
Rocky Enterprise Linux 9.2 Manual Pages on command 'jarsigner.1'

$ man jarsigner.1

JARSIGNER(1) JDK Commands JARSIGNER(1)

NAME

 jarsigner - sign and verify Java Archive (JAR) files

SYNOPSIS

 jarsigner [options] jar-file alias

 jarsigner -verify [options] jar-file [alias ...]

 jarsigner -version

 options

 The command-line options. See Options for jarsigner.

 -verify

 The -verify option can take zero or more keystore alias names after the JAR file

 name. When the -verify option is specified, the jarsigner command checks that the

 certificate used to verify each signed entry in the JAR file matches one of the

 keystore aliases. The aliases are defined in the keystore specified by -keystore

 or the default keystore.

 If you also specify the -strict option, and the jarsigner command detects severe

 warnings, the message, "jar verified, with signer errors" is displayed.

 jar-file

 The JAR file to be signed.

 If you also specified the -strict option, and the jarsigner command detected severe

 warnings, the message, "jar signed, with signer errors" is displayed.

 alias The aliases are defined in the keystore specified by -keystore or the default key?

 store. Page 1/23

 -version

 The -version option prints the program version of jarsigner.

DESCRIPTION

 The jarsigner tool has two purposes:

 ? To sign Java Archive (JAR) files.

 ? To verify the signatures and integrity of signed JAR files.

 The JAR feature enables the packaging of class files, images, sounds, and other digital

 data in a single file for faster and easier distribution. A tool named jar enables devel?

 opers to produce JAR files. (Technically, any ZIP file can also be considered a JAR file,

 although when created by the jar command or processed by the jarsigner command, JAR files

 also contain a META-INF/MANIFEST.MF file.)

 A digital signature is a string of bits that is computed from some data (the data being

 signed) and the private key of an entity (a person, company, and so on). Similar to a

 handwritten signature, a digital signature has many useful characteristics:

 ? Its authenticity can be verified by a computation that uses the public key corresponding

 to the private key used to generate the signature.

 ? It can't be forged, assuming the private key is kept secret.

 ? It is a function of the data signed and thus can't be claimed to be the signature for

 other data as well.

 ? The signed data can't be changed. If the data is changed, then the signature can't be

 verified as authentic.

 To generate an entity's signature for a file, the entity must first have a public/private

 key pair associated with it and one or more certificates that authenticate its public key.

 A certificate is a digitally signed statement from one entity that says that the public

 key of another entity has a particular value.

 The jarsigner command uses key and certificate information from a keystore to generate

 digital signatures for JAR files. A keystore is a database of private keys and their as?

 sociated X.509 certificate chains that authenticate the corresponding public keys. The

 keytool command is used to create and administer keystores.

 The jarsigner command uses an entity's private key to generate a signature. The signed

 JAR file contains, among other things, a copy of the certificate from the keystore for the

 public key corresponding to the private key used to sign the file. The jarsigner command

 can verify the digital signature of the signed JAR file using the certificate inside it Page 2/23

 (in its signature block file).

 The jarsigner command can generate signatures that include a time stamp that enables a

 systems or deployer to check whether the JAR file was signed while the signing certificate

 was still valid.

 In addition, APIs allow applications to obtain the timestamp information.

 At this time, the jarsigner command can only sign JAR files created by the jar command or

 zip files. JAR files are the same as zip files, except they also have a META-INF/MANI?

 FEST.MF file. A META-INF/MANIFEST.MF file is created when the jarsigner command signs a

 zip file.

 The default jarsigner command behavior is to sign a JAR or zip file. Use the -verify op?

 tion to verify a signed JAR file.

 The jarsigner command also attempts to validate the signer's certificate after signing or

 verifying. During validation, it checks the revocation status of each certificate in the

 signer's certificate chain when the -revCheck option is specified. If there is a valida?

 tion error or any other problem, the command generates warning messages. If you specify

 the -strict option, then the command treats severe warnings as errors. See Errors and

 Warnings.

KEYSTORE ALIASES

 All keystore entities are accessed with unique aliases.

 When you use the jarsigner command to sign a JAR file, you must specify the alias for the

 keystore entry that contains the private key needed to generate the signature. If no out?

 put file is specified, it overwrites the original JAR file with the signed JAR file.

 Keystores are protected with a password, so the store password must be specified. You are

 prompted for it when you don't specify it on the command line. Similarly, private keys

 are protected in a keystore with a password, so the private key's password must be speci?

 fied, and you are prompted for the password when you don't specify it on the command line

 and it isn't the same as the store password.

KEYSTORE LOCATION

 The jarsigner command has a -keystore option for specifying the URL of the keystore to be

 used. The keystore is by default stored in a file named .keystore in the user's home di?

 rectory, as determined by the user.home system property.

