
Rocky Enterprise Linux 9.2 Manual Pages on command 'iptables-extensions.8'

$ man iptables-extensions.8

iptables-extensions(8) iptables 1.8.7 iptables-extensions(8)

NAME

 iptables-extensions ? list of extensions in the standard iptables distribution

SYNOPSIS

 ip6tables [-m name [module-options...]] [-j target-name [target-options...]

 iptables [-m name [module-options...]] [-j target-name [target-options...]

MATCH EXTENSIONS

 iptables can use extended packet matching modules with the -m or --match options, followed

 by the matching module name; after these, various extra command line options become avail?

 able, depending on the specific module. You can specify multiple extended match modules

 in one line, and you can use the -h or --help options after the module has been specified

 to receive help specific to that module. The extended match modules are evaluated in the

 order they are specified in the rule.

 If the -p or --protocol was specified and if and only if an unknown option is encountered,

 iptables will try load a match module of the same name as the protocol, to try making the

 option available.

 addrtype

 This module matches packets based on their address type. Address types are used within

 the kernel networking stack and categorize addresses into various groups. The exact defi?

 nition of that group depends on the specific layer three protocol.

 The following address types are possible:

 UNSPEC an unspecified address (i.e. 0.0.0.0)

 UNICAST Page 1/59

 an unicast address

 LOCAL a local address

 BROADCAST

 a broadcast address

 ANYCAST

 an anycast packet

 MULTICAST

 a multicast address

 BLACKHOLE

 a blackhole address

 UNREACHABLE

 an unreachable address

 PROHIBIT

 a prohibited address

 THROW FIXME

 NAT FIXME

 XRESOLVE

 [!] --src-type type

 Matches if the source address is of given type

 [!] --dst-type type

 Matches if the destination address is of given type

 --limit-iface-in

 The address type checking can be limited to the interface the packet is coming in.

 This option is only valid in the PREROUTING, INPUT and FORWARD chains. It cannot be

 specified with the --limit-iface-out option.

 --limit-iface-out

 The address type checking can be limited to the interface the packet is going out.

 This option is only valid in the POSTROUTING, OUTPUT and FORWARD chains. It cannot

 be specified with the --limit-iface-in option.

 ah (IPv6-specific)

 This module matches the parameters in Authentication header of IPsec packets.

 [!] --ahspi spi[:spi]

 Matches SPI. Page 2/59

 [!] --ahlen length

 Total length of this header in octets.

 --ahres

 Matches if the reserved field is filled with zero.

 ah (IPv4-specific)

 This module matches the SPIs in Authentication header of IPsec packets.

 [!] --ahspi spi[:spi]

 bpf

 Match using Linux Socket Filter. Expects a path to an eBPF object or a cBPF program in

 decimal format.

 --object-pinned path

 Pass a path to a pinned eBPF object.

 Applications load eBPF programs into the kernel with the bpf() system call and

 BPF_PROG_LOAD command and can pin them in a virtual filesystem with BPF_OBJ_PIN. To use a

 pinned object in iptables, mount the bpf filesystem using

 mount -t bpf bpf ${BPF_MOUNT}

 then insert the filter in iptables by path:

 iptables -A OUTPUT -m bpf --object-pinned ${BPF_MOUNT}/{PINNED_PATH} -j ACCEPT

 --bytecode code

 Pass the BPF byte code format as generated by the nfbpf_compile utility.

 The code format is similar to the output of the tcpdump -ddd command: one line that stores

 the number of instructions, followed by one line for each instruction. Instruction lines

 follow the pattern 'u16 u8 u8 u32' in decimal notation. Fields encode the operation, jump

 offset if true, jump offset if false and generic multiuse field 'K'. Comments are not sup?

 ported.

 For example, to read only packets matching 'ip proto 6', insert the following, without the

 comments or trailing whitespace:

 4 # number of instructions

 48 0 0 9 # load byte ip->proto

 21 0 1 6 # jump equal IPPROTO_TCP

 6 0 0 1 # return pass (non-zero)

 6 0 0 0 # return fail (zero)

 You can pass this filter to the bpf match with the following command: Page 3/59

 iptables -A OUTPUT -m bpf --bytecode '4,48 0 0 9,21 0 1 6,6 0 0 1,6 0 0 0' -j AC?

 CEPT

 Or instead, you can invoke the nfbpf_compile utility.

 iptables -A OUTPUT -m bpf --bytecode "`nfbpf_compile RAW 'ip proto 6'`" -j ACCEPT

 Or use tcpdump -ddd. In that case, generate BPF targeting a device with the same data link

 type as the xtables match. Iptables passes packets from the network layer up, without mac

 layer. Select a device with data link type RAW, such as a tun device:

 ip tuntap add tun0 mode tun

 ip link set tun0 up

 tcpdump -ddd -i tun0 ip proto 6

 See tcpdump -L -i $dev for a list of known data link types for a given device.

 You may want to learn more about BPF from FreeBSD's bpf(4) manpage.

 cgroup

 [!] --path path

 Match cgroup2 membership.

 Each socket is associated with the v2 cgroup of the creating process. This matches

 packets coming from or going to all sockets in the sub-hierarchy of the specified

 path. The path should be relative to the root of the cgroup2 hierarchy.

 [!] --cgroup classid

 Match cgroup net_cls classid.

 classid is the marker set through the cgroup net_cls controller. This option and

 --path can't be used together.

 Example:

 iptables -A OUTPUT -p tcp --sport 80 -m cgroup ! --path service/http-server -j DROP

 iptables -A OUTPUT -p tcp --sport 80 -m cgroup ! --cgroup 1 -j DROP

 IMPORTANT: when being used in the INPUT chain, the cgroup matcher is currently only of

 limited functionality, meaning it will only match on packets that are processed for local

 sockets through early socket demuxing. Therefore, general usage on the INPUT chain is not

 advised unless the implications are well understood.

 Available since Linux 3.14.

 cluster

 Allows you to deploy gateway and back-end load-sharing clusters without the need of load-

 balancers. Page 4/59

 This match requires that all the nodes see the same packets. Thus, the cluster match de?

 cides if this node has to handle a packet given the following options:

 --cluster-total-nodes num

 Set number of total nodes in cluster.

 [!] --cluster-local-node num

 Set the local node number ID.

 [!] --cluster-local-nodemask mask

 Set the local node number ID mask. You can use this option instead of --cluster-lo?

 cal-node.

 --cluster-hash-seed value

 Set seed value of the Jenkins hash.

 Example:

 iptables -A PREROUTING -t mangle -i eth1 -m cluster --cluster-total-nodes 2 --clus?

 ter-local-node 1 --cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff

 iptables -A PREROUTING -t mangle -i eth2 -m cluster --cluster-total-nodes 2 --clus?

 ter-local-node 1 --cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff

 iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff -j DROP

 iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff -j DROP

 And the following commands to make all nodes see the same packets:

 ip maddr add 01:00:5e:00:01:01 dev eth1

 ip maddr add 01:00:5e:00:01:02 dev eth2

 arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-s 01:00:5e:00:01:01

 arptables -A INPUT -i eth1 --h-length 6 --destination-mac 01:00:5e:00:01:01 -j man?

 gle --mangle-mac-d 00:zz:yy:xx:5a:27

 arptables -A OUTPUT -o eth2 --h-length 6 -j mangle --mangle-mac-s 01:00:5e:00:01:02

 arptables -A INPUT -i eth2 --h-length 6 --destination-mac 01:00:5e:00:01:02 -j man?

 gle --mangle-mac-d 00:zz:yy:xx:5a:27

 NOTE: the arptables commands above use mainstream syntax. If you are using arptables-jf

 included in some RedHat, CentOS and Fedora versions, you will hit syntax errors. There?

 fore, you'll have to adapt these to the arptables-jf syntax to get them working.

 In the case of TCP connections, pickup facility has to be disabled to avoid marking TCP

 ACK packets coming in the reply direction as valid.

 echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose Page 5/59

 comment

 Allows you to add comments (up to 256 characters) to any rule.

 --comment comment

 Example:

 iptables -A INPUT -i eth1 -m comment --comment "my local LAN"

 connbytes

 Match by how many bytes or packets a connection (or one of the two flows constituting the

 connection) has transferred so far, or by average bytes per packet.

 The counters are 64-bit and are thus not expected to overflow ;)

 The primary use is to detect long-lived downloads and mark them to be scheduled using a

 lower priority band in traffic control.

 The transferred bytes per connection can also be viewed through `conntrack -L` and ac?

 cessed via ctnetlink.

 NOTE that for connections which have no accounting information, the match will always re?

 turn false. The "net.netfilter.nf_conntrack_acct" sysctl flag controls whether new connec?

 tions will be byte/packet counted. Existing connection flows will not be gaining/losing

 a/the accounting structure when be sysctl flag is flipped.

 [!] --connbytes from[:to]

 match packets from a connection whose packets/bytes/average packet size is more

 than FROM and less than TO bytes/packets. if TO is omitted only FROM check is done.

 "!" is used to match packets not falling in the range.

 --connbytes-dir {original|reply|both}

 which packets to consider

 --connbytes-mode {packets|bytes|avgpkt}

 whether to check the amount of packets, number of bytes transferred or the average

 size (in bytes) of all packets received so far. Note that when "both" is used to?

 gether with "avgpkt", and data is going (mainly) only in one direction (for example

 HTTP), the average packet size will be about half of the actual data packets.

 Example:

 iptables .. -m connbytes --connbytes 10000:100000 --connbytes-dir both

 --connbytes-mode bytes ...

 connlabel

 Module matches or adds connlabels to a connection. connlabels are similar to connmarks, Page 6/59

 except labels are bit-based; i.e. all labels may be attached to a flow at the same time.

 Up to 128 unique labels are currently supported.

 [!] --label name

 matches if label name has been set on a connection. Instead of a name (which will

 be translated to a number, see EXAMPLE below), a number may be used instead. Using

 a number always overrides connlabel.conf.

 --set if the label has not been set on the connection, set it. Note that setting a label

 can fail. This is because the kernel allocates the conntrack label storage area

 when the connection is created, and it only reserves the amount of memory required

 by the ruleset that exists at the time the connection is created. In this case,

 the match will fail (or succeed, in case --label option was negated).

 This match depends on libnetfilter_conntrack 1.0.4 or later. Label translation is done

 via the /etc/xtables/connlabel.conf configuration file.

 Example:

 0 eth0-in

 1 eth0-out

 2 ppp-in

 3 ppp-out

 4 bulk-traffic

 5 interactive

 connlimit

 Allows you to restrict the number of parallel connections to a server per client IP ad?

 dress (or client address block).

 --connlimit-upto n

 Match if the number of existing connections is below or equal n.

 --connlimit-above n

 Match if the number of existing connections is above n.

 --connlimit-mask prefix_length

 Group hosts using the prefix length. For IPv4, this must be a number between (in?

 cluding) 0 and 32. For IPv6, between 0 and 128. If not specified, the maximum pre?

 fix length for the applicable protocol is used.

 --connlimit-saddr

 Apply the limit onto the source group. This is the default if --connlimit-daddr is Page 7/59

 not specified.

 --connlimit-daddr

 Apply the limit onto the destination group.

 Examples:

 # allow 2 telnet connections per client host

 iptables -A INPUT -p tcp --syn --dport 23 -m connlimit --connlimit-above 2 -j RE?

 JECT

 # you can also match the other way around:

 iptables -A INPUT -p tcp --syn --dport 23 -m connlimit --connlimit-upto 2 -j ACCEPT

 # limit the number of parallel HTTP requests to 16 per class C sized source network (24

 bit netmask)

 iptables -p tcp --syn --dport 80 -m connlimit --connlimit-above 16 --connlimit-mask

 24 -j REJECT

 # limit the number of parallel HTTP requests to 16 for the link local network

 (ipv6) ip6tables -p tcp --syn --dport 80 -s fe80::/64 -m connlimit

 --connlimit-above 16 --connlimit-mask 64 -j REJECT

 # Limit the number of connections to a particular host:

 ip6tables -p tcp --syn --dport 49152:65535 -d 2001:db8::1 -m connlimit --connlimit-

 above 100 -j REJECT

 connmark

 This module matches the netfilter mark field associated with a connection (which can be

 set using the CONNMARK target below).

