FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'jarsigner.1’

$ man jarsigner.1

JARSIGNER(1) JDK Commands JARSIGNER(1)
NAME
jarsigner - sign and verify Java Archive (JAR) files
SYNOPSIS
jarsigner [options] jar-file alias
jarsigner -verify [options] jar-file [alias ...]
jarsigner -version
options
The command-line options. See Options for jarsigner.
-verify
The -verify option can take zero or more keystore alias names after the JAR file
name. When the -verify option is specified, the jarsigner command checks that the
certificate used to verify each signed entry in the JAR file matches one of the
keystore aliases. The aliases are defined in the keystore specified by -keystore
or the default keystore.
If you also specify the -strict option, and the jarsigner command detects severe
warnings, the message, "jar verified, with signer errors" is displayed.
jar-file
The JAR file to be signed.
If you also specified the -strict option, and the jarsigner command detected severe
warnings, the message, "jar signed, with signer errors" is displayed.
alias The aliases are defined in the keystore specified by -keystore or the default key?

store. Page 1/23

-version
The -version option prints the program version of jarsigner.
DESCRIPTION
The jarsigner tool has two purposes:
? To sign Java Archive (JAR) files.
? To verify the signatures and integrity of signed JAR files.
The JAR feature enables the packaging of class files, images, sounds, and other digital
data in a single file for faster and easier distribution. A tool named jar enables devel?
opers to produce JAR files. (Technically, any ZIP file can also be considered a JAR file,
although when created by the jar command or processed by the jarsigner command, JAR files
also contain a META-INF/MANIFEST.MF file.)
A digital signature is a string of bits that is computed from some data (the data being
signed) and the private key of an entity (a person, company, and so on). Similar to a
handwritten signature, a digital signature has many useful characteristics:
? Its authenticity can be verified by a computation that uses the public key corresponding
to the private key used to generate the signature.
? It can't be forged, assuming the private key is kept secret.
? It is a function of the data signed and thus can't be claimed to be the signature for
other data as well.
? The signed data can't be changed. If the data is changed, then the signature can't be
verified as authentic.
To generate an entity's signature for a file, the entity must first have a public/private
key pair associated with it and one or more certificates that authenticate its public key.
A certificate is a digitally signed statement from one entity that says that the public
key of another entity has a particular value.
The jarsigner command uses key and certificate information from a keystore to generate
digital signatures for JAR files. A keystore is a database of private keys and their as?
sociated X.509 certificate chains that authenticate the corresponding public keys. The
keytool command is used to create and administer keystores.
The jarsigner command uses an entity's private key to generate a signature. The signed
JAR file contains, among other things, a copy of the certificate from the keystore for the
public key corresponding to the private key used to sign the file. The jarsigner command

can verify the digital signature of the signed JAR file using the certificate inside it Page 2/23

(in its signature block file).
The jarsigner command can generate signatures that include a time stamp that enables a
systems or deployer to check whether the JAR file was signed while the signing certificate
was still valid.
In addition, APIs allow applications to obtain the timestamp information.
At this time, the jarsigner command can only sign JAR files created by the jar command or
zip files. JAR files are the same as zip files, except they also have a META-INF/MANI?
FEST.MF file. A META-INF/MANIFEST.MF file is created when the jarsigner command signs a
zip file.
The default jarsigner command behavior is to sign a JAR or zip file. Use the -verify op?
tion to verify a signed JAR file.
The jarsigner command also attempts to validate the signer's certificate after signing or
verifying. During validation, it checks the revocation status of each certificate in the
signer's certificate chain when the -revCheck option is specified. If there is a valida?
tion error or any other problem, the command generates warning messages. If you specify
the -strict option, then the command treats severe warnings as errors. See Errors and
Warnings.

KEYSTORE ALIASES
All keystore entities are accessed with unique aliases.
When you use the jarsigner command to sign a JAR file, you must specify the alias for the
keystore entry that contains the private key needed to generate the signature. If no out?
put file is specified, it overwrites the original JAR file with the signed JAR file.
Keystores are protected with a password, so the store password must be specified. You are
prompted for it when you don't specify it on the command line. Similarly, private keys
are protected in a keystore with a password, so the private key's password must be speci?
fied, and you are prompted for the password when you don't specify it on the command line
and it isn't the same as the store password.

