
Rocky Enterprise Linux 9.2 Manual Pages on command 'jar.1'

$ man jar.1

JAR(1) JDK Commands JAR(1)

NAME

 jar - create an archive for classes and resources, and manipulate or restore individual

 classes or resources from an archive

SYNOPSIS

 jar [OPTION ...] [[--release VERSION] [-C dir] files] ...

DESCRIPTION

 The jar command is a general-purpose archiving and compression tool, based on the ZIP and

 ZLIB compression formats. Initially, the jar command was designed to package Java applets

 (not supported since JDK 11) or applications; however, beginning with JDK 9, users can use

 the jar command to create modular JARs. For transportation and deployment, it's usually

 more convenient to package modules as modular JARs.

 The syntax for the jar command resembles the syntax for the tar command. It has several

 main operation modes, defined by one of the mandatory operation arguments. Other argu?

 ments are either options that modify the behavior of the operation or are required to per?

 form the operation.

 When modules or the components of an application (files, images and sounds) are combined

 into a single archive, they can be downloaded by a Java agent (such as a browser) in a

 single HTTP transaction, rather than requiring a new connection for each piece. This dra?

 matically improves download times. The jar command also compresses files, which further

 improves download time. The jar command also enables individual entries in a file to be

 signed so that their origin can be authenticated. A JAR file can be used as a class path

 entry, whether or not it's compressed. Page 1/6

 An archive becomes a modular JAR when you include a module descriptor, module-info.class,

 in the root of the given directories or in the root of the .jar archive. The following

 operations described in Operation Modifiers Valid Only in Create and Update Modes are

 valid only when creating or updating a modular jar or updating an existing non-modular

 jar:

 ? --module-version

 ? --hash-modules

 ? --module-path

 Note:

 All mandatory or optional arguments for long options are also mandatory or optional for

 any corresponding short options.

MAIN OPERATION MODES

 When using the jar command, you must specify the operation for it to perform. You specify

 the operation mode for the jar command by including the appropriate operation arguments

 described in this section. You can mix an operation argument with other one-letter op?

 tions. Generally the operation argument is the first argument specified on the command

 line.

 -c or --create

 Creates the archive.

 -i FILE or --generate-index=FILE

 Generates index information for the specified JAR file. This option is deprecated

 and may be removed in a future release.

 -t or --list

 Lists the table of contents for the archive.

 -u or --update

 Updates an existing JAR file.

 -x or --extract

 Extracts the named (or all) files from the archive.

 -d or --describe-module

 Prints the module descriptor or automatic module name.

OPERATION MODIFIERS VALID IN ANY MODE

 You can use the following options to customize the actions of any operation mode included

 in the jar command. Page 2/6

 -C DIR Changes the specified directory and includes the files specified at the end of the

 command line.

 jar [OPTION ...] [[--release VERSION] [-C dir] files]

 -f FILE or --file=FILE

 Specifies the archive file name.

 --release VERSION

 Creates a multirelease JAR file. Places all files specified after the option into

 a versioned directory of the JAR file named META-INF/versions/VERSION/, where VER?

 SION must be must be a positive integer whose value is 9 or greater.

 At run time, where more than one version of a class exists in the JAR, the JDK will

 use the first one it finds, searching initially in the directory tree whose VERSION

 number matches the JDK's major version number. It will then look in directories

 with successively lower VERSION numbers, and finally look in the root of the JAR.

 -v or --verbose

 Sends or prints verbose output to standard output.

OPERATION MODIFIERS VALID ONLY IN CREATE AND UPDATE MODES

 You can use the following options to customize the actions of the create and the update

 main operation modes:

 -e CLASSNAME or --main-class=CLASSNAME

 Specifies the application entry point for standalone applications bundled into a

 modular or executable modular JAR file.

 -m FILE or --manifest=FILE

 Includes the manifest information from the given manifest file.

 -M or --no-manifest

 Doesn't create a manifest file for the entries.

 --module-version=VERSION

 Specifies the module version, when creating or updating a modular JAR file, or up?

 dating a non-modular JAR file.

 --hash-modules=PATTERN

 Computes and records the hashes of modules matched by the given pattern and that

 depend upon directly or indirectly on a modular JAR file being created or a non-

 modular JAR file being updated.