 Linux and macOS: user.home defaults to the user's home directory.

 The input stream from the -keystore option is passed to the KeyStore.load method. If NONE Page 3/23

 is specified as the URL, then a null stream is passed to the KeyStore.load method. NONE

 should be specified when the KeyStore class isn't file based, for example, when it resides

 on a hardware token device.

KEYSTORE IMPLEMENTATION

 The KeyStore class provided in the java.security package supplies a number of well-defined

 interfaces to access and modify the information in a keystore. You can have multiple dif?

 ferent concrete implementations, where each implementation is for a particular type of

 keystore.

 Currently, there are two command-line tools that use keystore implementations (keytool and

 jarsigner).

 The default keystore implementation is PKCS12. This is a cross platform keystore based on

 the RSA PKCS12 Personal Information Exchange Syntax Standard. This standard is primarily

 meant for storing or transporting a user's private keys, certificates, and miscellaneous

 secrets. There is another built-in implementation, provided by Oracle. It implements the

 keystore as a file with a proprietary keystore type (format) named JKS. It protects each

 private key with its individual password, and also protects the integrity of the entire

 keystore with a (possibly different) password.

 Keystore implementations are provider-based, which means the application interfaces sup?

 plied by the KeyStore class are implemented in terms of a Service Provider Interface

 (SPI). There is a corresponding abstract KeystoreSpi class, also in the java.security

 package, that defines the Service Provider Interface methods that providers must imple?

 ment. The term provider refers to a package or a set of packages that supply a concrete

 implementation of a subset of services that can be accessed by the Java Security API. To

 provide a keystore implementation, clients must implement a provider and supply a Key?

 storeSpi subclass implementation, as described in How to Implement a Provider in the Java

 Cryptography Architecture [https://www.oracle.com/pls/topic/lookup?ctx=en/ja?

 va/javase&id=security_guide_implement_provider_jca].

 Applications can choose different types of keystore implementations from different

 providers, with the getInstance factory method in the KeyStore class. A keystore type de?

 fines the storage and data format of the keystore information and the algorithms used to

 protect private keys in the keystore and the integrity of the keystore itself. Keystore

 implementations of different types aren't compatible.

 The jarsigner commands can read file-based keystores from any location that can be speci? Page 4/23

 fied using a URL. In addition, these commands can read non-file-based keystores such as

 those provided by MSCAPI on Windows and PKCS11 on all platforms.

 For the jarsigner and keytool commands, you can specify a keystore type at the command

 line with the -storetype option.

 If you don't explicitly specify a keystore type, then the tools choose a keystore imple?

 mentation based on the value of the keystore.type property specified in the security prop?

 erties file. The security properties file is called java.security, and it resides in the

 JDK security properties directory, java.home/conf/security.

 Each tool gets the keystore.type value and then examines all the installed providers until

 it finds one that implements keystores of that type. It then uses the keystore implemen?

 tation from that provider.

 The KeyStore class defines a static method named getDefaultType that lets applications re?

 trieve the value of the keystore.type property. The following line of code creates an in?

 stance of the default keystore type as specified in the keystore.type property:

 KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());

 The default keystore type is pkcs12, which is a cross platform keystore based on the RSA

 PKCS12 Personal Information Exchange Syntax Standard. This is specified by the following

 line in the security properties file:

 keystore.type=pkcs12

 Case doesn't matter in keystore type designations. For example, JKS is the same as jks.

 To have the tools utilize a keystore implementation other than the default, you can change

 that line to specify a different keystore type. For example, if you want to use the Ora?

 cle's jks keystore implementation, then change the line to the following:

 keystore.type=jks

SUPPORTED ALGORITHMS

 By default, the jarsigner command signs a JAR file using one of the following algorithms

 and block file extensions depending on the type and size of the private key:

 Default Signature Algorithms and Block File Extensions

 keyalg keysize default sigalg block file exten?

 sion

 ??

 DSA any size SHA256withDSA .DSA

 RSA < 624 SHA256withRSA .RSA Page 5/23

 <= 7680 SHA384withRSA

 > 7680 SHA512withRSA

 EC < 512 SHA384withECDSA .EC

 >= 512 SHA512withECDSA

 RSASSA-PSS < 624 RSASSA-PSS (with .RSA

 SHA-256)

 <= 7680 RSASSA-PSS (with

 SHA-384)

 > 7680 RSASSA-PSS (with

 SHA-512)

 EdDSA 255 Ed25519 .EC

 448 Ed448

 ? If an RSASSA-PSS key is encoded with parameters, then jarsigner will use the same param?

 eters in the signature. Otherwise, jarsigner will use parameters that are determined by

 the size of the key as specified in the table above. For example, an 3072-bit RSASSA-

 PSS key will use RSASSA-PSS as the signature algorithm and SHA-384 as the hash and MGF1

 algorithms.

