned int scancode;

 unsigned int keycode;

 };

 keycode is set to correspond to the given scancode. (89 <= scancode <= 255 only.

 For 1 <= scancode <= 88, keycode==scancode.) (Since Linux 1.1.63.)

 KDSETKEYCODE

 Write kernel keycode table entry. argp points to a struct kbkeycode. (Since Linux

 1.1.63.)

 KDSIGACCEPT

 The calling process indicates its willingness to accept the signal argp when it is

 generated by pressing an appropriate key combination. (1 <= argp <= NSIG). (See

 spawn_console() in linux/drivers/char/keyboard.c.)

 VT_OPENQRY

 Returns the first available (non-opened) console. argp points to an int which is

 set to the number of the vt (1 <= *argp <= MAX_NR_CONSOLES).

 VT_GETMODE

 Get mode of active vt. argp points to a

 struct vt_mode {

 char mode; /* vt mode */

 char waitv; /* if set, hang on writes if not active */

 short relsig; /* signal to raise on release req */

 short acqsig; /* signal to raise on acquisition */

 short frsig; /* unused (set to 0) */ Page 7/12

 };

 which is set to the mode of the active vt. mode is set to one of these values:

 VT_AUTO auto vt switching

 VT_PROCESS process controls switching

 VT_ACKACQ acknowledge switch

 VT_SETMODE

 Set mode of active vt. argp points to a struct vt_mode.

 VT_GETSTATE

 Get global vt state info. argp points to a

 struct vt_stat {

 unsigned short v_active; /* active vt */

 unsigned short v_signal; /* signal to send */

 unsigned short v_state; /* vt bit mask */

 };

 For each vt in use, the corresponding bit in the v_state member is set. (Kernels

 1.0 through 1.1.92.)

 VT_RELDISP

 Release a display.

 VT_ACTIVATE

 Switch to vt argp (1 <= argp <= MAX_NR_CONSOLES).

 VT_WAITACTIVE

 Wait until vt argp has been activated.

 VT_DISALLOCATE

 Deallocate the memory associated with vt argp. (Since Linux 1.1.54.)

 VT_RESIZE

 Set the kernel's idea of screensize. argp points to a

 struct vt_sizes {

 unsigned short v_rows; /* # rows */

 unsigned short v_cols; /* # columns */

 unsigned short v_scrollsize; /* no longer used */

 };

 Note that this does not change the videomode. See resizecons(8). (Since Linux

 1.1.54.) Page 8/12

 VT_RESIZEX

 Set the kernel's idea of various screen parameters. argp points to a

 struct vt_consize {

 unsigned short v_rows; /* number of rows */

 unsigned short v_cols; /* number of columns */

 unsigned short v_vlin; /* number of pixel rows

 on screen */

 unsigned short v_clin; /* number of pixel rows

 per character */

 unsigned short v_vcol; /* number of pixel columns

 on screen */

 unsigned short v_ccol; /* number of pixel columns

 per character */

 };

 Any parameter may be set to zero, indicating "no change", but if multiple parame?

 ters are set, they must be self-consistent. Note that this does not change the

 videomode. See resizecons(8). (Since Linux 1.3.3.)

 The action of the following ioctls depends on the first byte in the struct pointed to by

 argp, referred to here as the subcode. These are legal only for the superuser or the

 owner of the current terminal.

 TIOCLINUX, subcode=0

 Dump the screen. Disappeared in Linux 1.1.92. (With kernel 1.1.92 or later, read

 from /dev/vcsN or /dev/vcsaN instead.)

 TIOCLINUX, subcode=1

 Get task information. Disappeared in Linux 1.1.92.

 TIOCLINUX, subcode=2

 Set selection. argp points to a

 struct {

 char subcode;

 short xs, ys, xe, ye;

 short sel_mode;

 };

 xs and ys are the starting column and row. xe and ye are the ending column and Page 9/12

 row. (Upper left corner is row=column=1.) sel_mode is 0 for character-by-charac?

 ter selection, 1 for word-by-word selection, or 2 for line-by-line selection. The

 indicated screen characters are highlighted and saved in the static array sel_buf?

 fer in devices/char/console.c.