 -p or --module-path Page 3/6

 Specifies the location of module dependence for generating the hash.

 @file Reads jar options and file names from a text file.

OPERATION MODIFIERS VALID ONLY IN CREATE, UPDATE, AND GENERATE-INDEX MODES

 You can use the following options to customize the actions of the create (-c or --create)

 the update (-u or --update) and the generate-index (-i or --generate-index=FILE) main op?

 eration modes:

 -0 or --no-compress

 Stores without using ZIP compression.

 --date=TIMESTAMP

 The timestamp in ISO-8601 extended offset date-time with optional time-zone format,

 to use for the timestamp of the entries, e.g. "2022-02-12T12:30:00-05:00".

OTHER OPTIONS

 The following options are recognized by the jar command and not used with operation modes:

 -h or --help[:compat]

 Displays the command-line help for the jar command or optionally the compatibility

 help.

 --help-extra

 Displays help on extra options.

 --version

 Prints the program version.

EXAMPLES OF JAR COMMAND SYNTAX

 ? Create an archive, classes.jar, that contains two class files, Foo.class and Bar.class.

 jar --create --file classes.jar Foo.class Bar.class

 ? Create an archive, classes.jar, that contains two class files, Foo.class and Bar.class

 setting the last modified date and time to 2021 Jan 6 12:36:00.

 jar --create --date="2021-01-06T14:36:00+02:00" --file=classes.jar Foo.class

 Bar.class

 ? Create an archive, classes.jar, by using an existing manifest, mymanifest, that contains

 all of the files in the directory foo/.

 jar --create --file classes.jar --manifest mymanifest -C foo/

 ? Create a modular JAR archive,foo.jar, where the module descriptor is located in class?

 es/module-info.class.

 jar --create --file foo.jar --main-class com.foo.Main --module-version 1.0 -C Page 4/6

 foo/classes resources

 ? Update an existing non-modular JAR, foo.jar, to a modular JAR file.

 jar --update --file foo.jar --main-class com.foo.Main --module-version 1.0 -C

 foo/module-info.class

 ? Create a versioned or multi-release JAR, foo.jar, that places the files in the classes

 directory at the root of the JAR, and the files in the classes-10 directory in the META-

 INF/versions/10 directory of the JAR.

 In this example, the classes/com/foo directory contains two classes, com.foo.Hello (the

 entry point class) and com.foo.NameProvider, both compiled for JDK 8. The class?

 es-10/com/foo directory contains a different version of the com.foo.NameProvider class,

 this one containing JDK 10 specific code and compiled for JDK 10.

 Given this setup, create a multirelease JAR file foo.jar by running the following com?

 mand from the directory containing the directories classes and classes-10 .

 jar --create --file foo.jar --main-class com.foo.Hello -C classes . --release 10

 -C classes-10 .

 The JAR file foo.jar now contains:

 % jar -tf foo.jar

 META-INF/

 META-INF/MANIFEST.MF

 com/

 com/foo/

 com/foo/Hello.class

 com/foo/NameProvider.class

 META-INF/versions/10/com/

 META-INF/versions/10/com/foo/

 META-INF/versions/10/com/foo/NameProvider.class

 As well as other information, the file META-INF/MANIFEST.MF, will contain the following

 lines to indicate that this is a multirelease JAR file with an entry point of

 com.foo.Hello.

 ...

 Main-Class: com.foo.Hello

 Multi-Release: true

 Assuming that the com.foo.Hello class calls a method on the com.foo.NameProvider class, Page 5/6

 running the program using JDK 10 will ensure that the com.foo.NameProvider class is the

 one in META-INF/versions/10/com/foo/. Running the program using JDK 8 will ensure that

 the com.foo.NameProvider class is the one at the root of the JAR, in com/foo.

 ? Create an archive, my.jar, by reading options and lists of class files from the file

 classes.list.

 Note:

 To shorten or simplify the jar command, you can specify arguments in a separate text

 file and pass it to the jar command with the at sign (@) as a prefix.

 jar --create --file my.jar @classes.list

JDK 21 2023 JAR(1)

Page 6/6

