
Rocky Enterprise Linux 9.2 Manual Pages on command 'ioprio_set.2'

$ man ioprio_set.2

IOPRIO_SET(2) Linux Programmer's Manual IOPRIO_SET(2)

NAME

 ioprio_get, ioprio_set - get/set I/O scheduling class and priority

SYNOPSIS

 int ioprio_get(int which, int who);

 int ioprio_set(int which, int who, int ioprio);

 Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION

 The ioprio_get() and ioprio_set() system calls get and set the I/O scheduling class and

 priority of one or more threads.

 The which and who arguments identify the thread(s) on which the system calls operate. The

 which argument determines how who is interpreted, and has one of the following values:

 IOPRIO_WHO_PROCESS

 who is a process ID or thread ID identifying a single process or thread. If who is

 0, then operate on the calling thread.

 IOPRIO_WHO_PGRP

 who is a process group ID identifying all the members of a process group. If who

 is 0, then operate on the process group of which the caller is a member.

 IOPRIO_WHO_USER

 who is a user ID identifying all of the processes that have a matching real UID.

 If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when calling ioprio_get(), and

 more than one process matches who, then the returned priority will be the highest one

 found among all of the matching processes. One priority is said to be higher than another Page 1/5

 one if it belongs to a higher priority class (IOPRIO_CLASS_RT is the highest priority

 class; IOPRIO_CLASS_IDLE is the lowest) or if it belongs to the same priority class as the

 other process but has a higher priority level (a lower priority number means a higher pri?

 ority level).

 The ioprio argument given to ioprio_set() is a bit mask that specifies both the scheduling

 class and the priority to be assigned to the target process(es). The following macros are

 used for assembling and dissecting ioprio values:

 IOPRIO_PRIO_VALUE(class, data)

 Given a scheduling class and priority (data), this macro combines the two values to

 produce an ioprio value, which is returned as the result of the macro.

 IOPRIO_PRIO_CLASS(mask)

 Given mask (an ioprio value), this macro returns its I/O class component, that is,

 one of the values IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, or IOPRIO_CLASS_IDLE.

 IOPRIO_PRIO_DATA(mask)

 Given mask (an ioprio value), this macro returns its priority (data) component.

 See the NOTES section for more information on scheduling classes and priorities, as well

 as the meaning of specifying ioprio as 0.

 I/O priorities are supported for reads and for synchronous (O_DIRECT, O_SYNC) writes. I/O

 priorities are not supported for asynchronous writes because they are issued outside the

 context of the program dirtying the memory, and thus program-specific priorities do not

 apply.

RETURN VALUE

 On success, ioprio_get() returns the ioprio value of the process with highest I/O priority

 of any of the processes that match the criteria specified in which and who. On error, -1

 is returned, and errno is set to indicate the error.

 On success, ioprio_set() returns 0. On error, -1 is returned, and errno is set to indi?

 cate the error.

ERRORS

 EINVAL Invalid value for which or ioprio. Refer to the NOTES section for available sched?

 uler classes and priority levels for ioprio.

 EPERM The calling process does not have the privilege needed to assign this ioprio to the

 specified process(es). See the NOTES section for more information on required

 privileges for ioprio_set(). Page 2/5

 ESRCH No process(es) could be found that matched the specification in which and who.

VERSIONS

 These system calls have been available on Linux since kernel 2.6.13.

CONFORMING TO

 These system calls are Linux-specific.

NOTES

 Glibc does not provide a wrapper for these system calls; call them using syscall(2).

 Two or more processes or threads can share an I/O context. This will be the case when

 clone(2) was called with the CLONE_IO flag. However, by default, the distinct threads of

 a process will not share the same I/O context. This means that if you want to change the

 I/O priority of all threads in a process, you may need to call ioprio_set() on each of the

 threads. The thread ID that you would need for this operation is the one that is returned

 by gettid(2) or clone(2).