KEYSTORE LOCATION
The jarsigner command has a -keystore option for specifying the URL of the keystore to be
used. The keystore is by default stored in a file named .keystore in the user's home di?
rectory, as determined by the user.home system property.
Linux and macOS: user.home defaults to the user's home directory.

The input stream from the -keystore option is passed to the KeyStore.load method. If NONE Page 3/23

is specified as the URL, then a null stream is passed to the KeyStore.load method. NONE
should be specified when the KeyStore class isn't file based, for example, when it resides
on a hardware token device.

KEYSTORE IMPLEMENTATION
The KeyStore class provided in the java.security package supplies a number of well-defined
interfaces to access and modify the information in a keystore. You can have multiple dif?
ferent concrete implementations, where each implementation is for a particular type of
keystore.
Currently, there are two command-line tools that use keystore implementations (keytool and
jarsigner).
The default keystore implementation is PKCS12. This is a cross platform keystore based on
the RSA PKCS12 Personal Information Exchange Syntax Standard. This standard is primarily
meant for storing or transporting a user's private keys, certificates, and miscellaneous
secrets. There is another built-in implementation, provided by Oracle. It implements the
keystore as a file with a proprietary keystore type (format) named JKS. It protects each
private key with its individual password, and also protects the integrity of the entire
keystore with a (possibly different) password.
Keystore implementations are provider-based, which means the application interfaces sup?
plied by the KeyStore class are implemented in terms of a Service Provider Interface
(SPI). There is a corresponding abstract KeystoreSpi class, also in the java.security
package, that defines the Service Provider Interface methods that providers must imple?
ment. The term provider refers to a package or a set of packages that supply a concrete
implementation of a subset of services that can be accessed by the Java Security APl. To
provide a keystore implementation, clients must implement a provider and supply a Key?
storeSpi subclass implementation, as described in How to Implement a Provider in the Java
Cryptography Architecture [https://lwww.oracle.com/pls/topic/lookup?ctx=en/ja?
valjavase&id=security_guide_implement_provider_jca].
Applications can choose different types of keystore implementations from different
providers, with the getinstance factory method in the KeyStore class. A keystore type de?
fines the storage and data format of the keystore information and the algorithms used to
protect private keys in the keystore and the integrity of the keystore itself. Keystore
implementations of different types aren't compatible.

The jarsigner commands can read file-based keystores from any location that can be speci? Page 4/23

fied using a URL. In addition, these commands can read non-file-based keystores such as
those provided by MSCAPI on Windows and PKCS11 on all platforms.
For the jarsigner and keytool commands, you can specify a keystore type at the command
line with the -storetype option.
If you don't explicitly specify a keystore type, then the tools choose a keystore imple?
mentation based on the value of the keystore.type property specified in the security prop?
erties file. The security properties file is called java.security, and it resides in the
JDK security properties directory, java.home/conf/security.
Each tool gets the keystore.type value and then examines all the installed providers until
it finds one that implements keystores of that type. It then uses the keystore implemen?
tation from that provider.
The KeyStore class defines a static method named getDefaultType that lets applications re?
trieve the value of the keystore.type property. The following line of code creates an in?
stance of the default keystore type as specified in the keystore.type property:

KeyStore keyStore = KeyStore.getinstance(KeyStore.getDefaultType());
The default keystore type is pkcs12, which is a cross platform keystore based on the RSA
PKCS12 Personal Information Exchange Syntax Standard. This is specified by the following
line in the security properties file:

keystore.type=pkcs12
Case doesn't matter in keystore type designations. For example, JKS is the same as jks.
To have the tools utilize a keystore implementation other than the default, you can change
that line to specify a different keystore type. For example, if you want to use the Ora?
cle's jks keystore implementation, then change the line to the following:

keystore.type=jks

SUPPORTED ALGORITHMS
By default, the jarsigner command signs a JAR file using one of the following algorithms
and block file extensions depending on the type and size of the private key:
Default Signature Algorithms and Block File Extensions
keyalg keysize default sigalg block file exten?
sion