 [!] --mark value[/mask]

 Matches packets in connections with the given mark value (if a mask is specified,

 this is logically ANDed with the mark before the comparison).

 conntrack

 This module, when combined with connection tracking, allows access to the connection

 tracking state for this packet/connection.

 [!] --ctstate statelist

 statelist is a comma separated list of the connection states to match. Possible

 states are listed below.

 [!] --ctproto l4proto

 Layer-4 protocol to match (by number or name) Page 8/59

 [!] --ctorigsrc address[/mask]

 [!] --ctorigdst address[/mask]

 [!] --ctreplsrc address[/mask]

 [!] --ctrepldst address[/mask]

 Match against original/reply source/destination address

 [!] --ctorigsrcport port[:port]

 [!] --ctorigdstport port[:port]

 [!] --ctreplsrcport port[:port]

 [!] --ctrepldstport port[:port]

 Match against original/reply source/destination port (TCP/UDP/etc.) or GRE key.

 Matching against port ranges is only supported in kernel versions above 2.6.38.

 [!] --ctstatus statelist

 statuslist is a comma separated list of the connection statuses to match. Possible

 statuses are listed below.

 [!] --ctexpire time[:time]

 Match remaining lifetime in seconds against given value or range of values (inclu?

 sive)

 --ctdir {ORIGINAL|REPLY}

 Match packets that are flowing in the specified direction. If this flag is not

 specified at all, matches packets in both directions.

 States for --ctstate:

 INVALID

 The packet is associated with no known connection.

 NEW The packet has started a new connection or otherwise associated with a connection

 which has not seen packets in both directions.

 ESTABLISHED

 The packet is associated with a connection which has seen packets in both direc?

 tions.

 RELATED

 The packet is starting a new connection, but is associated with an existing connec?

 tion, such as an FTP data transfer or an ICMP error.

 UNTRACKED

 The packet is not tracked at all, which happens if you explicitly untrack it by us? Page 9/59

 ing -j CT --notrack in the raw table.

 SNAT A virtual state, matching if the original source address differs from the reply

 destination.

 DNAT A virtual state, matching if the original destination differs from the reply

 source.

 Statuses for --ctstatus:

 NONE None of the below.

 EXPECTED

 This is an expected connection (i.e. a conntrack helper set it up).

 SEEN_REPLY

 Conntrack has seen packets in both directions.

 ASSURED

 Conntrack entry should never be early-expired.

 CONFIRMED

 Connection is confirmed: originating packet has left box.

 cpu

 [!] --cpu number

 Match cpu handling this packet. cpus are numbered from 0 to NR_CPUS-1 Can be used

 in combination with RPS (Remote Packet Steering) or multiqueue NICs to spread net?

 work traffic on different queues.

 Example:

 iptables -t nat -A PREROUTING -p tcp --dport 80 -m cpu --cpu 0 -j REDIRECT --to-port 8080

 iptables -t nat -A PREROUTING -p tcp --dport 80 -m cpu --cpu 1 -j REDIRECT --to-port 8081

 Available since Linux 2.6.36.

 dccp

 [!] --source-port,--sport port[:port]

 [!] --destination-port,--dport port[:port]

 [!] --dccp-types mask

 Match when the DCCP packet type is one of 'mask'. 'mask' is a comma-separated list

 of packet types. Packet types are: REQUEST RESPONSE DATA ACK DATAACK CLOSEREQ

 CLOSE RESET SYNC SYNCACK INVALID.

 [!] --dccp-option number

 Match if DCCP option set. Page 10/59

 devgroup

 Match device group of a packets incoming/outgoing interface.

 [!] --src-group name

 Match device group of incoming device

 [!] --dst-group name

 Match device group of outgoing device

 dscp

 This module matches the 6 bit DSCP field within the TOS field in the IP header. DSCP has

 superseded TOS within the IETF.

 [!] --dscp value

 Match against a numeric (decimal or hex) value [0-63].

 [!] --dscp-class class

 Match the DiffServ class. This value may be any of the BE, EF, AFxx or CSx classes.

 It will then be converted into its according numeric value.

 dst (IPv6-specific)

 This module matches the parameters in Destination Options header

 [!] --dst-len length

 Total length of this header in octets.

 --dst-opts type[:length][,type[:length]...]

 numeric type of option and the length of the option data in octets.

 ecn

 This allows you to match the ECN bits of the IPv4/IPv6 and TCP header. ECN is the Ex?

 plicit Congestion Notification mechanism as specified in RFC3168

 [!] --ecn-tcp-cwr

 This matches if the TCP ECN CWR (Congestion Window Received) bit is set.

 [!] --ecn-tcp-ece

 This matches if the TCP ECN ECE (ECN Echo) bit is set.

 [!] --ecn-ip-ect num

 This matches a particular IPv4/IPv6 ECT (ECN-Capable Transport). You have to spec?

 ify a number between `0' and `3'.

 esp

 This module matches the SPIs in ESP header of IPsec packets.

 [!] --espspi spi[:spi] Page 11/59

 eui64 (IPv6-specific)

 This module matches the EUI-64 part of a stateless autoconfigured IPv6 address. It com?

 pares the EUI-64 derived from the source MAC address in Ethernet frame with the lower 64

 bits of the IPv6 source address. But "Universal/Local" bit is not compared. This module

 doesn't match other link layer frame, and is only valid in the PREROUTING, INPUT and FOR?

 WARD chains.

 frag (IPv6-specific)

 This module matches the parameters in Fragment header.

 [!] --fragid id[:id]

 Matches the given Identification or range of it.

 [!] --fraglen length

 This option cannot be used with kernel version 2.6.10 or later. The length of Frag?

 ment header is static and this option doesn't make sense.

 --fragres

 Matches if the reserved fields are filled with zero.

 --fragfirst

 Matches on the first fragment.

 --fragmore

 Matches if there are more fragments.

 --fraglast

 Matches if this is the last fragment.

 hashlimit

 hashlimit uses hash buckets to express a rate limiting match (like the limit match) for a

 group of connections using a single iptables rule. Grouping can be done per-hostgroup

 (source and/or destination address) and/or per-port. It gives you the ability to express

 "N packets per time quantum per group" or "N bytes per seconds" (see below for some exam?

 ples).

 A hash limit option (--hashlimit-upto, --hashlimit-above) and --hashlimit-name are re?

 quired.

 --hashlimit-upto amount[/second|/minute|/hour|/day]

 Match if the rate is below or equal to amount/quantum. It is specified either as a

 number, with an optional time quantum suffix (the default is 3/hour), or as

 amountb/second (number of bytes per second). Page 12/59

 --hashlimit-above amount[/second|/minute|/hour|/day]

 Match if the rate is above amount/quantum.

 --hashlimit-burst amount

 Maximum initial number of packets to match: this number gets recharged by one every

 time the limit specified above is not reached, up to this number; the default is 5.

 When byte-based rate matching is requested, this option specifies the amount of

 bytes that can exceed the given rate. This option should be used with caution --

 if the entry expires, the burst value is reset too.

 --hashlimit-mode {srcip|srcport|dstip|dstport},...

 A comma-separated list of objects to take into consideration. If no --hash?

 limit-mode option is given, hashlimit acts like limit, but at the expensive of do?

 ing the hash housekeeping.

 --hashlimit-srcmask prefix

 When --hashlimit-mode srcip is used, all source addresses encountered will be

 grouped according to the given prefix length and the so-created subnet will be sub?

 ject to hashlimit. prefix must be between (inclusive) 0 and 32. Note that --hash?

 limit-srcmask 0 is basically doing the same thing as not specifying srcip for

 --hashlimit-mode, but is technically more expensive.

 --hashlimit-dstmask prefix

 Like --hashlimit-srcmask, but for destination addresses.

 --hashlimit-name foo

 The name for the /proc/net/ipt_hashlimit/foo entry.

 --hashlimit-htable-size buckets

 The number of buckets of the hash table

 --hashlimit-htable-max entries

 Maximum entries in the hash.

 --hashlimit-htable-expire msec

 After how many milliseconds do hash entries expire.

 --hashlimit-htable-gcinterval msec

 How many milliseconds between garbage collection intervals.

 --hashlimit-rate-match

 Classify the flow instead of rate-limiting it. This acts like a true/false match on

 whether the rate is above/below a certain number Page 13/59

 --hashlimit-rate-interval sec

 Can be used with --hashlimit-rate-match to specify the interval at which the rate

 should be sampled

 Examples:

 matching on source host

 "1000 packets per second for every host in 192.168.0.0/16" => -s 192.168.0.0/16

 --hashlimit-mode srcip --hashlimit-upto 1000/sec

 matching on source port

 "100 packets per second for every service of 192.168.1.1" => -s 192.168.1.1 --hash?

 limit-mode srcport --hashlimit-upto 100/sec

 matching on subnet

 "10000 packets per minute for every /28 subnet (groups of 8 addresses) in

 10.0.0.0/8" => -s 10.0.0.0/8 --hashlimit-mask 28 --hashlimit-upto 10000/min

 matching bytes per second

 "flows exceeding 512kbyte/s" => --hashlimit-mode srcip,dstip,srcport,dstport

 --hashlimit-above 512kb/s

 matching bytes per second

 "hosts that exceed 512kbyte/s, but permit up to 1Megabytes without matching"

 --hashlimit-mode dstip --hashlimit-above 512kb/s --hashlimit-burst 1mb

 hbh (IPv6-specific)

 This module matches the parameters in Hop-by-Hop Options header

 [!] --hbh-len length

 Total length of this header in octets.

 --hbh-opts type[:length][,type[:length]...]

 numeric type of option and the length of the option data in octets.

 helper

 This module matches packets related to a specific conntrack-helper.

 [!] --helper string

 Matches packets related to the specified conntrack-helper.

 string can be "ftp" for packets related to a ftp-session on default port. For

 other ports append -portnr to the value, ie. "ftp-2121".

 Same rules apply for other conntrack-helpers.

 hl (IPv6-specific) Page 14/59

 This module matches the Hop Limit field in the IPv6 header.

 [!] --hl-eq value

 Matches if Hop Limit equals value.

 --hl-lt value

 Matches if Hop Limit is less than value.

 --hl-gt value

 Matches if Hop Limit is greater than value.

 icmp (IPv4-specific)

 This extension can be used if `--protocol icmp' is specified. It provides the following

 option:

 [!] --icmp-type {type[/code]|typename}

 This allows specification of the ICMP type, which can be a numeric ICMP type,

 type/code pair, or one of the ICMP type names shown by the command

 iptables -p icmp -h

 icmp6 (IPv6-specific)

 This extension can be used if `--protocol ipv6-icmp' or `--protocol icmpv6' is specified.

 It provides the following option:

 [!] --icmpv6-type type[/code]|typename

 This allows specification of the ICMPv6 type, which can be a numeric ICMPv6 type,

 type and code, or one of the ICMPv6 type names shown by the command

 ip6tables -p ipv6-icmp -h

 iprange

 This matches on a given arbitrary range of IP addresses.

 [!] --src-range from[-to]

 Match source IP in the specified range.

 [!] --dst-range from[-to]

 Match destination IP in the specified range.

 ipv6header (IPv6-specific)

 This module matches IPv6 extension headers and/or upper layer header.

 --soft Matches if the packet includes any of the headers specified with --header.

 [!] --header header[,header...]

 Matches the packet which EXACTLY includes all specified headers. The headers encap?

 sulated with ESP header are out of scope. Possible header types can be: Page 15/59

 hop|hop-by-hop

 Hop-by-Hop Options header

 dst Destination Options header

 route Routing header

 frag Fragment header

 auth Authentication header

 esp Encapsulating Security Payload header

 none No Next header which matches 59 in the 'Next Header field' of IPv6 header or any

 IPv6 extension headers

 prot which matches any upper layer protocol header. A protocol name from /etc/protocols

 and numeric value also allowed. The number 255 is equivalent to prot.

 ipvs

 Match IPVS connection properties.

 [!] --ipvs

 packet belongs to an IPVS connection

 Any of the following options implies --ipvs (even negated)

 [!] --vproto protocol

 VIP protocol to match; by number or name, e.g. "tcp"

 [!] --vaddr address[/mask]

 VIP address to match

 [!] --vport port

 VIP port to match; by number or name, e.g. "http"

 --vdir {ORIGINAL|REPLY}

 flow direction of packet

 [!] --vmethod {GATE|IPIP|MASQ}

 IPVS forwarding method used

 [!] --vportctl port

 VIP port of the controlling connection to match, e.g. 21 for FTP

 length

 This module matches the length of the layer-3 payload (e.g. layer-4 packet) of a packet

 against a specific value or range of values.