 These default signature algorithms can be overridden by using the -sigalg option.

 The jarsigner command uses the jdk.jar.disabledAlgorithms and jdk.security.legacyAlgo?

 rithms security properties to determine which algorithms are considered a security risk.

 If the JAR file was signed with any algorithms that are disabled, it will be treated as an

 unsigned JAR file. If the JAR file was signed with any legacy algorithms, it will be

 treated as signed with an informational warning to inform users that the legacy algorithm

 will be disabled in a future update. For detailed verification output, include -J-Dja?

 va.security.debug=jar. The jdk.jar.disabledAlgorithms and jdk.security.legacyAlgorithms

 security properties are defined in the java.security file (located in the JDK's $JA?

 VA_HOME/conf/security directory).

 Note:

 In order to improve out of the box security, default key size and signature algorithm

 names are periodically updated to stronger values with each release of the JDK. If inter?

 operability with older releases of the JDK is important, please make sure the defaults are

 supported by those releases, or alternatively use the -sigalg option to override the de?

 fault values at your own risk. Page 6/23

THE SIGNED JAR FILE

 When the jarsigner command is used to sign a JAR file, the output signed JAR file is ex?

 actly the same as the input JAR file, except that it has two additional files placed in

 the META-INF directory:

 ? A signature file with an .SF extension

 ? A signature block file with a .DSA, .RSA, or .EC extension

 The base file names for these two files come from the value of the -sigfile option. For

 example, when the option is -sigfile MKSIGN, the files are named MKSIGN.SF and MKSIGN.RSA.

 In this document, we assume the signer always uses an RSA key.

 If no -sigfile option appears on the command line, then the base file name for the .SF and

 the signature block files is the first 8 characters of the alias name specified on the

 command line, all converted to uppercase. If the alias name has fewer than 8 characters,

 then the full alias name is used. If the alias name contains any characters that aren't

 allowed in a signature file name, then each such character is converted to an underscore

 (_) character in forming the file name. Valid characters include letters, digits, under?

 scores, and hyphens.

SIGNATURE FILE

 A signature file (.SF file) looks similar to the manifest file that is always included in

 a JAR file when the jarsigner command is used to sign the file. For each source file in?

 cluded in the JAR file, the .SF file has two lines, such as in the manifest file, that

 list the following:

 ? File name

 ? Name of the digest algorithm (SHA)

 ? SHA digest value

 Note:

 The name of the digest algorithm (SHA) and the SHA digest value are on the same line.

 In the manifest file, the SHA digest value for each source file is the digest (hash) of

 the binary data in the source file. In the .SF file, the digest value for a specified

 source file is the hash of the two lines in the manifest file for the source file.

 The signature file, by default, includes a header with a hash of the whole manifest file.

 The header also contains a hash of the manifest header. The presence of the header en?

 ables verification optimization. See JAR File Verification.

SIGNATURE BLOCK FILE Page 7/23

 The .SF file is signed and the signature is placed in the signature block file. This file

 also contains, encoded inside it, the certificate or certificate chain from the keystore

 that authenticates the public key corresponding to the private key used for signing. The

 file has the extension .DSA, .RSA, or .EC, depending on the key algorithm used. See the

 table in Supported Algorithms.

SIGNATURE TIME STAMP

 The jarsigner command used with the following options generates and stores a signature

 time stamp when signing a JAR file:

 ? -tsa url

 ? -tsacert alias

 ? -tsapolicyid policyid

 ? -tsadigestalg algorithm

 See Options for jarsigner.

JAR FILE VERIFICATION

 A successful JAR file verification occurs when the signatures are valid, and none of the

 files that were in the JAR file when the signatures were generated have changed since

 then. JAR file verification involves the following steps:

 1. Verify the signature of the .SF file.

 The verification ensures that the signature stored in each signature block file was

 generated using the private key corresponding to the public key whose certificate (or

 certificate chain) also appears in the signature block file. It also ensures that the

 signature is a valid signature of the corresponding signature (.SF) file, and thus the

 .SF file wasn't tampered with.

 2. Verify the digest listed in each entry in the .SF file with each corresponding section

 in the manifest.

 The .SF file by default includes a header that contains a hash of the entire manifest

 file. When the header is present, the verification can check to see whether or not

 the hash in the header matches the hash of the manifest file. If there is a match,

 then verification proceeds to the next step.

 If there is no match, then a less optimized verification is required to ensure that

 the hash in each source file information section in the .SF file equals the hash of

 its corresponding section in the manifest file. See Signature File.