PP 77?????7?72??2??2?72?7?7?7??7?7?????7?7?7?7?7??7?77?7

DSA any size SHA256withDSA .DSA

RSA <624 SHA256withRSA .RSA Page 5/23

<=7680 SHA384withRSA
> 7680 SHA512withRSA
EC <512 SHA384withECDSA .EC
>=512 SHA512withECDSA
RSASSA-PSS <624 RSASSA-PSS (with .RSA
SHA-256)
<=7680 RSASSA-PSS (with
SHA-384)
>7680 RSASSA-PSS (with
SHA-512)
EdDSA 255 Ed25519 .EC

448 Ed44s

? If an RSASSA-PSS key is encoded with parameters, then jarsigner will use the same param?

eters in the signature. Otherwise, jarsigner will use parameters that are determined by

the size of the key as specified in the table above. For example, an 3072-bit RSASSA-

PSS key will use RSASSA-PSS as the signature algorithm and SHA-384 as the hash and MGF1

algorithms.
These default signature algorithms can be overridden by using the -sigalg option.
The jarsigner command uses the jdk.jar.disabledAlgorithms and jdk.security.legacyAlgo?
rithms security properties to determine which algorithms are considered a security risk.
If the JAR file was signed with any algorithms that are disabled, it will be treated as an
unsigned JAR file. If the JAR file was signed with any legacy algorithms, it will be
treated as signed with an informational warning to inform users that the legacy algorithm
will be disabled in a future update. For detailed verification output, include -J-Dja?
va.security.debug=jar. The jdk.jar.disabledAlgorithms and jdk.security.legacyAlgorithms
security properties are defined in the java.security file (located in the JDK's $JA?
VA_HOME/conf/security directory).
Note:
In order to improve out of the box security, default key size and signature algorithm
names are periodically updated to stronger values with each release of the JDK. If inter?
operability with older releases of the JDK is important, please make sure the defaults are
supported by those releases, or alternatively use the -sigalg option to override the de?

fault values at your own risk.

Page 6/23

THE SIGNED JAR FILE
When the jarsigner command is used to sign a JAR file, the output signed JAR file is ex?
actly the same as the input JAR file, except that it has two additional files placed in
the META-INF directory:
? A signature file with an .SF extension
? A signature block file with a .DSA, .RSA, or .EC extension
The base file names for these two files come from the value of the -sigfile option. For
example, when the option is -sigfile MKSIGN, the files are named MKSIGN.SF and MKSIGN.RSA.
In this document, we assume the signer always uses an RSA key.
If no -sigfile option appears on the command line, then the base file name for the .SF and
the signature block files is the first 8 characters of the alias name specified on the
command line, all converted to uppercase. If the alias name has fewer than 8 characters,
then the full alias name is used. If the alias name contains any characters that aren't
allowed in a signature file name, then each such character is converted to an underscore
() character in forming the file name. Valid characters include letters, digits, under?
scores, and hyphens.

SIGNATURE FILE
A signature file (.SF file) looks similar to the manifest file that is always included in
a JAR file when the jarsigner command is used to sign the file. For each source file in?
cluded in the JAR file, the .SF file has two lines, such as in the manifest file, that
list the following:
? File name
? Name of the digest algorithm (SHA)
? SHA digest value
Note:
The name of the digest algorithm (SHA) and the SHA digest value are on the same line.
In the manifest file, the SHA digest value for each source file is the digest (hash) of
the binary data in the source file. In the .SF file, the digest value for a specified
source file is the hash of the two lines in the manifest file for the source file.
The signature file, by default, includes a header with a hash of the whole manifest file.
The header also contains a hash of the manifest header. The presence of the header en?
ables verification optimization. See JAR File Verification.

SIGNATURE BLOCK FILE Page 7/23

The .SF file is signed and the signature is placed in the signature block file. This file
also contains, encoded inside it, the certificate or certificate chain from the keystore
that authenticates the public key corresponding to the private key used for signing. The
file has the extension .DSA, .RSA, or .EC, depending on the key algorithm used. See the
table in Supported Algorithms.
SIGNATURE TIME STAMP
The jarsigner command used with the following options generates and stores a signature
time stamp when signing a JAR file:
? -tsa url
? -tsacert alias
? -tsapolicyid policyid
? -tsadigestalg algorithm
See Options for jarsigner.
JAR FILE VERIFICATION
A successful JAR file verification occurs when the signatures are valid, and none of the
files that were in the JAR file when the signatures were generated have changed since
then. JAR file verification involves the following steps:
1. Verify the signature of the .SF file.
The verification ensures that the signature stored in each signature block file was
generated using the private key corresponding to the public key whose certificate (or
certificate chain) also appears in the signature block file. It also ensures that the
signature is a valid signature of the corresponding signature (.SF) file, and thus the
.SF file wasn't tampered with.
2. Verify the digest listed in each entry in the .SF file with each corresponding section
in the manifest.
The .SF file by default includes a header that contains a hash of the entire manifest
file. When the header is present, the verification can check to see whether or not
the hash in the header matches the hash of the manifest file. If there is a match,
then verification proceeds to the next step.
If there is no match, then a less optimized verification is required to ensure that
the hash in each source file information section in the .SF file equals the hash of
its corresponding section in the manifest file. See Signature File.