 [!] --length length[:length]

 limit Page 16/59

 This module matches at a limited rate using a token bucket filter. A rule using this ex?

 tension will match until this limit is reached. It can be used in combination with the

 LOG target to give limited logging, for example.

 xt_limit has no negation support - you will have to use -m hashlimit ! --hashlimit rate

 in this case whilst omitting --hashlimit-mode.

 --limit rate[/second|/minute|/hour|/day]

 Maximum average matching rate: specified as a number, with an optional `/second',

 `/minute', `/hour', or `/day' suffix; the default is 3/hour.

 --limit-burst number

 Maximum initial number of packets to match: this number gets recharged by one every

 time the limit specified above is not reached, up to this number; the default is 5.

 mac

 [!] --mac-source address

 Match source MAC address. It must be of the form XX:XX:XX:XX:XX:XX. Note that

 this only makes sense for packets coming from an Ethernet device and entering the

 PREROUTING, FORWARD or INPUT chains.

 mark

 This module matches the netfilter mark field associated with a packet (which can be set

 using the MARK target below).

 [!] --mark value[/mask]

 Matches packets with the given unsigned mark value (if a mask is specified, this is

 logically ANDed with the mask before the comparison).

 mh (IPv6-specific)

 This extension is loaded if `--protocol ipv6-mh' or `--protocol mh' is specified. It pro?

 vides the following option:

 [!] --mh-type type[:type]

 This allows specification of the Mobility Header(MH) type, which can be a numeric

 MH type, type or one of the MH type names shown by the command

 ip6tables -p mh -h

 multiport

 This module matches a set of source or destination ports. Up to 15 ports can be speci?

 fied. A port range (port:port) counts as two ports. It can only be used in conjunction

 with one of the following protocols: tcp, udp, udplite, dccp and sctp. Page 17/59

 [!] --source-ports,--sports port[,port|,port:port]...

 Match if the source port is one of the given ports. The flag --sports is a conve?

 nient alias for this option. Multiple ports or port ranges are separated using a

 comma, and a port range is specified using a colon. 53,1024:65535 would therefore

 match ports 53 and all from 1024 through 65535.

 [!] --destination-ports,--dports port[,port|,port:port]...

 Match if the destination port is one of the given ports. The flag --dports is a

 convenient alias for this option.

 [!] --ports port[,port|,port:port]...

 Match if either the source or destination ports are equal to one of the given

 ports.

 nfacct

 The nfacct match provides the extended accounting infrastructure for iptables. You have

 to use this match together with the standalone user-space utility nfacct(8)

 The only option available for this match is the following:

 --nfacct-name name

 This allows you to specify the existing object name that will be use for accounting

 the traffic that this rule-set is matching.

 To use this extension, you have to create an accounting object:

 nfacct add http-traffic

 Then, you have to attach it to the accounting object via iptables:

 iptables -I INPUT -p tcp --sport 80 -m nfacct --nfacct-name http-traffic

 iptables -I OUTPUT -p tcp --dport 80 -m nfacct --nfacct-name http-traffic

 Then, you can check for the amount of traffic that the rules match:

 nfacct get http-traffic

 { pkts = 00000000000000000156, bytes = 00000000000000151786 } = http-traffic;

 You can obtain nfacct(8) from http://www.netfilter.org or, alternatively, from the

 git.netfilter.org repository.

 osf

 The osf module does passive operating system fingerprinting. This module compares some

 data (Window Size, MSS, options and their order, TTL, DF, and others) from packets with

 the SYN bit set.

 [!] --genre string Page 18/59

 Match an operating system genre by using a passive fingerprinting.

 --ttl level

 Do additional TTL checks on the packet to determine the operating system. level

 can be one of the following values:

 ? 0 - True IP address and fingerprint TTL comparison. This generally works for LANs.

 ? 1 - Check if the IP header's TTL is less than the fingerprint one. Works for globally-

 routable addresses.

 ? 2 - Do not compare the TTL at all.

 --log level

 Log determined genres into dmesg even if they do not match the desired one. level can

 be one of the following values:

 ? 0 - Log all matched or unknown signatures

 ? 1 - Log only the first one

 ? 2 - Log all known matched signatures

 You may find something like this in syslog:

 Windows [2000:SP3:Windows XP Pro SP1, 2000 SP3]: 11.22.33.55:4024 -> 11.22.33.44:139

 hops=3 Linux [2.5-2.6:] : 1.2.3.4:42624 -> 1.2.3.5:22 hops=4

 OS fingerprints are loadable using the nfnl_osf program. To load fingerprints from a file,

 use:

 nfnl_osf -f /usr/share/xtables/pf.os

 To remove them again,

 nfnl_osf -f /usr/share/xtables/pf.os -d

 The fingerprint database can be downloaded from http://www.openbsd.org/cgi-

 bin/cvsweb/src/etc/pf.os .

 owner

 This module attempts to match various characteristics of the packet creator, for locally

 generated packets. This match is only valid in the OUTPUT and POSTROUTING chains. For?

 warded packets do not have any socket associated with them. Packets from kernel threads do

 have a socket, but usually no owner.

 [!] --uid-owner username

 [!] --uid-owner userid[-userid]

 Matches if the packet socket's file structure (if it has one) is owned by the given

 user. You may also specify a numerical UID, or an UID range. Page 19/59

 [!] --gid-owner groupname

 [!] --gid-owner groupid[-groupid]

 Matches if the packet socket's file structure is owned by the given group. You may

 also specify a numerical GID, or a GID range.

 --suppl-groups

 Causes group(s) specified with --gid-owner to be also checked in the supplementary

 groups of a process.

 [!] --socket-exists

 Matches if the packet is associated with a socket.

 physdev

 This module matches on the bridge port input and output devices enslaved to a bridge de?

 vice. This module is a part of the infrastructure that enables a transparent bridging IP

 firewall and is only useful for kernel versions above version 2.5.44.

 [!] --physdev-in name

 Name of a bridge port via which a packet is received (only for packets entering the

 INPUT, FORWARD and PREROUTING chains). If the interface name ends in a "+", then

 any interface which begins with this name will match. If the packet didn't arrive

 through a bridge device, this packet won't match this option, unless '!' is used.

 [!] --physdev-out name

 Name of a bridge port via which a packet is going to be sent (for bridged packets

 entering the FORWARD and POSTROUTING chains). If the interface name ends in a "+",

 then any interface which begins with this name will match.

 [!] --physdev-is-in

 Matches if the packet has entered through a bridge interface.

 [!] --physdev-is-out

 Matches if the packet will leave through a bridge interface.

 [!] --physdev-is-bridged

 Matches if the packet is being bridged and therefore is not being routed. This is

 only useful in the FORWARD and POSTROUTING chains.

 pkttype

 This module matches the link-layer packet type.

 [!] --pkt-type {unicast|broadcast|multicast}

 policy Page 20/59

 This module matches the policy used by IPsec for handling a packet.

 --dir {in|out}

 Used to select whether to match the policy used for decapsulation or the policy

 that will be used for encapsulation. in is valid in the PREROUTING, INPUT and FOR?

 WARD chains, out is valid in the POSTROUTING, OUTPUT and FORWARD chains.

 --pol {none|ipsec}

 Matches if the packet is subject to IPsec processing. --pol none cannot be combined

 with --strict.

 --strict

 Selects whether to match the exact policy or match if any rule of the policy

 matches the given policy.

 For each policy element that is to be described, one can use one or more of the following

 options. When --strict is in effect, at least one must be used per element.

 [!] --reqid id

 Matches the reqid of the policy rule. The reqid can be specified with setkey(8) us?

 ing unique:id as level.

 [!] --spi spi

 Matches the SPI of the SA.

 [!] --proto {ah|esp|ipcomp}

 Matches the encapsulation protocol.

 [!] --mode {tunnel|transport}

 Matches the encapsulation mode.

 [!] --tunnel-src addr[/mask]

 Matches the source end-point address of a tunnel mode SA. Only valid with --mode

 tunnel.

 [!] --tunnel-dst addr[/mask]

 Matches the destination end-point address of a tunnel mode SA. Only valid with

 --mode tunnel.

 --next Start the next element in the policy specification. Can only be used with --strict.

 quota

 Implements network quotas by decrementing a byte counter with each packet. The condition

 matches until the byte counter reaches zero. Behavior is reversed with negation (i.e. the

 condition does not match until the byte counter reaches zero). Page 21/59

 [!] --quota bytes

 The quota in bytes.

 rateest

 The rate estimator can match on estimated rates as collected by the RATEEST target. It

 supports matching on absolute bps/pps values, comparing two rate estimators and matching

 on the difference between two rate estimators.

 For a better understanding of the available options, these are all possible combinations:

 ? rateest operator rateest-bps

 ? rateest operator rateest-pps

 ? (rateest minus rateest-bps1) operator rateest-bps2

 ? (rateest minus rateest-pps1) operator rateest-pps2

 ? rateest1 operator rateest2 rateest-bps(without rate!)

 ? rateest1 operator rateest2 rateest-pps(without rate!)

 ? (rateest1 minus rateest-bps1) operator (rateest2 minus rateest-bps2)

 ? (rateest1 minus rateest-pps1) operator (rateest2 minus rateest-pps2)

 --rateest-delta

 For each estimator (either absolute or relative mode), calculate the difference be?

 tween the estimator-determined flow rate and the static value chosen with the BPS/PPS

 options. If the flow rate is higher than the specified BPS/PPS, 0 will be used instead

 of a negative value. In other words, "max(0, rateest#_rate - rateest#_bps)" is used.

 [!] --rateest-lt

 Match if rate is less than given rate/estimator.

 [!] --rateest-gt

 Match if rate is greater than given rate/estimator.

 [!] --rateest-eq

 Match if rate is equal to given rate/estimator.

 In the so-called "absolute mode", only one rate estimator is used and compared against a

 static value, while in "relative mode", two rate estimators are compared against another.

 --rateest name

 Name of the one rate estimator for absolute mode.

 --rateest1 name

 --rateest2 name

 The names of the two rate estimators for relative mode. Page 22/59

 --rateest-bps [value]

 --rateest-pps [value]

 --rateest-bps1 [value]

 --rateest-bps2 [value]

 --rateest-pps1 [value]

 --rateest-pps2 [value]

 Compare the estimator(s) by bytes or packets per second, and compare against the

 chosen value. See the above bullet list for which option is to be used in which

 case. A unit suffix may be used - available ones are: bit, [kmgt]bit, [KMGT]ibit,

 Bps, [KMGT]Bps, [KMGT]iBps.

 Example: This is what can be used to route outgoing data connections from an FTP server

 over two lines based on the available bandwidth at the time the data connection was

 started:

 # Estimate outgoing rates

 iptables -t mangle -A POSTROUTING -o eth0 -j RATEEST --rateest-name eth0 --rateest-inter?

 val 250ms --rateest-ewma 0.5s

 iptables -t mangle -A POSTROUTING -o ppp0 -j RATEEST --rateest-name ppp0 --rateest-inter?

 val 250ms --rateest-ewma 0.5s

 # Mark based on available bandwidth

 iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper --helper ftp -m rateest

 --rateest-delta --rateest1 eth0 --rateest-bps1 2.5mbit --rateest-gt --rateest2 ppp0 --ra?

 teest-bps2 2mbit -j CONNMARK --set-mark 1

 iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper --helper ftp -m rateest

 --rateest-delta --rateest1 ppp0 --rateest-bps1 2mbit --rateest-gt --rateest2 eth0 --ra?

 teest-bps2 2.5mbit -j CONNMARK --set-mark 2

 iptables -t mangle -A balance -j CONNMARK --restore-mark

 realm (IPv4-specific)

 This matches the routing realm. Routing realms are used in complex routing setups involv?

 ing dynamic routing protocols like BGP.