 These system calls have an effect only when used in conjunction with an I/O scheduler that

 supports I/O priorities. As at kernel 2.6.17 the only such scheduler is the Completely

 Fair Queuing (CFQ) I/O scheduler.

 If no I/O scheduler has been set for a thread, then by default the I/O priority will fol?

 low the CPU nice value (setpriority(2)). In Linux kernels before version 2.6.24, once an

 I/O priority had been set using ioprio_set(), there was no way to reset the I/O scheduling

 behavior to the default. Since Linux 2.6.24, specifying ioprio as 0 can be used to reset

 to the default I/O scheduling behavior.

 Selecting an I/O scheduler

 I/O schedulers are selected on a per-device basis via the special file /sys/block/<de?

 vice>/queue/scheduler.

 One can view the current I/O scheduler via the /sys filesystem. For example, the follow?

 ing command displays a list of all schedulers currently loaded in the kernel:

 $ cat /sys/block/sda/queue/scheduler

 noop anticipatory deadline [cfq]

 The scheduler surrounded by brackets is the one actually in use for the device (sda in the

 example). Setting another scheduler is done by writing the name of the new scheduler to

 this file. For example, the following command will set the scheduler for the sda device

 to cfq:

 $ su Page 3/5

 Password:

 # echo cfq > /sys/block/sda/queue/scheduler

 The Completely Fair Queuing (CFQ) I/O scheduler

 Since version 3 (also known as CFQ Time Sliced), CFQ implements I/O nice levels similar to

 those of CPU scheduling. These nice levels are grouped into three scheduling classes,

 each one containing one or more priority levels:

 IOPRIO_CLASS_RT (1)

 This is the real-time I/O class. This scheduling class is given higher priority

 than any other class: processes from this class are given first access to the disk

 every time. Thus, this I/O class needs to be used with some care: one I/O real-

 time process can starve the entire system. Within the real-time class, there are 8

 levels of class data (priority) that determine exactly how much time this process

 needs the disk for on each service. The highest real-time priority level is 0; the

 lowest is 7. In the future, this might change to be more directly mappable to per?

 formance, by passing in a desired data rate instead.

 IOPRIO_CLASS_BE (2)

 This is the best-effort scheduling class, which is the default for any process that

 hasn't set a specific I/O priority. The class data (priority) determines how much

 I/O bandwidth the process will get. Best-effort priority levels are analogous to

 CPU nice values (see getpriority(2)). The priority level determines a priority

 relative to other processes in the best-effort scheduling class. Priority levels

 range from 0 (highest) to 7 (lowest).

 IOPRIO_CLASS_IDLE (3)

 This is the idle scheduling class. Processes running at this level get I/O time

 only when no one else needs the disk. The idle class has no class data. Attention

 is required when assigning this priority class to a process, since it may become

 starved if higher priority processes are constantly accessing the disk.

 Refer to the kernel source file Documentation/block/ioprio.txt for more information on the

 CFQ I/O Scheduler and an example program.

 Required permissions to set I/O priorities

 Permission to change a process's priority is granted or denied based on two criteria:

 Process ownership

 An unprivileged process may set the I/O priority only for a process whose real UID Page 4/5

 matches the real or effective UID of the calling process. A process which has the

 CAP_SYS_NICE capability can change the priority of any process.

 What is the desired priority

 Attempts to set very high priorities (IOPRIO_CLASS_RT) require the CAP_SYS_ADMIN

 capability. Kernel versions up to 2.6.24 also required CAP_SYS_ADMIN to set a very

 low priority (IOPRIO_CLASS_IDLE), but since Linux 2.6.25, this is no longer re?

 quired.

 A call to ioprio_set() must follow both rules, or the call will fail with the error EPERM.

BUGS

 Glibc does not yet provide a suitable header file defining the function prototypes and

 macros described on this page. Suitable definitions can be found in linux/ioprio.h.

SEE ALSO

 ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)

 Documentation/block/ioprio.txt in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 IOPRIO_SET(2)

Page 5/5