One reason the hash of the manifest file that is stored in the .SF file header might Page 8/23

not equal the hash of the current manifest file is that it might contain sections for

newly added files after the file was signed. For example, suppose one or more files
were added to the signed JAR file (using the jar tool) that already contains a signa?
ture and a .SF file. If the JAR file is signed again by a different signer, then the
manifest file is changed (sections are added to it for the new files by the jarsigner

tool) and a new .SF file is created, but the original .SF file is unchanged. A veri?
fication is still considered successful if none of the files that were in the JAR file

when the original signature was generated have been changed since then. This is be?
cause the hashes in the non-header sections of the .SF file equal the hashes of the
corresponding sections in the manifest file.

3. Read each file in the JAR file that has an entry in the .SF file. While reading, com?
pute the file's digest and compare the result with the digest for this file in the man?
ifest section. The digests should be the same or verification fails.

If any serious verification failures occur during the verification process, then the
process is stopped and a security exception is thrown. The jarsigner command catches
and displays the exception.

4. Check for disabled algorithm usage. See Supported Algorithms.

Note:

You should read any addition warnings (or errors if you specified the -strict option), as

well as the content of the certificate (by specifying the -verbose and -certs options) to

determine if the signature can be trusted.
MULTIPLE SIGNATURES FOR A JAR FILE

A JAR file can be signed by multiple people by running the jarsigner command on the file

multiple times and specifying the alias for a different person each time, as follows:

jarsigner myBundle.jar susan
jarsigner myBundle.jar kevin

When a JAR file is signed multiple times, there are multiple .SF and signature block files

in the resulting JAR file, one pair for each signature. In the previous example, the out?

put JAR file includes files with the following names:
SUSAN.SF
SUSAN.RSA
KEVIN.SF

KEVIN.RSA Page 9/23

OPTIONS FOR JARSIGNER

The following sections describe the options for the jarsigner. Be aware of the following

standards:

? All option names are preceded by a hyphen sign (-).

? The options can be provided in any order.

? Iltems that are in italics or underlined (option values) represent the actual values that
must be supplied.

? The -storepass, -keypass, -sidfile, -sigalg, -digestalg, -signedjar, and TSA-related op?
tions are only relevant when signing a JAR file; they aren't relevant when verifying a
signed JAR file. The -keystore option is relevant for signing and verifying a JAR file.

In addition, aliases are specified when signing and verifying a JAR file.

-keystore url
Specifies the URL that tells the keystore location. This defaults to the file .keystore
in the user's home directory, as determined by the user.nhome system property.

A keystore is required when signing. You must explicitly specify a keystore when the

default keystore doesn't exist or if you want to use one other than the default.

A keystore isn't required when verifying, but if one is specified or the default exists

and the -verbose option was also specified, then additional information is output re?

garding whether or not any of the certificates used to verify the JAR file are contained

in that keystore.

The -keystore argument can be a file name and path specification rather than a URL, in

which case it is treated the same as a file: URL, for example, the following are equiva?

lent:

? -keystore filePathAndName

? -keystore file:filePathAndName

If the Sun PKCS #11 provider was configured in the java.security security properties

file (located in the JDK's $JAVA_HOME/conf/security directory), then the keytool and

jarsigner tools can operate on the PKCS #11 token by specifying these options:
-keystore NONE -storetype PKCS11

For example, the following command lists the contents of the configured PKCS#11 token:
keytool -keystore NONE -storetype PKCS11 -list

-storepass [:env | :file] argument

Specifies the password that is required to access the keystore. This is only needed Page 10/23

when signing (not verifying) a JAR file. In that case, if a -storepass option isn't
provided at the command line, then the user is prompted for the password.
If the modifier env or file isn't specified, then the password has the value argument.
Otherwise, the password is retrieved as follows:
? env: Retrieve the password from the environment variable named argument.
? file: Retrieve the password from the file named argument.
Note:
The password shouldn't be specified on the command line or in a script unless it is for
testing purposes, or you are on a secure system.