 [!] --realm value[/mask]

 Matches a given realm number (and optionally mask). If not a number, value can be a

 named realm from /etc/iproute2/rt_realms (mask can not be used in that case). Both

 value and mask are four byte unsigned integers and may be specified in decimal, hex Page 23/59

 (by prefixing with "0x") or octal (if a leading zero is given).

 recent

 Allows you to dynamically create a list of IP addresses and then match against that list

 in a few different ways.

 For example, you can create a "badguy" list out of people attempting to connect to port

 139 on your firewall and then DROP all future packets from them without considering them.

 --set, --rcheck, --update and --remove are mutually exclusive.

 --name name

 Specify the list to use for the commands. If no name is given then DEFAULT will be

 used.

 [!] --set

 This will add the source address of the packet to the list. If the source address

 is already in the list, this will update the existing entry. This will always re?

 turn success (or failure if ! is passed in).

 --rsource

 Match/save the source address of each packet in the recent list table. This is the

 default.

 --rdest

 Match/save the destination address of each packet in the recent list table.

 --mask netmask

 Netmask that will be applied to this recent list.

 [!] --rcheck

 Check if the source address of the packet is currently in the list.

 [!] --update

 Like --rcheck, except it will update the "last seen" timestamp if it matches.

 [!] --remove

 Check if the source address of the packet is currently in the list and if so that

 address will be removed from the list and the rule will return true. If the address

 is not found, false is returned.

 --seconds seconds

 This option must be used in conjunction with one of --rcheck or --update. When

 used, this will narrow the match to only happen when the address is in the list and

 was seen within the last given number of seconds. Page 24/59

 --reap This option can only be used in conjunction with --seconds. When used, this will

 cause entries older than the last given number of seconds to be purged.

 --hitcount hits

 This option must be used in conjunction with one of --rcheck or --update. When

 used, this will narrow the match to only happen when the address is in the list and

 packets had been received greater than or equal to the given value. This option may

 be used along with --seconds to create an even narrower match requiring a certain

 number of hits within a specific time frame. The maximum value for the hitcount pa?

 rameter is given by the "ip_pkt_list_tot" parameter of the xt_recent kernel module.

 Exceeding this value on the command line will cause the rule to be rejected.

 --rttl This option may only be used in conjunction with one of --rcheck or --update. When

 used, this will narrow the match to only happen when the address is in the list and

 the TTL of the current packet matches that of the packet which hit the --set rule.

 This may be useful if you have problems with people faking their source address in

 order to DoS you via this module by disallowing others access to your site by send?

 ing bogus packets to you.

 Examples:

 iptables -A FORWARD -m recent --name badguy --rcheck --seconds 60 -j DROP

 iptables -A FORWARD -p tcp -i eth0 --dport 139 -m recent --name badguy --set -j

 DROP

 /proc/net/xt_recent/* are the current lists of addresses and information about each entry

 of each list.

 Each file in /proc/net/xt_recent/ can be read from to see the current list or written two

 using the following commands to modify the list:

 echo +addr >/proc/net/xt_recent/DEFAULT

 to add addr to the DEFAULT list

 echo -addr >/proc/net/xt_recent/DEFAULT

 to remove addr from the DEFAULT list

 echo / >/proc/net/xt_recent/DEFAULT

 to flush the DEFAULT list (remove all entries).

 The module itself accepts parameters, defaults shown:

 ip_list_tot=100

 Number of addresses remembered per table. Page 25/59

 ip_pkt_list_tot=20

 Number of packets per address remembered.

 ip_list_hash_size=0

 Hash table size. 0 means to calculate it based on ip_list_tot, default: 512.

 ip_list_perms=0644

 Permissions for /proc/net/xt_recent/* files.

 ip_list_uid=0

 Numerical UID for ownership of /proc/net/xt_recent/* files.

 ip_list_gid=0

 Numerical GID for ownership of /proc/net/xt_recent/* files.

 rpfilter

 Performs a reverse path filter test on a packet. If a reply to the packet would be sent

 via the same interface that the packet arrived on, the packet will match. Note that, un?

 like the in-kernel rp_filter, packets protected by IPSec are not treated specially. Com?

 bine this match with the policy match if you want this. Also, packets arriving via the

 loopback interface are always permitted. This match can only be used in the PREROUTING

 chain of the raw or mangle table.

 --loose

 Used to specify that the reverse path filter test should match even if the selected

 output device is not the expected one.

 --validmark

 Also use the packets' nfmark value when performing the reverse path route lookup.

 --accept-local

 This will permit packets arriving from the network with a source address that is

 also assigned to the local machine.

 --invert

 This will invert the sense of the match. Instead of matching packets that passed

 the reverse path filter test, match those that have failed it.

 Example to log and drop packets failing the reverse path filter test:

 iptables -t raw -N RPFILTER

 iptables -t raw -A RPFILTER -m rpfilter -j RETURN

 iptables -t raw -A RPFILTER -m limit --limit 10/minute -j NFLOG --nflog-prefix "rpfilter

 drop" Page 26/59

 iptables -t raw -A RPFILTER -j DROP

 iptables -t raw -A PREROUTING -j RPFILTER

 Example to drop failed packets, without logging:

 iptables -t raw -A RPFILTER -m rpfilter --invert -j DROP

 rt (IPv6-specific)

 Match on IPv6 routing header

 [!] --rt-type type

 Match the type (numeric).

 [!] --rt-segsleft num[:num]

 Match the `segments left' field (range).

 [!] --rt-len length

 Match the length of this header.

 --rt-0-res

 Match the reserved field, too (type=0)

 --rt-0-addrs addr[,addr...]

 Match type=0 addresses (list).

 --rt-0-not-strict

 List of type=0 addresses is not a strict list.

 sctp

 This module matches Stream Control Transmission Protocol headers.

 [!] --source-port,--sport port[:port]

 [!] --destination-port,--dport port[:port]

 [!] --chunk-types {all|any|only} chunktype[:flags] [...]

 The flag letter in upper case indicates that the flag is to match if set, in the

 lower case indicates to match if unset.

 Chunk types: DATA INIT INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK ABORT SHUTDOWN SHUT?

 DOWN_ACK ERROR COOKIE_ECHO COOKIE_ACK ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE

ASCONF AS?

 CONF_ACK FORWARD_TSN

 chunk type available flags

 DATA I U B E i u b e

 ABORT T t

 SHUTDOWN_COMPLETE T t Page 27/59

 (lowercase means flag should be "off", uppercase means "on")

 Examples:

 iptables -A INPUT -p sctp --dport 80 -j DROP

 iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP

 iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT

 set

 This module matches IP sets which can be defined by ipset(8).

 [!] --match-set setname flag[,flag]...

 where flags are the comma separated list of src and/or dst specifications and there

 can be no more than six of them. Hence the command

 iptables -A FORWARD -m set --match-set test src,dst

 will match packets, for which (if the set type is ipportmap) the source address and

 destination port pair can be found in the specified set. If the set type of the

 specified set is single dimension (for example ipmap), then the command will match

 packets for which the source address can be found in the specified set.

 --return-nomatch

 If the --return-nomatch option is specified and the set type supports the nomatch

 flag, then the matching is reversed: a match with an element flagged with nomatch

 returns true, while a match with a plain element returns false.

 ! --update-counters

 If the --update-counters flag is negated, then the packet and byte counters of the

 matching element in the set won't be updated. Default the packet and byte counters

 are updated.

 ! --update-subcounters

 If the --update-subcounters flag is negated, then the packet and byte counters of

 the matching element in the member set of a list type of set won't be updated. De?

 fault the packet and byte counters are updated.

 [!] --packets-eq value

 If the packet is matched an element in the set, match only if the packet counter of

 the element matches the given value too.

 --packets-lt value

 If the packet is matched an element in the set, match only if the packet counter of

 the element is less than the given value as well. Page 28/59

 --packets-gt value

 If the packet is matched an element in the set, match only if the packet counter of

 the element is greater than the given value as well.

 [!] --bytes-eq value

 If the packet is matched an element in the set, match only if the byte counter of

 the element matches the given value too.

 --bytes-lt value

 If the packet is matched an element in the set, match only if the byte counter of

 the element is less than the given value as well.

 --bytes-gt value

 If the packet is matched an element in the set, match only if the byte counter of

 the element is greater than the given value as well.

 The packet and byte counters related options and flags are ignored when the set was de?

 fined without counter support.

 The option --match-set can be replaced by --set if that does not clash with an option of

 other extensions.

 Use of -m set requires that ipset kernel support is provided, which, for standard kernels,

 is the case since Linux 2.6.39.

 socket

 This matches if an open TCP/UDP socket can be found by doing a socket lookup on the

 packet. It matches if there is an established or non-zero bound listening socket (possibly

 with a non-local address). The lookup is performed using the packet tuple of TCP/UDP pack?

 ets, or the original TCP/UDP header embedded in an ICMP/ICPMv6 error packet.

 --transparent

 Ignore non-transparent sockets.

 --nowildcard

 Do not ignore sockets bound to 'any' address. The socket match won't accept

 zero-bound listeners by default, since then local services could intercept traffic

 that would otherwise be forwarded. This option therefore has security implications

 when used to match traffic being forwarded to redirect such packets to local ma?

 chine with policy routing. When using the socket match to implement fully trans?

 parent proxies bound to non-local addresses it is recommended to use the --trans?

 parent option instead. Page 29/59

 Example (assuming packets with mark 1 are delivered locally):

 -t mangle -A PREROUTING -m socket --transparent -j MARK --set-mark 1

 --restore-skmark

 Set the packet mark to the matching socket's mark. Can be combined with the

 --transparent and --nowildcard options to restrict the sockets to be matched when

 restoring the packet mark.

 Example: An application opens 2 transparent (IP_TRANSPARENT) sockets and sets a mark on

 them with SO_MARK socket option. We can filter matching packets:

 -t mangle -I PREROUTING -m socket --transparent --restore-skmark -j action

 -t mangle -A action -m mark --mark 10 -j action2

 -t mangle -A action -m mark --mark 11 -j action3

 state

 The "state" extension is a subset of the "conntrack" module. "state" allows access to the

 connection tracking state for this packet.

 [!] --state state

 Where state is a comma separated list of the connection states to match. Only a

 subset of the states unterstood by "conntrack" are recognized: INVALID, ESTAB?

 LISHED, NEW, RELATED or UNTRACKED. For their description, see the "conntrack" head?

 ing in this manpage.

 statistic

 This module matches packets based on some statistic condition. It supports two distinct

 modes settable with the --mode option.

 Supported options:

 --mode mode

 Set the matching mode of the matching rule, supported modes are random and nth.

 [!] --probability p

 Set the probability for a packet to be randomly matched. It only works with the

 random mode. p must be within 0.0 and 1.0. The supported granularity is in

 1/2147483648th increments.

 [!] --every n

 Match one packet every nth packet. It works only with the nth mode (see also the

 --packet option).

 --packet p Page 30/59

 Set the initial counter value (0 <= p <= n-1, default 0) for the nth mode.

 string

 This module matches a given string by using some pattern matching strategy. It requires a

 linux kernel >= 2.6.14.

 --algo {bm|kmp}

 Select the pattern matching strategy. (bm = Boyer-Moore, kmp = Knuth-Pratt-Morris)

 --from offset

 Set the offset from which it starts looking for any matching. If not passed, de?

 fault is 0.

 --to offset

 Set the offset up to which should be scanned. That is, byte offset-1 (counting from

 0) is the last one that is scanned. If not passed, default is the packet size.

 [!] --string pattern

 Matches the given pattern.

 [!] --hex-string pattern

 Matches the given pattern in hex notation.

 --icase

 Ignore case when searching.

 Examples:

 # The string pattern can be used for simple text characters.

 iptables -A INPUT -p tcp --dport 80 -m string --algo bm --string 'GET /index.html'

 -j LOG

 # The hex string pattern can be used for non-printable characters, like |0D 0A| or

 |0D0A|.

 iptables -p udp --dport 53 -m string --algo bm --from 40 --to 57 --hex-string

 '|03|www|09|netfilter|03|org|00|'

 tcp

 These extensions can be used if `--protocol tcp' is specified. It provides the following

 options:

 [!] --source-port,--sport port[:port]

 Source port or port range specification. This can either be a service name or a

 port number. An inclusive range can also be specified, using the format first:last.

 If the first port is omitted, "0" is assumed; if the last is omitted, "65535" is Page 31/59

 assumed. The flag --sport is a convenient alias for this option.