 One reason the hash of the manifest file that is stored in the .SF file header might Page 8/23

 not equal the hash of the current manifest file is that it might contain sections for

 newly added files after the file was signed. For example, suppose one or more files

 were added to the signed JAR file (using the jar tool) that already contains a signa?

 ture and a .SF file. If the JAR file is signed again by a different signer, then the

 manifest file is changed (sections are added to it for the new files by the jarsigner

 tool) and a new .SF file is created, but the original .SF file is unchanged. A veri?

 fication is still considered successful if none of the files that were in the JAR file

 when the original signature was generated have been changed since then. This is be?

 cause the hashes in the non-header sections of the .SF file equal the hashes of the

 corresponding sections in the manifest file.

 3. Read each file in the JAR file that has an entry in the .SF file. While reading, com?

 pute the file's digest and compare the result with the digest for this file in the man?

 ifest section. The digests should be the same or verification fails.

 If any serious verification failures occur during the verification process, then the

 process is stopped and a security exception is thrown. The jarsigner command catches

 and displays the exception.

 4. Check for disabled algorithm usage. See Supported Algorithms.

 Note:

 You should read any addition warnings (or errors if you specified the -strict option), as

 well as the content of the certificate (by specifying the -verbose and -certs options) to

 determine if the signature can be trusted.

MULTIPLE SIGNATURES FOR A JAR FILE

 A JAR file can be signed by multiple people by running the jarsigner command on the file

 multiple times and specifying the alias for a different person each time, as follows:

 jarsigner myBundle.jar susan

 jarsigner myBundle.jar kevin

 When a JAR file is signed multiple times, there are multiple .SF and signature block files

 in the resulting JAR file, one pair for each signature. In the previous example, the out?

 put JAR file includes files with the following names:

 SUSAN.SF

 SUSAN.RSA

 KEVIN.SF

 KEVIN.RSA Page 9/23

OPTIONS FOR JARSIGNER

 The following sections describe the options for the jarsigner. Be aware of the following

 standards:

 ? All option names are preceded by a hyphen sign (-).

 ? The options can be provided in any order.

 ? Items that are in italics or underlined (option values) represent the actual values that

 must be supplied.

 ? The -storepass, -keypass, -sigfile, -sigalg, -digestalg, -signedjar, and TSA-related op?

 tions are only relevant when signing a JAR file; they aren't relevant when verifying a

 signed JAR file. The -keystore option is relevant for signing and verifying a JAR file.

 In addition, aliases are specified when signing and verifying a JAR file.

 -keystore url

 Specifies the URL that tells the keystore location. This defaults to the file .keystore

 in the user's home directory, as determined by the user.home system property.

 A keystore is required when signing. You must explicitly specify a keystore when the

 default keystore doesn't exist or if you want to use one other than the default.

 A keystore isn't required when verifying, but if one is specified or the default exists

 and the -verbose option was also specified, then additional information is output re?

 garding whether or not any of the certificates used to verify the JAR file are contained

 in that keystore.

 The -keystore argument can be a file name and path specification rather than a URL, in

 which case it is treated the same as a file: URL, for example, the following are equiva?

 lent:

 ? -keystore filePathAndName

 ? -keystore file:filePathAndName

 If the Sun PKCS #11 provider was configured in the java.security security properties

 file (located in the JDK's $JAVA_HOME/conf/security directory), then the keytool and

 jarsigner tools can operate on the PKCS #11 token by specifying these options:

 -keystore NONE -storetype PKCS11

 For example, the following command lists the contents of the configured PKCS#11 token:

 keytool -keystore NONE -storetype PKCS11 -list

 -storepass [:env | :file] argument

 Specifies the password that is required to access the keystore. This is only needed Page 10/23

 when signing (not verifying) a JAR file. In that case, if a -storepass option isn't

 provided at the command line, then the user is prompted for the password.

 If the modifier env or file isn't specified, then the password has the value argument.

 Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named argument.

 ? file: Retrieve the password from the file named argument.

 Note:

 The password shouldn't be specified on the command line or in a script unless it is for

 testing purposes, or you are on a secure system.

 -storetype storetype

 Specifies the type of keystore to be instantiated. The default keystore type is the one

 that is specified as the value of the keystore.type property in the security properties

 file, which is returned by the static getDefaultType method in java.security.KeyStore.

 The PIN for a PKCS #11 token can also be specified with the -storepass option. If none

 is specified, then the keytool and jarsigner commands prompt for the token PIN. If the

 token has a protected authentication path (such as a dedicated PIN-pad or a biometric

 reader), then the -protected option must be specified and no password options can be

 specified.

 -keypass [:env | :file] argument -certchain file

 Specifies the password used to protect the private key of the keystore entry addressed

 by the alias specified on the command line. The password is required when using jar?

 signer to sign a JAR file. If no password is provided on the command line, and the re?

 quired password is different from the store password, then the user is prompted for it.

 If the modifier env or file isn't specified, then the password has the value argument.

 Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named argument.

 ? file: Retrieve the password from the file named argument.

 Note:

 The password shouldn't be specified on the command line or in a script unless it is for

 testing purposes, or you are on a secure system.