-storetype storetype
Specifies the type of keystore to be instantiated. The default keystore type is the one
that is specified as the value of the keystore.type property in the security properties
file, which is returned by the static getDefaultType method in java.security.KeyStore.
The PIN for a PKCS #11 token can also be specified with the -storepass option. If none
is specified, then the keytool and jarsigner commands prompt for the token PIN. If the
token has a protected authentication path (such as a dedicated PIN-pad or a biometric
reader), then the -protected option must be specified and no password options can be
specified.

-keypass [:env | :file] argument -certchain file
Specifies the password used to protect the private key of the keystore entry addressed
by the alias specified on the command line. The password is required when using jar?
signer to sign a JAR file. If no password is provided on the command line, and the re?
quired password is different from the store password, then the user is prompted for it.
If the modifier env or file isn't specified, then the password has the value argument.
Otherwise, the password is retrieved as follows:
? env: Retrieve the password from the environment variable named argument.
? file: Retrieve the password from the file named argument.
Note:
The password shouldn't be specified on the command line or in a script unless it is for
testing purposes, or you are on a secure system.

-certchain file
Specifies the certificate chain to be used when the certificate chain associated with

the private key of the keystore entry that is addressed by the alias specified on the Page 11/23

command line isn't complete. This can happen when the keystore is located on a hardware
token where there isn't enough capacity to hold a complete certificate chain. The file
can be a sequence of concatenated X.509 certificates, or a single PKCS#7 formatted data
block, either in binary encoding format or in printable encoding format (also known as
Base64 encoding) as defined by Internet RFC 1421 Certificate Encoding Standard
[http:/ftools.ietf.org/html/rfc1421].

-sigfile file
Specifies the base file name to be used for the generated .SF and signature block files.
For example, if file is DUKESIGN, then the generated .SF and signature block files are
named DUKESIGN.SF and DUKESIGN.RSA, and placed in the META-INF directory of the signed
JAR file.
The characters in the file must come from the set a-zA-Z0-9_-. Only letters, numbers,
underscore, and hyphen characters are allowed. All lowercase characters are converted
to uppercase for the .SF and signature block file names.
If no -sigfile option appears on the command line, then the base file name for the .SF
and signature block files is the first 8 characters of the alias name specified on the
command line, all converted to upper case. If the alias name has fewer than 8 charac?
ters, then the full alias name is used. If the alias name contains any characters that
aren't valid in a signature file name, then each such character is converted to an un?
derscore (_) character to form the file name.

-signedjar file
Specifies the name of signed JAR file.

-digestalg algorithm
Specifies the name of the message digest algorithm to use when digesting the entries of
a JAR file.
For a list of standard message digest algorithm names, see Java Security Standard Algo?
rithm Names.
If this option isn't specified, then SHA-384 is used. There must either be a statically
installed provider supplying an implementation of the specified algorithm or the user
must specify one with the -addprovider or -providerClass options; otherwise, the command
will not succeed.

-sigalg algorithm

Specifies the name of the signature algorithm to use to sign the JAR file. Page 12/23

This algorithm must be compatible with the private key used to sign the JAR file. If
this option isn't specified, then use a default algorithm matching the private key as
described in the Supported Algorithms section. There must either be a statically in?
stalled provider supplying an implementation of the specified algorithm or you must
specify one with the -addprovider or -providerClass option; otherwise, the command
doesn't succeed.
For a list of standard message digest algorithm names, see Java Security Standard Algo?
rithm Names.

-verify
Verifies a signed JAR file.