 [!] --destination-port,--dport port[:port]

 Destination port or port range specification. The flag --dport is a convenient

 alias for this option.

 [!] --tcp-flags mask comp

 Match when the TCP flags are as specified. The first argument mask is the flags

 which we should examine, written as a comma-separated list, and the second argument

 comp is a comma-separated list of flags which must be set. Flags are: SYN ACK FIN

 RST URG PSH ALL NONE. Hence the command

 iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN

 will only match packets with the SYN flag set, and the ACK, FIN and RST flags un?

 set.

 [!] --syn

 Only match TCP packets with the SYN bit set and the ACK,RST and FIN bits cleared.

 Such packets are used to request TCP connection initiation; for example, blocking

 such packets coming in an interface will prevent incoming TCP connections, but out?

 going TCP connections will be unaffected. It is equivalent to --tcp-flags

 SYN,RST,ACK,FIN SYN. If the "!" flag precedes the "--syn", the sense of the option

 is inverted.

 [!] --tcp-option number

 Match if TCP option set.

 tcpmss

 This matches the TCP MSS (maximum segment size) field of the TCP header. You can only use

 this on TCP SYN or SYN/ACK packets, since the MSS is only negotiated during the TCP hand?

 shake at connection startup time.

 [!] --mss value[:value]

 Match a given TCP MSS value or range. If a range is given, the second value must be

 greater than or equal to the first value.

 time

 This matches if the packet arrival time/date is within a given range. All options are op?

 tional, but are ANDed when specified. All times are interpreted as UTC by default.

 --datestart YYYY[-MM[-DD[Thh[:mm[:ss]]]]]

 --datestop YYYY[-MM[-DD[Thh[:mm[:ss]]]]] Page 32/59

 Only match during the given time, which must be in ISO 8601 "T" notation. The pos?

 sible time range is 1970-01-01T00:00:00 to 2038-01-19T04:17:07.

 If --datestart or --datestop are not specified, it will default to 1970-01-01 and

 2038-01-19, respectively.

 --timestart hh:mm[:ss]

 --timestop hh:mm[:ss]

 Only match during the given daytime. The possible time range is 00:00:00 to

 23:59:59. Leading zeroes are allowed (e.g. "06:03") and correctly interpreted as

 base-10.

 [!] --monthdays day[,day...]

 Only match on the given days of the month. Possible values are 1 to 31. Note that

 specifying 31 will of course not match on months which do not have a 31st day; the

 same goes for 28- or 29-day February.

 [!] --weekdays day[,day...]

 Only match on the given weekdays. Possible values are Mon, Tue, Wed, Thu, Fri, Sat,

 Sun, or values from 1 to 7, respectively. You may also use two-character variants

 (Mo, Tu, etc.).

 --contiguous

 When --timestop is smaller than --timestart value, match this as a single time pe?

 riod instead distinct intervals. See EXAMPLES.

 --kerneltz

 Use the kernel timezone instead of UTC to determine whether a packet meets the time

 regulations.

 About kernel timezones: Linux keeps the system time in UTC, and always does so. On boot,

 system time is initialized from a referential time source. Where this time source has no

 timezone information, such as the x86 CMOS RTC, UTC will be assumed. If the time source is

 however not in UTC, userspace should provide the correct system time and timezone to the

 kernel once it has the information.

 Local time is a feature on top of the (timezone independent) system time. Each process has

 its own idea of local time, specified via the TZ environment variable. The kernel also has

 its own timezone offset variable. The TZ userspace environment variable specifies how the

 UTC-based system time is displayed, e.g. when you run date(1), or what you see on your

 desktop clock. The TZ string may resolve to different offsets at different dates, which Page 33/59

 is what enables the automatic time-jumping in userspace. when DST changes. The kernel's

 timezone offset variable is used when it has to convert between non-UTC sources, such as

 FAT filesystems, to UTC (since the latter is what the rest of the system uses).

 The caveat with the kernel timezone is that Linux distributions may ignore to set the ker?

 nel timezone, and instead only set the system time. Even if a particular distribution does

 set the timezone at boot, it is usually does not keep the kernel timezone offset - which

 is what changes on DST - up to date. ntpd will not touch the kernel timezone, so running

 it will not resolve the issue. As such, one may encounter a timezone that is always +0000,

 or one that is wrong half of the time of the year. As such, using --kerneltz is highly

 discouraged.

 EXAMPLES. To match on weekends, use:

 -m time --weekdays Sa,Su

 Or, to match (once) on a national holiday block:

 -m time --datestart 2007-12-24 --datestop 2007-12-27

 Since the stop time is actually inclusive, you would need the following stop time to not

 match the first second of the new day:

 -m time --datestart 2007-01-01T17:00 --datestop 2007-01-01T23:59:59

 During lunch hour:

 -m time --timestart 12:30 --timestop 13:30

 The fourth Friday in the month:

 -m time --weekdays Fr --monthdays 22,23,24,25,26,27,28

 (Note that this exploits a certain mathematical property. It is not possible to say

 "fourth Thursday OR fourth Friday" in one rule. It is possible with multiple rules,

 though.)

 Matching across days might not do what is expected. For instance,

 -m time --weekdays Mo --timestart 23:00 --timestop 01:00 Will match Monday, for

 one hour from midnight to 1 a.m., and then again for another hour from 23:00 on?

 wards. If this is unwanted, e.g. if you would like 'match for two hours from Mon?

 tay 23:00 onwards' you need to also specify the --contiguous option in the example

 above.

 tos

 This module matches the 8-bit Type of Service field in the IPv4 header (i.e. including

 the "Precedence" bits) or the (also 8-bit) Priority field in the IPv6 header. Page 34/59

 [!] --tos value[/mask]

 Matches packets with the given TOS mark value. If a mask is specified, it is logi?

 cally ANDed with the TOS mark before the comparison.

 [!] --tos symbol

 You can specify a symbolic name when using the tos match for IPv4. The list of rec?

 ognized TOS names can be obtained by calling iptables with -m tos -h. Note that

 this implies a mask of 0x3F, i.e. all but the ECN bits.

 ttl (IPv4-specific)

 This module matches the time to live field in the IP header.

 [!] --ttl-eq ttl

 Matches the given TTL value.

 --ttl-gt ttl

 Matches if TTL is greater than the given TTL value.

 --ttl-lt ttl

 Matches if TTL is less than the given TTL value.

 u32

 U32 tests whether quantities of up to 4 bytes extracted from a packet have specified val?

 ues. The specification of what to extract is general enough to find data at given offsets

 from tcp headers or payloads.

 [!] --u32 tests

 The argument amounts to a program in a small language described below.

 tests := location "=" value | tests "&&" location "=" value

 value := range | value "," range

 range := number | number ":" number

 a single number, n, is interpreted the same as n:n. n:m is interpreted as the range of

 numbers >=n and <=m.

 location := number | location operator number

 operator := "&" | "<<" | ">>" | "@"

 The operators &, <<, >> and && mean the same as in C. The = is really a set membership

 operator and the value syntax describes a set. The @ operator is what allows moving to the

 next header and is described further below.

 There are currently some artificial implementation limits on the size of the tests:

 * no more than 10 of "=" (and 9 "&&"s) in the u32 argument Page 35/59

 * no more than 10 ranges (and 9 commas) per value

 * no more than 10 numbers (and 9 operators) per location

 To describe the meaning of location, imagine the following machine that interprets it.

 There are three registers:

 A is of type char *, initially the address of the IP header

 B and C are unsigned 32 bit integers, initially zero

 The instructions are:

 number B = number;

 C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)

 &number

 C = C & number

 << number

 C = C << number

 >> number

 C = C >> number

 @number

 A = A + C; then do the instruction number

 Any access of memory outside [skb->data,skb->end] causes the match to fail. Otherwise the

 result of the computation is the final value of C.

 Whitespace is allowed but not required in the tests. However, the characters that do occur

 there are likely to require shell quoting, so it is a good idea to enclose the arguments

 in quotes.

 Example:

 match IP packets with total length >= 256

 The IP header contains a total length field in bytes 2-3.

 --u32 "0 & 0xFFFF = 0x100:0xFFFF"

 read bytes 0-3

 AND that with 0xFFFF (giving bytes 2-3), and test whether that is in the range

 [0x100:0xFFFF]

 Example: (more realistic, hence more complicated)

 match ICMP packets with icmp type 0

 First test that it is an ICMP packet, true iff byte 9 (protocol) = 1

 --u32 "6 & 0xFF = 1 && ... Page 36/59

 read bytes 6-9, use & to throw away bytes 6-8 and compare the result to 1. Next

 test that it is not a fragment. (If so, it might be part of such a packet but we

 cannot always tell.) N.B.: This test is generally needed if you want to match any?

 thing beyond the IP header. The last 6 bits of byte 6 and all of byte 7 are 0 iff

 this is a complete packet (not a fragment). Alternatively, you can allow first

 fragments by only testing the last 5 bits of byte 6.

 ... 4 & 0x3FFF = 0 && ...

 Last test: the first byte past the IP header (the type) is 0. This is where we have

 to use the @syntax. The length of the IP header (IHL) in 32 bit words is stored in

 the right half of byte 0 of the IP header itself.

 ... 0 >> 22 & 0x3C @ 0 >> 24 = 0"

 The first 0 means read bytes 0-3, >>22 means shift that 22 bits to the right.

 Shifting 24 bits would give the first byte, so only 22 bits is four times that plus

 a few more bits. &3C then eliminates the two extra bits on the right and the first

 four bits of the first byte. For instance, if IHL=5, then the IP header is 20 (4 x

 5) bytes long. In this case, bytes 0-1 are (in binary) xxxx0101 yyzzzzzz, >>22

 gives the 10 bit value xxxx0101yy and &3C gives 010100. @ means to use this number

 as a new offset into the packet, and read four bytes starting from there. This is

 the first 4 bytes of the ICMP payload, of which byte 0 is the ICMP type. Therefore,

 we simply shift the value 24 to the right to throw out all but the first byte and

 compare the result with 0.

 Example:

 TCP payload bytes 8-12 is any of 1, 2, 5 or 8

 First we test that the packet is a tcp packet (similar to ICMP).

 --u32 "6 & 0xFF = 6 && ...

 Next, test that it is not a fragment (same as above).

 ... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"

 0>>22&3C as above computes the number of bytes in the IP header. @ makes this the

 new offset into the packet, which is the start of the TCP header. The length of the

 TCP header (again in 32 bit words) is the left half of byte 12 of the TCP header.

 The 12>>26&3C computes this length in bytes (similar to the IP header before). "@"

 makes this the new offset, which is the start of the TCP payload. Finally, 8 reads

 bytes 8-12 of the payload and = checks whether the result is any of 1, 2, 5 or 8. Page 37/59

 udp

 These extensions can be used if `--protocol udp' is specified. It provides the following

 options:

 [!] --source-port,--sport port[:port]

 Source port or port range specification. See the description of the --source-port

 option of the TCP extension for details.

 [!] --destination-port,--dport port[:port]

 Destination port or port range specification. See the description of the --desti?

 nation-port option of the TCP extension for details.

TARGET EXTENSIONS

 iptables can use extended target modules: the following are included in the standard dis?

 tribution.

 AUDIT

 This target creates audit records for packets hitting the target. It can be used to

 record accepted, dropped, and rejected packets. See auditd(8) for additional details.

 --type {accept|drop|reject}

 Set type of audit record. Starting with linux-4.12, this option has no effect on

 generated audit messages anymore. It is still accepted by iptables for compatibil?

 ity reasons, but ignored.

 Example:

 iptables -N AUDIT_DROP

 iptables -A AUDIT_DROP -j AUDIT

 iptables -A AUDIT_DROP -j DROP

 CHECKSUM

 This target selectively works around broken/old applications. It can only be used in the

 mangle table.

 --checksum-fill

 Compute and fill in the checksum in a packet that lacks a checksum. This is par?

 ticularly useful, if you need to work around old applications such as dhcp clients,

 that do not work well with checksum offloads, but don't want to disable checksum

 offload in your device.

 CLASSIFY

 This module allows you to set the skb->priority value (and thus classify the packet into a Page 38/59

 specific CBQ class).

 --set-class major:minor

 Set the major and minor class value. The values are always interpreted as hexadeci?

 mal even if no 0x prefix is given.