 -certchain file

 Specifies the certificate chain to be used when the certificate chain associated with

 the private key of the keystore entry that is addressed by the alias specified on the Page 11/23

 command line isn't complete. This can happen when the keystore is located on a hardware

 token where there isn't enough capacity to hold a complete certificate chain. The file

 can be a sequence of concatenated X.509 certificates, or a single PKCS#7 formatted data

 block, either in binary encoding format or in printable encoding format (also known as

 Base64 encoding) as defined by Internet RFC 1421 Certificate Encoding Standard

 [http://tools.ietf.org/html/rfc1421].

 -sigfile file

 Specifies the base file name to be used for the generated .SF and signature block files.

 For example, if file is DUKESIGN, then the generated .SF and signature block files are

 named DUKESIGN.SF and DUKESIGN.RSA, and placed in the META-INF directory of the signed

 JAR file.

 The characters in the file must come from the set a-zA-Z0-9_-. Only letters, numbers,

 underscore, and hyphen characters are allowed. All lowercase characters are converted

 to uppercase for the .SF and signature block file names.

 If no -sigfile option appears on the command line, then the base file name for the .SF

 and signature block files is the first 8 characters of the alias name specified on the

 command line, all converted to upper case. If the alias name has fewer than 8 charac?

 ters, then the full alias name is used. If the alias name contains any characters that

 aren't valid in a signature file name, then each such character is converted to an un?

 derscore (_) character to form the file name.

 -signedjar file

 Specifies the name of signed JAR file.

 -digestalg algorithm

 Specifies the name of the message digest algorithm to use when digesting the entries of

 a JAR file.

 For a list of standard message digest algorithm names, see Java Security Standard Algo?

 rithm Names.

 If this option isn't specified, then SHA-384 is used. There must either be a statically

 installed provider supplying an implementation of the specified algorithm or the user

 must specify one with the -addprovider or -providerClass options; otherwise, the command

 will not succeed.

 -sigalg algorithm

 Specifies the name of the signature algorithm to use to sign the JAR file. Page 12/23

 This algorithm must be compatible with the private key used to sign the JAR file. If

 this option isn't specified, then use a default algorithm matching the private key as

 described in the Supported Algorithms section. There must either be a statically in?

 stalled provider supplying an implementation of the specified algorithm or you must

 specify one with the -addprovider or -providerClass option; otherwise, the command

 doesn't succeed.

 For a list of standard message digest algorithm names, see Java Security Standard Algo?

 rithm Names.

 -verify

 Verifies a signed JAR file.

 -verbose[:suboptions]

 When the -verbose option appears on the command line, it indicates that the jarsigner

 use the verbose mode when signing or verifying with the suboptions determining how much

 information is shown. This causes the , which causes jarsigner to output extra informa?

 tion about the progress of the JAR signing or verification. The suboptions can be all,

 grouped, or summary.

 If the -certs option is also specified, then the default mode (or suboption all) dis?

 plays each entry as it is being processed, and after that, the certificate information

 for each signer of the JAR file.

 If the -certs and the -verbose:grouped suboptions are specified, then entries with the

 same signer info are grouped and displayed together with their certificate information.

 If -certs and the -verbose:summary suboptions are specified, then entries with the same

 signer information are grouped and displayed together with their certificate informa?

 tion.

 Details about each entry are summarized and displayed as one entry (and more). See Ex?

 ample of Verifying a Signed JAR File and Example of Verification with Certificate Infor?

 mation.

 -certs

 If the -certs option appears on the command line with the -verify and -verbose options,

 then the output includes certificate information for each signer of the JAR file. This

 information includes the name of the type of certificate (stored in the signature block

 file) that certifies the signer's public key, and if the certificate is an X.509 cer?

 tificate (an instance of the java.security.cert.X509Certificate), then the distinguished Page 13/23

 name of the signer.

 The keystore is also examined. If no keystore value is specified on the command line,

 then the default keystore file (if any) is checked. If the public key certificate for a

 signer matches an entry in the keystore, then the alias name for the keystore entry for

 that signer is displayed in parentheses.

 -revCheck

 This option enables revocation checking of certificates when signing or verifying a JAR

 file. The jarsigner command attempts to make network connections to fetch OCSP respons?

 es and CRLs if the -revCheck option is specified on the command line. Note that revoca?

 tion checks are not enabled unless this option is specified.

 -tsa url

 If -tsa http://example.tsa.url appears on the command line when signing a JAR file then

 a time stamp is generated for the signature. The URL, http://example.tsa.url, identi?

 fies the location of the Time Stamping Authority (TSA) and overrides any URL found with

 the -tsacert option. The -tsa option doesn't require the TSA public key certificate to

 be present in the keystore.