 TIOCLINUX, subcode=3

 Paste selection. The characters in the selection buffer are written to fd.

 TIOCLINUX, subcode=4

 Unblank the screen.

 TIOCLINUX, subcode=5

 Sets contents of a 256-bit look up table defining characters in a "word", for word-

 by-word selection. (Since Linux 1.1.32.)

 TIOCLINUX, subcode=6

 argp points to a char which is set to the value of the kernel variable shift_state.

 (Since Linux 1.1.32.)

 TIOCLINUX, subcode=7

 argp points to a char which is set to the value of the kernel variable re?

 port_mouse. (Since Linux 1.1.33.)

 TIOCLINUX, subcode=8

 Dump screen width and height, cursor position, and all the character-attribute

 pairs. (Kernels 1.1.67 through 1.1.91 only. With kernel 1.1.92 or later, read

 from /dev/vcsa* instead.)

 TIOCLINUX, subcode=9

 Restore screen width and height, cursor position, and all the character-attribute

 pairs. (Kernels 1.1.67 through 1.1.91 only. With kernel 1.1.92 or later, write to

 /dev/vcsa* instead.)

 TIOCLINUX, subcode=10

 Handles the Power Saving feature of the new generation of monitors. VESA screen

 blanking mode is set to argp[1], which governs what screen blanking does:

 0: Screen blanking is disabled.

 1: The current video adapter register settings are saved, then the controller is

 programmed to turn off the vertical synchronization pulses. This puts the moni?

 tor into "standby" mode. If your monitor has an Off_Mode timer, then it will

 eventually power down by itself. Page 10/12

 2: The current settings are saved, then both the vertical and horizontal synchro?

 nization pulses are turned off. This puts the monitor into "off" mode. If your

 monitor has no Off_Mode timer, or if you want your monitor to power down immedi?

 ately when the blank_timer times out, then you choose this option. (Caution:

 Powering down frequently will damage the monitor.) (Since Linux 1.1.76.)

RETURN VALUE

 On success, 0 is returned. On error, -1 is returned, and errno is set.

ERRORS

 errno may take on these values:

 EBADF The file descriptor is invalid.

 EINVAL The file descriptor or argp is invalid.

 ENOTTY The file descriptor is not associated with a character special device, or the spec?

 ified request does not apply to it.

 EPERM Insufficient permission.

NOTES

 Warning: Do not regard this man page as documentation of the Linux console ioctls. This

 is provided for the curious only, as an alternative to reading the source. Ioctl's are

 undocumented Linux internals, liable to be changed without warning. (And indeed, this

 page more or less describes the situation as of kernel version 1.1.94; there are many mi?

 nor and not-so-minor differences with earlier versions.)

 Very often, ioctls are introduced for communication between the kernel and one particular

 well-known program (fdisk, hdparm, setserial, tunelp, loadkeys, selection, setfont, etc.),

 and their behavior will be changed when required by this particular program.

 Programs using these ioctls will not be portable to other versions of UNIX, will not work

 on older versions of Linux, and will not work on future versions of Linux.

 Use POSIX functions.

SEE ALSO

 dumpkeys(1), kbd_mode(1), loadkeys(1), mknod(1), setleds(1), setmetamode(1), execve(2),

 fcntl(2), ioctl_tty(2), ioperm(2), termios(3), console_codes(4), mt(4), sd(4), tty(4),

 ttyS(4), vcs(4), vcsa(4), charsets(7), mapscrn(8), resizecons(8), setfont(8)

 /usr/include/linux/kd.h, /usr/include/linux/vt.h

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the Page 11/12

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 IOCTL_CONSOLE(2)

Page 12/12