 CLUSTERIP (IPv4-specific)

 This module allows you to configure a simple cluster of nodes that share a certain IP and

 MAC address without an explicit load balancer in front of them. Connections are stati?

 cally distributed between the nodes in this cluster.

 Please note that CLUSTERIP target is considered deprecated in favour of cluster match

 which is more flexible and not limited to IPv4.

 --new Create a new ClusterIP. You always have to set this on the first rule for a given

 ClusterIP.

 --hashmode mode

 Specify the hashing mode. Has to be one of sourceip, sourceip-sourceport, sour?

 ceip-sourceport-destport.

 --clustermac mac

 Specify the ClusterIP MAC address. Has to be a link-layer multicast address

 --total-nodes num

 Number of total nodes within this cluster.

 --local-node num

 Local node number within this cluster.

 --hash-init rnd

 Specify the random seed used for hash initialization.

 CONNMARK

 This module sets the netfilter mark value associated with a connection. The mark is 32

 bits wide.

 --set-xmark value[/mask]

 Zero out the bits given by mask and XOR value into the ctmark.

 --save-mark [--nfmask nfmask] [--ctmask ctmask]

 Copy the packet mark (nfmark) to the connection mark (ctmark) using the given

 masks. The new nfmark value is determined as follows:

 ctmark = (ctmark & ~ctmask) ^ (nfmark & nfmask)

 i.e. ctmask defines what bits to clear and nfmask what bits of the nfmark to XOR Page 39/59

 into the ctmark. ctmask and nfmask default to 0xFFFFFFFF.

 --restore-mark [--nfmask nfmask] [--ctmask ctmask]

 Copy the connection mark (ctmark) to the packet mark (nfmark) using the given

 masks. The new ctmark value is determined as follows:

 nfmark = (nfmark & ~nfmask) ^ (ctmark & ctmask);

 i.e. nfmask defines what bits to clear and ctmask what bits of the ctmark to XOR

 into the nfmark. ctmask and nfmask default to 0xFFFFFFFF.

 --restore-mark is only valid in the mangle table.

 The following mnemonics are available for --set-xmark:

 --and-mark bits

 Binary AND the ctmark with bits. (Mnemonic for --set-xmark 0/invbits, where invbits

 is the binary negation of bits.)

 --or-mark bits

 Binary OR the ctmark with bits. (Mnemonic for --set-xmark bits/bits.)

 --xor-mark bits

 Binary XOR the ctmark with bits. (Mnemonic for --set-xmark bits/0.)

 --set-mark value[/mask]

 Set the connection mark. If a mask is specified then only those bits set in the

 mask are modified.

 --save-mark [--mask mask]

 Copy the nfmark to the ctmark. If a mask is specified, only those bits are copied.

 --restore-mark [--mask mask]

 Copy the ctmark to the nfmark. If a mask is specified, only those bits are copied.

 This is only valid in the mangle table.

 CONNSECMARK

 This module copies security markings from packets to connections (if unlabeled), and from

 connections back to packets (also only if unlabeled). Typically used in conjunction with

 SECMARK, it is valid in the security table (for backwards compatibility with older ker?

 nels, it is also valid in the mangle table).

 --save If the packet has a security marking, copy it to the connection if the connection

 is not marked.

 --restore

 If the packet does not have a security marking, and the connection does, copy the Page 40/59

 security marking from the connection to the packet.

 CT

 The CT target sets parameters for a packet or its associated connection. The target at?

 taches a "template" connection tracking entry to the packet, which is then used by the

 conntrack core when initializing a new ct entry. This target is thus only valid in the

 "raw" table.

 --notrack

 Disables connection tracking for this packet.

 --helper name

 Use the helper identified by name for the connection. This is more flexible than

 loading the conntrack helper modules with preset ports.

 --ctevents event[,...]

 Only generate the specified conntrack events for this connection. Possible event

 types are: new, related, destroy, reply, assured, protoinfo, helper, mark (this

 refers to the ctmark, not nfmark), natseqinfo, secmark (ctsecmark).

 --expevents event[,...]

 Only generate the specified expectation events for this connection. Possible event

 types are: new.

 --zone-orig {id|mark}

 For traffic coming from ORIGINAL direction, assign this packet to zone id and only

 have lookups done in that zone. If mark is used instead of id, the zone is derived

 from the packet nfmark.

 --zone-reply {id|mark}

 For traffic coming from REPLY direction, assign this packet to zone id and only

 have lookups done in that zone. If mark is used instead of id, the zone is derived

 from the packet nfmark.

 --zone {id|mark}

 Assign this packet to zone id and only have lookups done in that zone. If mark is

 used instead of id, the zone is derived from the packet nfmark. By default, packets

 have zone 0. This option applies to both directions.

 --timeout name

 Use the timeout policy identified by name for the connection. This is provides more

 flexible timeout policy definition than global timeout values available at Page 41/59

 /proc/sys/net/netfilter/nf_conntrack_*_timeout_*.

 DNAT

 This target is only valid in the nat table, in the PREROUTING and OUTPUT chains, and user-

 defined chains which are only called from those chains. It specifies that the destination

 address of the packet should be modified (and all future packets in this connection will

 also be mangled), and rules should cease being examined. It takes the following options:

 --to-destination [ipaddr[-ipaddr]][:port[-port]]

 which can specify a single new destination IP address, an inclusive range of IP ad?

 dresses. Optionally a port range, if the rule also specifies one of the following

 protocols: tcp, udp, dccp or sctp. If no port range is specified, then the desti?

 nation port will never be modified. If no IP address is specified then only the

 destination port will be modified. In Kernels up to 2.6.10 you can add several

 --to-destination options. For those kernels, if you specify more than one destina?

 tion address, either via an address range or multiple --to-destination options, a

 simple round-robin (one after another in cycle) load balancing takes place between

 these addresses. Later Kernels (>= 2.6.11-rc1) don't have the ability to NAT to

 multiple ranges anymore.

 --random

 If option --random is used then port mapping will be randomized (kernel >= 2.6.22).

 --persistent

 Gives a client the same source-/destination-address for each connection. This su?

 persedes the SAME target. Support for persistent mappings is available from

 2.6.29-rc2.

 IPv6 support available since Linux kernels >= 3.7.

 DNPT (IPv6-specific)

 Provides stateless destination IPv6-to-IPv6 Network Prefix Translation (as described by

 RFC 6296).

 You have to use this target in the mangle table, not in the nat table. It takes the fol?

 lowing options:

 --src-pfx [prefix/length]

 Set source prefix that you want to translate and length

 --dst-pfx [prefix/length]

 Set destination prefix that you want to use in the translation and length Page 42/59

 You have to use the SNPT target to undo the translation. Example:

 ip6tables -t mangle -I POSTROUTING -s fd00::/64 -o vboxnet0 -j SNPT --src-pfx

 fd00::/64 --dst-pfx 2001:e20:2000:40f::/64

 ip6tables -t mangle -I PREROUTING -i wlan0 -d 2001:e20:2000:40f::/64 -j DNPT --src-

 pfx 2001:e20:2000:40f::/64 --dst-pfx fd00::/64

 You may need to enable IPv6 neighbor proxy:

 sysctl -w net.ipv6.conf.all.proxy_ndp=1

 You also have to use the NOTRACK target to disable connection tracking for translated

 flows.

 DSCP

 This target alters the value of the DSCP bits within the TOS header of the IPv4 packet.

 As this manipulates a packet, it can only be used in the mangle table.

 --set-dscp value

 Set the DSCP field to a numerical value (can be decimal or hex)

 --set-dscp-class class

 Set the DSCP field to a DiffServ class.

 ECN (IPv4-specific)

 This target selectively works around known ECN blackholes. It can only be used in the

 mangle table.

 --ecn-tcp-remove

 Remove all ECN bits from the TCP header. Of course, it can only be used in con?

 junction with -p tcp.

 HL (IPv6-specific)

 This is used to modify the Hop Limit field in IPv6 header. The Hop Limit field is similar

 to what is known as TTL value in IPv4. Setting or incrementing the Hop Limit field can

 potentially be very dangerous, so it should be avoided at any cost. This target is only

 valid in mangle table.

 Don't ever set or increment the value on packets that leave your local network!

 --hl-set value

 Set the Hop Limit to `value'.

 --hl-dec value

 Decrement the Hop Limit `value' times.

 --hl-inc value Page 43/59

 Increment the Hop Limit `value' times.

 HMARK

 Like MARK, i.e. set the fwmark, but the mark is calculated from hashing packet selector at

 choice. You have also to specify the mark range and, optionally, the offset to start from.

 ICMP error messages are inspected and used to calculate the hashing.

 Existing options are:

 --hmark-tuple tuple

 Possible tuple members are: src meaning source address (IPv4, IPv6 address), dst

 meaning destination address (IPv4, IPv6 address), sport meaning source port (TCP,

 UDP, UDPlite, SCTP, DCCP), dport meaning destination port (TCP, UDP, UDPlite, SCTP,

 DCCP), spi meaning Security Parameter Index (AH, ESP), and ct meaning the usage of

 the conntrack tuple instead of the packet selectors.

 --hmark-mod value (must be > 0)

 Modulus for hash calculation (to limit the range of possible marks)

 --hmark-offset value

 Offset to start marks from.

 For advanced usage, instead of using --hmark-tuple, you can specify custom

 prefixes and masks:

 --hmark-src-prefix cidr

 The source address mask in CIDR notation.

 --hmark-dst-prefix cidr

 The destination address mask in CIDR notation.

 --hmark-sport-mask value

 A 16 bit source port mask in hexadecimal.

 --hmark-dport-mask value

 A 16 bit destination port mask in hexadecimal.

 --hmark-spi-mask value

 A 32 bit field with spi mask.

 --hmark-proto-mask value

 An 8 bit field with layer 4 protocol number.

 --hmark-rnd value

 A 32 bit random custom value to feed hash calculation.

 Examples: Page 44/59

 iptables -t mangle -A PREROUTING -m conntrack --ctstate NEW

 -j HMARK --hmark-tuple ct,src,dst,proto --hmark-offset 10000 --hmark-mod 10 --hmark-rnd

 0xfeedcafe

 iptables -t mangle -A PREROUTING -j HMARK --hmark-offset 10000 --hmark-tuple src,dst,proto

 --hmark-mod 10 --hmark-rnd 0xdeafbeef

 IDLETIMER

 This target can be used to identify when interfaces have been idle for a certain period of

 time. Timers are identified by labels and are created when a rule is set with a new la?

 bel. The rules also take a timeout value (in seconds) as an option. If more than one

 rule uses the same timer label, the timer will be restarted whenever any of the rules get

 a hit. One entry for each timer is created in sysfs. This attribute contains the timer

 remaining for the timer to expire. The attributes are located under the xt_idletimer

 class:

 /sys/class/xt_idletimer/timers/<label>

 When the timer expires, the target module sends a sysfs notification to the userspace,

 which can then decide what to do (eg. disconnect to save power).

 --timeout amount

 This is the time in seconds that will trigger the notification.

 --label string

 This is a unique identifier for the timer. The maximum length for the label string

 is 27 characters.

 LED

 This creates an LED-trigger that can then be attached to system indicator lights, to blink

 or illuminate them when certain packets pass through the system. One example might be to

 light up an LED for a few minutes every time an SSH connection is made to the local ma?

 chine. The following options control the trigger behavior:

 --led-trigger-id name

 This is the name given to the LED trigger. The actual name of the trigger will be

 prefixed with "netfilter-".

 --led-delay ms

 This indicates how long (in milliseconds) the LED should be left illuminated when a

 packet arrives before being switched off again. The default is 0 (blink as fast as

 possible.) The special value inf can be given to leave the LED on permanently once Page 45/59

 activated. (In this case the trigger will need to be manually detached and reat?

 tached to the LED device to switch it off again.)

 --led-always-blink

 Always make the LED blink on packet arrival, even if the LED is already on. This

 allows notification of new packets even with long delay values (which otherwise

 would result in a silent prolonging of the delay time.)

 Example:

 Create an LED trigger for incoming SSH traffic:

 iptables -A INPUT -p tcp --dport 22 -j LED --led-trigger-id ssh

 Then attach the new trigger to an LED:

 echo netfilter-ssh >/sys/class/leds/ledname/trigger

 LOG

 Turn on kernel logging of matching packets. When this option is set for a rule, the Linux

 kernel will print some information on all matching packets (like most IP/IPv6 header

 fields) via the kernel log (where it can be read with dmesg(1) or read in the syslog).