 To generate the time stamp, jarsigner communicates with the TSA with the Time-Stamp Pro?

 tocol (TSP) defined in RFC 3161. When successful, the time stamp token returned by the

 TSA is stored with the signature in the signature block file.

 -tsacert alias

 When -tsacert alias appears on the command line when signing a JAR file, a time stamp is

 generated for the signature. The alias identifies the TSA public key certificate in the

 keystore that is in effect. The entry's certificate is examined for a Subject Informa?

 tion Access extension that contains a URL identifying the location of the TSA.

 The TSA public key certificate must be present in the keystore when using the -tsacert

 option.

 -tsapolicyid policyid

 Specifies the object identifier (OID) that identifies the policy ID to be sent to the

 TSA server. If this option isn't specified, no policy ID is sent and the TSA server

 will choose a default policy ID.

 Object identifiers are defined by X.696, which is an ITU Telecommunication Standardiza?

 tion Sector (ITU-T) standard. These identifiers are typically period-separated sets of

 non-negative digits like 1.2.3.4, for example. Page 14/23

 -tsadigestalg algorithm

 Specifies the message digest algorithm that is used to generate the message imprint to

 be sent to the TSA server. If this option isn't specified, SHA-384 will be used.

 See Supported Algorithms.

 For a list of standard message digest algorithm names, see Java Security Standard Algo?

 rithm Names.

 -internalsf

 In the past, the signature block file generated when a JAR file was signed included a

 complete encoded copy of the .SF file (signature file) also generated. This behavior

 has been changed. To reduce the overall size of the output JAR file, the signature

 block file by default doesn't contain a copy of the .SF file anymore. If -internalsf

 appears on the command line, then the old behavior is utilized. This option is useful

 for testing. In practice, don't use the -internalsf option because it incurs higher

 overhead.

 -sectionsonly

 If the -sectionsonly option appears on the command line, then the .SF file (signature

 file) generated when a JAR file is signed doesn't include a header that contains a hash

 of the whole manifest file. It contains only the information and hashes related to each

 individual source file included in the JAR file. See Signature File.

 By default, this header is added, as an optimization. When the header is present, when?

 ever the JAR file is verified, the verification can first check to see whether the hash

 in the header matches the hash of the whole manifest file. When there is a match, veri?

 fication proceeds to the next step. When there is no match, it is necessary to do a

 less optimized verification that the hash in each source file information section in the

 .SF file equals the hash of its corresponding section in the manifest file. See JAR

 File Verification.

 The -sectionsonly option is primarily used for testing. It shouldn't be used other than

 for testing because using it incurs higher overhead.

 -protected

 Values can be either true or false. Specify true when a password must be specified

 through a protected authentication path such as a dedicated PIN reader.

 -providerName providerName

 If more than one provider was configured in the java.security security properties file, Page 15/23

 then you can use the -providerName option to target a specific provider instance. The

 argument to this option is the name of the provider.

 For the Oracle PKCS #11 provider, providerName is of the form SunPKCS11-TokenName, where

 TokenName is the name suffix that the provider instance has been configured with, as de?

 tailed in the configuration attributes table. For example, the following command lists

 the contents of the PKCS #11 keystore provider instance with name suffix SmartCard:

 jarsigner -keystore NONE -storetype PKCS11 -providerName SunPKCS11-SmartCard

 -list

 -addprovider name [-providerArg arg]

 Adds a security provider by name (such as SunPKCS11) and an optional configure argument.

 The value of the security provider is the name of a security provider that is defined in

 a module.

 Used with the -providerArg ConfigFilePath option, the keytool and jarsigner tools in?

 stall the provider dynamically and use ConfigFilePath for the path to the token configu?

 ration file. The following example shows a command to list a PKCS #11 keystore when the

 Oracle PKCS #11 provider wasn't configured in the security properties file.

 jarsigner -keystore NONE -storetype PKCS11 -addprovider SunPKCS11 -providerArg

 /mydir1/mydir2/token.config

 -providerClass provider-class-name [-providerArg arg]

 Used to specify the name of cryptographic service provider's master class file when the

 service provider isn't listed in the java.security security properties file. Adds a se?

 curity provider by fully-qualified class name and an optional configure argument.

 Note:

 The preferred way to load PKCS11 is by using modules. See -addprovider.

 -providerPath classpath

 Used to specify the classpath for providers specified by the -providerClass option.

 Multiple paths should be separated by the system-dependent path-separator character.

 -Jjavaoption

 Passes through the specified javaoption string directly to the Java interpreter. The

 jarsigner command is a wrapper around the interpreter. This option shouldn't contain

 any spaces. It is useful for adjusting the execution environment or memory usage. For

 a list of possible interpreter options, type java -h or java -X at the command line.

 -strict Page 16/23

 During the signing or verifying process, the command may issue warning messages. If you

 specify this option, the exit code of the tool reflects the severe warning messages that

 this command found. See Errors and Warnings.

 -conf url

 Specifies a pre-configured options file. Read the keytool documentation for details.

 The property keys supported are "jarsigner.all" for all actions, "jarsigner.sign" for

 signing, and "jarsigner.verify" for verification. jarsigner arguments including the JAR

 file name and alias name(s) cannot be set in this file.

 -version

 Prints the program version.

ERRORS AND WARNINGS

 During the signing or verifying process, the jarsigner command may issue various errors or

 warnings.

 If there is a failure, the jarsigner command exits with code 1. If there is no failure,

 but there are one or more severe warnings, the jarsigner command exits with code 0 when

 the -strict option is not specified, or exits with the OR-value of the warning codes when

 the -strict is specified. If there is only informational warnings or no warning at all,

 the command always exits with code 0.

 For example, if a certificate used to sign an entry is expired and has a KeyUsage exten?

 sion that doesn't allow it to sign a file, the jarsigner command exits with code 12 (=4+8)

 when the -strict option is specified.

 Note: Exit codes are reused because only the values from 0 to 255 are legal on Linux and

 macOS.

 The following sections describes the names, codes, and descriptions of the errors and

 warnings that the jarsigner command can issue.

FAILURE

 Reasons why the jarsigner command fails include (but aren't limited to) a command line

 parsing error, the inability to find a keypair to sign the JAR file, or the verification

 of a signed JAR fails.

 failure

 Code 1. The signing or verifying fails.

SEVERE WARNINGS

 Note: Page 17/23

 Severe warnings are reported as errors if you specify the -strict option.

 Reasons why the jarsigner command issues a severe warning include the certificate used to

 sign the JAR file has an error or the signed JAR file has other problems.

 hasExpiredCert

 Code 4. This JAR contains entries whose signer certificate has expired.

 hasExpiredTsaCert

 Code 4. The timestamp has expired.

 notYetValidCert

 Code 4. This JAR contains entries whose signer certificate isn't yet valid.

 chainNotValidated

 Code 4. This JAR contains entries whose certificate chain isn't validated.

 tsaChainNotValidated

 Code 64. The timestamp is invalid.

 signerSelfSigned

 Code 4. This JAR contains entries whose signer certificate is self signed.

 disabledAlg

 Code 4. An algorithm used is considered a security risk and is disabled.

 badKeyUsage

 Code 8. This JAR contains entries whose signer certificate's KeyUsage extension

 doesn't allow code signing.

 badExtendedKeyUsage

 Code 8. This JAR contains entries whose signer certificate's ExtendedKeyUsage ex?

 tension doesn't allow code signing.

 badNetscapeCertType

 Code 8. This JAR contains entries whose signer certificate's NetscapeCertType ex?

 tension doesn't allow code signing.

 hasUnsignedEntry

 Code 16. This JAR contains unsigned entries which haven't been integrity-checked.

 notSignedByAlias

 Code 32. This JAR contains signed entries which aren't signed by the specified

 alias(es).

 aliasNotInStore

 Code 32. This JAR contains signed entries that aren't signed by alias in this key? Page 18/23

 store.

 tsaChainNotValidated

 Code 64. This JAR contains entries whose TSA certificate chain is invalid.

INFORMATIONAL WARNINGS

 Informational warnings include those that aren't errors but regarded as bad practice.

 They don't have a code.

 extraAttributesDetected

 The POSIX file permissions and/or symlink attributes are detected during signing or

 verifying a JAR file. The jarsigner tool preserves these attributes in the newly

 signed file but warns that these attributes are unsigned and not protected by the

 signature.

 hasExpiringCert

 This JAR contains entries whose signer certificate expires within six months.

 hasExpiringTsaCert

 The timestamp will expire within one year on YYYY-MM-DD.

 legacyAlg

 An algorithm used is considered a security risk but not disabled.

 noTimestamp

 This JAR contains signatures that doesn't include a timestamp. Without a time?

 stamp, users may not be able to validate this JAR file after the signer certifi?

 cate's expiration date (YYYY-MM-DD) or after any future revocation date.

EXAMPLE OF SIGNING A JAR FILE

 Use the following command to sign bundle.jar with the private key of a user whose keystore

 alias is jane in a keystore named mystore in the working directory and name the signed JAR

 file sbundle.jar:

 jarsigner -keystore /working/mystore -storepass keystore_password -keypass pri?

 vate_key_password -signedjar sbundle.jar bundle.jar jane

 There is no -sigfile specified in the previous command so the generated .SF and signature

 block files to be placed in the signed JAR file have default names based on the alias

 name. They are named JANE.SF and JANE.RSA.