 This is a "non-terminating target", i.e. rule traversal continues at the next rule. So if

 you want to LOG the packets you refuse, use two separate rules with the same matching cri?

 teria, first using target LOG then DROP (or REJECT).

 --log-level level

 Level of logging, which can be (system-specific) numeric or a mnemonic. Possible

 values are (in decreasing order of priority): emerg, alert, crit, error, warning,

 notice, info or debug.

 --log-prefix prefix

 Prefix log messages with the specified prefix; up to 29 letters long, and useful

 for distinguishing messages in the logs.

 --log-tcp-sequence

 Log TCP sequence numbers. This is a security risk if the log is readable by users.

 --log-tcp-options

 Log options from the TCP packet header.

 --log-ip-options

 Log options from the IP/IPv6 packet header.

 --log-uid

 Log the userid of the process which generated the packet. Page 46/59

 MARK

 This target is used to set the Netfilter mark value associated with the packet. It can,

 for example, be used in conjunction with routing based on fwmark (needs iproute2). If you

 plan on doing so, note that the mark needs to be set in either the PREROUTING or the OUT?

 PUT chain of the mangle table to affect routing. The mark field is 32 bits wide.

 --set-xmark value[/mask]

 Zeroes out the bits given by mask and XORs value into the packet mark ("nfmark").

 If mask is omitted, 0xFFFFFFFF is assumed.

 --set-mark value[/mask]

 Zeroes out the bits given by mask and ORs value into the packet mark. If mask is

 omitted, 0xFFFFFFFF is assumed.

 The following mnemonics are available:

 --and-mark bits

 Binary AND the nfmark with bits. (Mnemonic for --set-xmark 0/invbits, where invbits

 is the binary negation of bits.)

 --or-mark bits

 Binary OR the nfmark with bits. (Mnemonic for --set-xmark bits/bits.)

 --xor-mark bits

 Binary XOR the nfmark with bits. (Mnemonic for --set-xmark bits/0.)

 MASQUERADE

 This target is only valid in the nat table, in the POSTROUTING chain. It should only be

 used with dynamically assigned IP (dialup) connections: if you have a static IP address,

 you should use the SNAT target. Masquerading is equivalent to specifying a mapping to the

 IP address of the interface the packet is going out, but also has the effect that connec?

 tions are forgotten when the interface goes down. This is the correct behavior when the

 next dialup is unlikely to have the same interface address (and hence any established con?

 nections are lost anyway).

 --to-ports port[-port]

 This specifies a range of source ports to use, overriding the default SNAT source

 port-selection heuristics (see above). This is only valid if the rule also speci?

 fies one of the following protocols: tcp, udp, dccp or sctp.

 --random

 Randomize source port mapping If option --random is used then port mapping will be Page 47/59

 randomized (kernel >= 2.6.21). Since kernel 5.0, --random is identical to --ran?

 dom-fully.

 --random-fully

 Full randomize source port mapping If option --random-fully is used then port map?

 ping will be fully randomized (kernel >= 3.13).

 IPv6 support available since Linux kernels >= 3.7.

 NETMAP

 This target allows you to statically map a whole network of addresses onto another network

 of addresses. It can only be used from rules in the nat table.

 --to address[/mask]

 Network address to map to. The resulting address will be constructed in the fol?

 lowing way: All 'one' bits in the mask are filled in from the new `address'. All

 bits that are zero in the mask are filled in from the original address.

 IPv6 support available since Linux kernels >= 3.7.

 NFLOG

 This target provides logging of matching packets. When this target is set for a rule, the

 Linux kernel will pass the packet to the loaded logging backend to log the packet. This is

 usually used in combination with nfnetlink_log as logging backend, which will multicast

 the packet through a netlink socket to the specified multicast group. One or more

 userspace processes may subscribe to the group to receive the packets. Like LOG, this is a

 non-terminating target, i.e. rule traversal continues at the next rule.

 --nflog-group nlgroup

 The netlink group (0 - 2^16-1) to which packets are (only applicable for

 nfnetlink_log). The default value is 0.

 --nflog-prefix prefix

 A prefix string to include in the log message, up to 64 characters long, useful for

 distinguishing messages in the logs.

 --nflog-range size

 This option has never worked, use --nflog-size instead

 --nflog-size size

 The number of bytes to be copied to userspace (only applicable for nfnetlink_log).

 nfnetlink_log instances may specify their own range, this option overrides it.

 --nflog-threshold size Page 48/59

 Number of packets to queue inside the kernel before sending them to userspace (only

 applicable for nfnetlink_log). Higher values result in less overhead per packet,

 but increase delay until the packets reach userspace. The default value is 1.

 NFQUEUE

 This target passes the packet to userspace using the nfnetlink_queue handler. The packet

 is put into the queue identified by its 16-bit queue number. Userspace can inspect and

 modify the packet if desired. Userspace must then drop or reinject the packet into the

 kernel. Please see libnetfilter_queue for details. nfnetlink_queue was added in Linux

 2.6.14. The queue-balance option was added in Linux 2.6.31, queue-bypass in 2.6.39.

 --queue-num value

 This specifies the QUEUE number to use. Valid queue numbers are 0 to 65535. The de?

 fault value is 0.

 --queue-balance value:value

 This specifies a range of queues to use. Packets are then balanced across the given

 queues. This is useful for multicore systems: start multiple instances of the

 userspace program on queues x, x+1, .. x+n and use "--queue-balance x:x+n". Pack?

 ets belonging to the same connection are put into the same nfqueue.

 --queue-bypass

 By default, if no userspace program is listening on an NFQUEUE, then all packets

 that are to be queued are dropped. When this option is used, the NFQUEUE rule be?

 haves like ACCEPT instead, and the packet will move on to the next table.

 --queue-cpu-fanout

 Available starting Linux kernel 3.10. When used together with --queue-balance this

 will use the CPU ID as an index to map packets to the queues. The idea is that you

 can improve performance if there's a queue per CPU. This requires --queue-balance

 to be specified.

 NOTRACK

 This extension disables connection tracking for all packets matching that rule. It is

 equivalent with -j CT --notrack. Like CT, NOTRACK can only be used in the raw table.

 RATEEST

 The RATEEST target collects statistics, performs rate estimation calculation and saves the

 results for later evaluation using the rateest match.

 --rateest-name name Page 49/59

 Count matched packets into the pool referred to by name, which is freely choosable.

 --rateest-interval amount{s|ms|us}

 Rate measurement interval, in seconds, milliseconds or microseconds.

 --rateest-ewmalog value

 Rate measurement averaging time constant.

 REDIRECT

 This target is only valid in the nat table, in the PREROUTING and OUTPUT chains, and user-

 defined chains which are only called from those chains. It redirects the packet to the

 machine itself by changing the destination IP to the primary address of the incoming in?

 terface (locally-generated packets are mapped to the localhost address, 127.0.0.1 for IPv4

 and ::1 for IPv6, and packets arriving on interfaces that don't have an IP address config?

 ured are dropped).

 --to-ports port[-port]

 This specifies a destination port or range of ports to use: without this, the des?

 tination port is never altered. This is only valid if the rule also specifies one

 of the following protocols: tcp, udp, dccp or sctp.

 --random

 If option --random is used then port mapping will be randomized (kernel >= 2.6.22).

 IPv6 support available starting Linux kernels >= 3.7.

 REJECT (IPv6-specific)

 This is used to send back an error packet in response to the matched packet: otherwise it

 is equivalent to DROP so it is a terminating TARGET, ending rule traversal. This target

 is only valid in the INPUT, FORWARD and OUTPUT chains, and user-defined chains which are

 only called from those chains. The following option controls the nature of the error

 packet returned:

 --reject-with type

 The type given can be icmp6-no-route, no-route, icmp6-adm-prohibited, adm-prohib?

 ited, icmp6-addr-unreachable, addr-unreach, or icmp6-port-unreachable, which return

 the appropriate ICMPv6 error message (icmp6-port-unreachable is the default). Fi?

 nally, the option tcp-reset can be used on rules which only match the TCP protocol:

 this causes a TCP RST packet to be sent back. This is mainly useful for blocking

 ident (113/tcp) probes which frequently occur when sending mail to broken mail

 hosts (which won't accept your mail otherwise). tcp-reset can only be used with Page 50/59

 kernel versions 2.6.14 or later.

 Warning: You should not indiscriminately apply the REJECT target to packets whose connec?

 tion state is classified as INVALID; instead, you should only DROP these.

 Consider a source host transmitting a packet P, with P experiencing so much delay along

 its path that the source host issues a retransmission, P_2, with P_2 being successful in

 reaching its destination and advancing the connection state normally. It is conceivable

 that the late-arriving P may be considered not to be associated with any connection track?

 ing entry. Generating a reject response for a packet so classed would then terminate the

 healthy connection.

 So, instead of:

 -A INPUT ... -j REJECT

 do consider using:

 -A INPUT ... -m conntrack --ctstate INVALID -j DROP -A INPUT ... -j REJECT

 REJECT (IPv4-specific)

 This is used to send back an error packet in response to the matched packet: otherwise it

 is equivalent to DROP so it is a terminating TARGET, ending rule traversal. This target

 is only valid in the INPUT, FORWARD and OUTPUT chains, and user-defined chains which are

 only called from those chains. The following option controls the nature of the error

 packet returned:

 --reject-with type

 The type given can be icmp-net-unreachable, icmp-host-unreachable, icmp-port-un?

 reachable, icmp-proto-unreachable, icmp-net-prohibited, icmp-host-prohibited, or

 icmp-admin-prohibited (*), which return the appropriate ICMP error message

 (icmp-port-unreachable is the default). The option tcp-reset can be used on rules

 which only match the TCP protocol: this causes a TCP RST packet to be sent back.

 This is mainly useful for blocking ident (113/tcp) probes which frequently occur

 when sending mail to broken mail hosts (which won't accept your mail otherwise).

 (*) Using icmp-admin-prohibited with kernels that do not support it will result in

 a plain DROP instead of REJECT

 Warning: You should not indiscriminately apply the REJECT target to packets whose connec?

 tion state is classified as INVALID; instead, you should only DROP these.

 Consider a source host transmitting a packet P, with P experiencing so much delay along

 its path that the source host issues a retransmission, P_2, with P_2 being successful in Page 51/59

 reaching its destination and advancing the connection state normally. It is conceivable

 that the late-arriving P may be considered not to be associated with any connection track?

 ing entry. Generating a reject response for a packet so classed would then terminate the

 healthy connection.

 So, instead of:

 -A INPUT ... -j REJECT

 do consider using:

 -A INPUT ... -m conntrack --ctstate INVALID -j DROP -A INPUT ... -j REJECT

 SECMARK

 This is used to set the security mark value associated with the packet for use by security

 subsystems such as SELinux. It is valid in the security table (for backwards compatibil?

 ity with older kernels, it is also valid in the mangle table). The mark is 32 bits wide.

 --selctx security_context

 SET

 This module adds and/or deletes entries from IP sets which can be defined by ipset(8).

 --add-set setname flag[,flag...]

 add the address(es)/port(s) of the packet to the set

 --del-set setname flag[,flag...]

 delete the address(es)/port(s) of the packet from the set

 --map-set setname flag[,flag...]

 [--map-mark] [--map-prio] [--map-queue] map packet properties (firewall mark, tc

 priority, hardware queue)

 where flag(s) are src and/or dst specifications and there can be no more than six

 of them.

 --timeout value

 when adding an entry, the timeout value to use instead of the default one from the

 set definition

 --exist

 when adding an entry if it already exists, reset the timeout value to the specified

 one or to the default from the set definition

 --map-set set-name

 the set-name should be created with --skbinfo option --map-mark map firewall mark

 to packet by lookup of value in the set --map-prio map traffic control priority to Page 52/59

 packet by lookup of value in the set --map-queue map hardware NIC queue to packet

 by lookup of value in the set

 The --map-set option can be used from the mangle table only. The --map-prio and

 --map-queue flags can be used in the OUTPUT, FORWARD and POSTROUTING chains.

 Use of -j SET requires that ipset kernel support is provided, which, for standard kernels,

 is the case since Linux 2.6.39.