 If you want to be prompted for the store password and the private key password, then you

 could shorten the previous command to the following:

 jarsigner -keystore /working/mystore -signedjar sbundle.jar bundle.jar jane Page 19/23

 If the keystore is the default keystore (.keystore in your home directory), then you don't

 need to specify a keystore, as follows:

 jarsigner -signedjar sbundle.jar bundle.jar jane

 If you want the signed JAR file to overwrite the input JAR file (bundle.jar), then you

 don't need to specify a -signedjar option, as follows:

 jarsigner bundle.jar jane

EXAMPLE OF VERIFYING A SIGNED JAR FILE

 To verify a signed JAR file to ensure that the signature is valid and the JAR file wasn't

 been tampered with, use a command such as the following:

 jarsigner -verify ButtonDemo.jar

 When the verification is successful, jar verified is displayed. Otherwise, an error mes?

 sage is displayed. You can get more information when you use the -verbose option. A sam?

 ple use of jarsigner with the -verbose option follows:

 jarsigner -verify -verbose ButtonDemo.jar

 s 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF

 825 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.SF

 7475 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.RSA

 0 Tue Sep 12 20:07:54 EDT 2017 META-INF/

 0 Tue Sep 12 20:07:16 EDT 2017 components/

 0 Tue Sep 12 20:07:16 EDT 2017 components/images/

 sm 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$1.class

 sm 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class

 sm 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnlp

 sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.gif

 sm 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.gif

 sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif

 s = signature was verified

 m = entry is listed in manifest

 k = at least one certificate was found in keystore

 - Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,

ST=California, C=US"

 Digest algorithm: SHA-256

 Signature algorithm: SHA256withRSA, 2048-bit key Page 20/23

 Timestamped by "CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US" on Tue

Sep 12 20:08:49 UTC 2017

 Timestamp digest algorithm: SHA-1

 Timestamp signature algorithm: SHA1withRSA, 2048-bit key

 jar verified.

 The signer certificate expired on 2018-02-01. However, the JAR will be valid until the timestamp expires on

2020-12-29.

EXAMPLE OF VERIFICATION WITH CERTIFICATE INFORMATION

 If you specify the -certs option with the -verify and -verbose options, then the output

 includes certificate information for each signer of the JAR file. The information in?

 cludes the certificate type, the signer distinguished name information (when it is an

 X.509 certificate), and in parentheses, the keystore alias for the signer when the public

 key certificate in the JAR file matches the one in a keystore entry, for example:

 jarsigner -keystore $JAVA_HOME/lib/security/cacerts -verify -verbose -certs ButtonDemo.jar

 s k 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF

 >>> Signer

 X.509, CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,

ST=California, C=US

 [certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01, 6:59 PM]

 X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust Network, O=Symantec

Corporation, C=US

 [certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09, 6:59 PM]

 X.509, CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc. - For

authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US (verisignclass3g5ca [jdk])

 [trusted certificate]

 >>> TSA

 X.509, CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US

 [certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29, 6:59 PM]

 X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec Corporation, C=US

 [certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30, 6:59 PM]

 825 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.SF

 7475 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.RSA

 0 Tue Sep 12 20:07:54 EDT 2017 META-INF/ Page 21/23

 0 Tue Sep 12 20:07:16 EDT 2017 components/

 0 Tue Sep 12 20:07:16 EDT 2017 components/images/

 smk 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$1.class

 [entry was signed on 2017-09-12, 4:08 PM]

 >>> Signer

 X.509, CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,

ST=California, C=US

 [certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01, 6:59 PM]

 X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust Network, O=Symantec

Corporation, C=US

 [certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09, 6:59 PM]

 X.509, CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc. - For

authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US (verisignclass3g5ca [jdk])

 [trusted certificate]

 >>> TSA

 X.509, CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US

 [certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29, 6:59 PM]

 X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec Corporation, C=US

 [certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30, 6:59 PM]

 smk 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class

 ...

 smk 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnlp

 ...

 smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.gif

 ...

 smk 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.gif

 ...

 smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif

 ...

 s = signature was verified

 m = entry is listed in manifest

 k = at least one certificate was found in keystore

 - Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,Page 22/23

ST=California, C=US"

 Digest algorithm: SHA-256

 Signature algorithm: SHA256withRSA, 2048-bit key

 Timestamped by "CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US" on Tue

Sep 12 20:08:49 UTC 2017

 Timestamp digest algorithm: SHA-1

 Timestamp signature algorithm: SHA1withRSA, 2048-bit key

 jar verified.

 The signer certificate expired on 2018-02-01. However, the JAR will be valid until the timestamp expires on

2020-12-29.

 If the certificate for a signer isn't an X.509 certificate, then there is no distinguished

 name information. In that case, just the certificate type and the alias are shown. For

 example, if the certificate is a PGP certificate, and the alias is bob, then you would

 get: PGP, (bob).

JDK 21 2023 JARSIGNER(1)

Page 23/23