 SNAT

 This target is only valid in the nat table, in the POSTROUTING and INPUT chains, and user-

 defined chains which are only called from those chains. It specifies that the source ad?

 dress of the packet should be modified (and all future packets in this connection will

 also be mangled), and rules should cease being examined. It takes the following options:

 --to-source [ipaddr[-ipaddr]][:port[-port]]

 which can specify a single new source IP address, an inclusive range of IP ad?

 dresses. Optionally a port range, if the rule also specifies one of the following

 protocols: tcp, udp, dccp or sctp. If no port range is specified, then source

 ports below 512 will be mapped to other ports below 512: those between 512 and 1023

 inclusive will be mapped to ports below 1024, and other ports will be mapped to

 1024 or above. Where possible, no port alteration will occur. In Kernels up to

 2.6.10, you can add several --to-source options. For those kernels, if you specify

 more than one source address, either via an address range or multiple --to-source

 options, a simple round-robin (one after another in cycle) takes place between

 these addresses. Later Kernels (>= 2.6.11-rc1) don't have the ability to NAT to

 multiple ranges anymore.

 --random

 If option --random is used then port mapping will be randomized through a hash-

 based algorithm (kernel >= 2.6.21).

 --random-fully

 If option --random-fully is used then port mapping will be fully randomized through

 a PRNG (kernel >= 3.14).

 --persistent

 Gives a client the same source-/destination-address for each connection. This su?

 persedes the SAME target. Support for persistent mappings is available from

 2.6.29-rc2. Page 53/59

 Kernels prior to 2.6.36-rc1 don't have the ability to SNAT in the INPUT chain.

 IPv6 support available since Linux kernels >= 3.7.

 SNPT (IPv6-specific)

 Provides stateless source IPv6-to-IPv6 Network Prefix Translation (as described by RFC

 6296).

 You have to use this target in the mangle table, not in the nat table. It takes the fol?

 lowing options:

 --src-pfx [prefix/length]

 Set source prefix that you want to translate and length

 --dst-pfx [prefix/length]

 Set destination prefix that you want to use in the translation and length

 You have to use the DNPT target to undo the translation. Example:

 ip6tables -t mangle -I POSTROUTING -s fd00::/64 -o vboxnet0 -j SNPT --src-pfx

 fd00::/64 --dst-pfx 2001:e20:2000:40f::/64

 ip6tables -t mangle -I PREROUTING -i wlan0 -d 2001:e20:2000:40f::/64 -j DNPT --src-

 pfx 2001:e20:2000:40f::/64 --dst-pfx fd00::/64

 You may need to enable IPv6 neighbor proxy:

 sysctl -w net.ipv6.conf.all.proxy_ndp=1

 You also have to use the NOTRACK target to disable connection tracking for translated

 flows.

 SYNPROXY

 This target will process TCP three-way-handshake parallel in netfilter context to protect

 either local or backend system. This target requires connection tracking because sequence

 numbers need to be translated. The kernels ability to absorb SYNFLOOD was greatly im?

 proved starting with Linux 4.4, so this target should not be needed anymore to protect

 Linux servers.

 --mss maximum segment size

 Maximum segment size announced to clients. This must match the backend.

 --wscale window scale

 Window scale announced to clients. This must match the backend.

 --sack-perm

 Pass client selective acknowledgement option to backend (will be disabled if not

 present). Page 54/59

 --timestamps

 Pass client timestamp option to backend (will be disabled if not present, also

 needed for selective acknowledgement and window scaling).

 Example:

 Determine tcp options used by backend, from an external system

 tcpdump -pni eth0 -c 1 'tcp[tcpflags] == (tcp-syn|tcp-ack)'

 port 80 &

 telnet 192.0.2.42 80

 18:57:24.693307 IP 192.0.2.42.80 > 192.0.2.43.48757:

 Flags [S.], seq 360414582, ack 788841994, win 14480,

 options [mss 1460,sackOK,

 TS val 1409056151 ecr 9690221,

 nop,wscale 9],

 length 0

 Switch tcp_loose mode off, so conntrack will mark out-of-flow packets as state INVALID.

 echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

 Make SYN packets untracked

 iptables -t raw -A PREROUTING -i eth0 -p tcp --dport 80

 --syn -j CT --notrack

 Catch UNTRACKED (SYN packets) and INVALID (3WHS ACK packets) states and send them to SYN?

 PROXY. This rule will respond to SYN packets with SYN+ACK syncookies, create ESTABLISHED

 for valid client response (3WHS ACK packets) and drop incorrect cookies. Flags combina?

 tions not expected during 3WHS will not match and continue (e.g. SYN+FIN, SYN+ACK).

 iptables -A INPUT -i eth0 -p tcp --dport 80

 -m state --state UNTRACKED,INVALID -j SYNPROXY

 --sack-perm --timestamp --mss 1460 --wscale 9

 Drop invalid packets, this will be out-of-flow packets that were not matched by SYNPROXY.

 iptables -A INPUT -i eth0 -p tcp --dport 80 -m state --state INVALID -j DROP

 TCPMSS

 This target alters the MSS value of TCP SYN packets, to control the maximum size for that

 connection (usually limiting it to your outgoing interface's MTU minus 40 for IPv4 or 60

 for IPv6, respectively). Of course, it can only be used in conjunction with -p tcp.

 This target is used to overcome criminally braindead ISPs or servers which block "ICMP Page 55/59

 Fragmentation Needed" or "ICMPv6 Packet Too Big" packets. The symptoms of this problem

 are that everything works fine from your Linux firewall/router, but machines behind it can

 never exchange large packets:

 1. Web browsers connect, then hang with no data received.

 2. Small mail works fine, but large emails hang.

 3. ssh works fine, but scp hangs after initial handshaking.

 Workaround: activate this option and add a rule to your firewall configuration like:

 iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN

 -j TCPMSS --clamp-mss-to-pmtu

 --set-mss value

 Explicitly sets MSS option to specified value. If the MSS of the packet is already

 lower than value, it will not be increased (from Linux 2.6.25 onwards) to avoid

 more problems with hosts relying on a proper MSS.

 --clamp-mss-to-pmtu

 Automatically clamp MSS value to (path_MTU - 40 for IPv4; -60 for IPv6). This may

 not function as desired where asymmetric routes with differing path MTU exist ? the

 kernel uses the path MTU which it would use to send packets from itself to the

 source and destination IP addresses. Prior to Linux 2.6.25, only the path MTU to

 the destination IP address was considered by this option; subsequent kernels also

 consider the path MTU to the source IP address.

 These options are mutually exclusive.

 TCPOPTSTRIP

 This target will strip TCP options off a TCP packet. (It will actually replace them by NO-

 OPs.) As such, you will need to add the -p tcp parameters.

 --strip-options option[,option...]

 Strip the given option(s). The options may be specified by TCP option number or by

 symbolic name. The list of recognized options can be obtained by calling iptables

 with -j TCPOPTSTRIP -h.

 TEE

 The TEE target will clone a packet and redirect this clone to another machine on the local

 network segment. In other words, the nexthop must be the target, or you will have to con?

 figure the nexthop to forward it further if so desired.

 --gateway ipaddr Page 56/59

 Send the cloned packet to the host reachable at the given IP address. Use of

 0.0.0.0 (for IPv4 packets) or :: (IPv6) is invalid.

 To forward all incoming traffic on eth0 to an Network Layer logging box:

 -t mangle -A PREROUTING -i eth0 -j TEE --gateway 2001:db8::1

 TOS

 This module sets the Type of Service field in the IPv4 header (including the "precedence"

 bits) or the Priority field in the IPv6 header. Note that TOS shares the same bits as DSCP

 and ECN. The TOS target is only valid in the mangle table.

 --set-tos value[/mask]

 Zeroes out the bits given by mask (see NOTE below) and XORs value into the TOS/Pri?

 ority field. If mask is omitted, 0xFF is assumed.

 --set-tos symbol

 You can specify a symbolic name when using the TOS target for IPv4. It implies a

 mask of 0xFF (see NOTE below). The list of recognized TOS names can be obtained by

 calling iptables with -j TOS -h.

 The following mnemonics are available:

 --and-tos bits

 Binary AND the TOS value with bits. (Mnemonic for --set-tos 0/invbits, where in?

 vbits is the binary negation of bits. See NOTE below.)

 --or-tos bits

 Binary OR the TOS value with bits. (Mnemonic for --set-tos bits/bits. See NOTE be?

 low.)

 --xor-tos bits

 Binary XOR the TOS value with bits. (Mnemonic for --set-tos bits/0. See NOTE be?

 low.)

 NOTE: In Linux kernels up to and including 2.6.38, with the exception of longterm releases

 2.6.32 (>=.42), 2.6.33 (>=.15), and 2.6.35 (>=.14), there is a bug whereby IPv6 TOS man?

 gling does not behave as documented and differs from the IPv4 version. The TOS mask indi?

 cates the bits one wants to zero out, so it needs to be inverted before applying it to the

 original TOS field. However, the aformentioned kernels forgo the inversion which breaks

 --set-tos and its mnemonics.

 TPROXY

 This target is only valid in the mangle table, in the PREROUTING chain and user-defined Page 57/59

 chains which are only called from this chain. It redirects the packet to a local socket

 without changing the packet header in any way. It can also change the mark value which can

 then be used in advanced routing rules. It takes three options:

 --on-port port

 This specifies a destination port to use. It is a required option, 0 means the new

 destination port is the same as the original. This is only valid if the rule also

 specifies -p tcp or -p udp.

 --on-ip address

 This specifies a destination address to use. By default the address is the IP ad?

 dress of the incoming interface. This is only valid if the rule also specifies -p

 tcp or -p udp.

 --tproxy-mark value[/mask]

 Marks packets with the given value/mask. The fwmark value set here can be used by

 advanced routing. (Required for transparent proxying to work: otherwise these pack?

 ets will get forwarded, which is probably not what you want.)

 TRACE

 This target marks packets so that the kernel will log every rule which match the packets

 as those traverse the tables, chains, rules. It can only be used in the raw table.

 With iptables-legacy, a logging backend, such as ip(6)t_LOG or nfnetlink_log, must be

 loaded for this to be visible. The packets are logged with the string prefix: "TRACE:

 tablename:chainname:type:rulenum " where type can be "rule" for plain rule, "return" for

 implicit rule at the end of a user defined chain and "policy" for the policy of the built

 in chains.

 With iptables-nft, the target is translated into nftables' meta nftrace expression. Hence

 the kernel sends trace events via netlink to userspace where they may be displayed using

 xtables-monitor --trace command. For details, refer to xtables-monitor(8).

 TTL (IPv4-specific)

 This is used to modify the IPv4 TTL header field. The TTL field determines how many hops

 (routers) a packet can traverse until it's time to live is exceeded.

 Setting or incrementing the TTL field can potentially be very dangerous, so it should be

 avoided at any cost. This target is only valid in mangle table.

 Don't ever set or increment the value on packets that leave your local network!

 --ttl-set value Page 58/59

 Set the TTL value to `value'.

 --ttl-dec value

 Decrement the TTL value `value' times.

 --ttl-inc value

 Increment the TTL value `value' times.

 ULOG (IPv4-specific)

 This is the deprecated ipv4-only predecessor of the NFLOG target. It provides userspace

 logging of matching packets. When this target is set for a rule, the Linux kernel will

 multicast this packet through a netlink socket. One or more userspace processes may then

 subscribe to various multicast groups and receive the packets. Like LOG, this is a "non-

 terminating target", i.e. rule traversal continues at the next rule.

 --ulog-nlgroup nlgroup

 This specifies the netlink group (1-32) to which the packet is sent. Default value

 is 1.

 --ulog-prefix prefix

 Prefix log messages with the specified prefix; up to 32 characters long, and useful

 for distinguishing messages in the logs.

 --ulog-cprange size

 Number of bytes to be copied to userspace. A value of 0 always copies the entire

 packet, regardless of its size. Default is 0.

 --ulog-qthreshold size

 Number of packet to queue inside kernel. Setting this value to, e.g. 10 accumu?

 lates ten packets inside the kernel and transmits them as one netlink multipart

 message to userspace. Default is 1 (for backwards compatibility).

iptables 1.8.7 iptables-extensions(8)

Page 59/59