-verbose[:suboptions]
When the -verbose option appears on the command line, it indicates that the jarsigner
use the verbose mode when signing or verifying with the suboptions determining how much
information is shown. This causes the , which causes jarsigner to output extra informa?
tion about the progress of the JAR signing or verification. The suboptions can be all,
grouped, or summary.
If the -certs option is also specified, then the default mode (or suboption all) dis?
plays each entry as it is being processed, and after that, the certificate information
for each signer of the JAR file.
If the -certs and the -verbose:grouped suboptions are specified, then entries with the
same signer info are grouped and displayed together with their certificate information.
If -certs and the -verbose:summary suboptions are specified, then entries with the same
signer information are grouped and displayed together with their certificate informa?
tion.
Details about each entry are summarized and displayed as one entry (and more). See EXx?
ample of Verifying a Signed JAR File and Example of Verification with Certificate Infor?
mation.

-certs
If the -certs option appears on the command line with the -verify and -verbose options,
then the output includes certificate information for each signer of the JAR file. This
information includes the name of the type of certificate (stored in the signature block
file) that certifies the signer's public key, and if the certificate is an X.509 cer?

tificate (an instance of the java.security.cert.X509Certificate), then the distinguished Page 13/23

name of the signer.
The keystore is also examined. If no keystore value is specified on the command line,
then the default keystore file (if any) is checked. If the public key certificate for a
signer matches an entry in the keystore, then the alias name for the keystore entry for
that signer is displayed in parentheses.

-revCheck
This option enables revocation checking of certificates when signing or verifying a JAR
file. The jarsigner command attempts to make network connections to fetch OCSP respons?
es and CRLs if the -revCheck option is specified on the command line. Note that revoca?
tion checks are not enabled unless this option is specified.

-tsa url
If -tsa http://example.tsa.url appears on the command line when signing a JAR file then
a time stamp is generated for the signature. The URL, http://example.tsa.url, identi?
fies the location of the Time Stamping Authority (TSA) and overrides any URL found with
the -tsacert option. The -tsa option doesn't require the TSA public key certificate to
be present in the keystore.
To generate the time stamp, jarsigner communicates with the TSA with the Time-Stamp Pro?
tocol (TSP) defined in RFC 3161. When successful, the time stamp token returned by the
TSA is stored with the signature in the signature block file.

-tsacert alias
When -tsacert alias appears on the command line when signing a JAR file, a time stamp is
generated for the signature. The alias identifies the TSA public key certificate in the
keystore that is in effect. The entry's certificate is examined for a Subject Informa?
tion Access extension that contains a URL identifying the location of the TSA.
The TSA public key certificate must be present in the keystore when using the -tsacert
option.

-tsapolicyid policyid
Specifies the object identifier (OID) that identifies the policy ID to be sent to the
TSA server. If this option isn't specified, no policy ID is sent and the TSA server
will choose a default policy ID.
Object identifiers are defined by X.696, which is an ITU Telecommunication Standardiza?
tion Sector (ITU-T) standard. These identifiers are typically period-separated sets of

non-negative digits like 1.2.3.4, for example. Page 14/23

-tsadigestalg algorithm
Specifies the message digest algorithm that is used to generate the message imprint to
be sent to the TSA server. If this option isn't specified, SHA-384 will be used.
See Supported Algorithms.
For a list of standard message digest algorithm names, see Java Security Standard Algo?
rithm Names.

-internalsf
In the past, the signature block file generated when a JAR file was signed included a
complete encoded copy of the .SF file (signature file) also generated. This behavior
has been changed. To reduce the overall size of the output JAR file, the signature
block file by default doesn't contain a copy of the .SF file anymore. If -internalsf
appears on the command line, then the old behavior is utilized. This option is useful
for testing. In practice, don't use the -internalsf option because it incurs higher
overhead.

-sectionsonly
If the -sectionsonly option appears on the command line, then the .SF file (signature
file) generated when a JAR file is signed doesn't include a header that contains a hash
of the whole manifest file. It contains only the information and hashes related to each
individual source file included in the JAR file. See Signature File.
By default, this header is added, as an optimization. When the header is present, when?
ever the JAR file is verified, the verification can first check to see whether the hash
in the header matches the hash of the whole manifest file. When there is a match, veri?
fication proceeds to the next step. When there is no match, it is necessary to do a
less optimized verification that the hash in each source file information section in the
.SF file equals the hash of its corresponding section in the manifest file. See JAR
File Verification.
The -sectionsonly option is primarily used for testing. It shouldn't be used other than
for testing because using it incurs higher overhead.

-protected
Values can be either true or false. Specify true when a password must be specified
through a protected authentication path such as a dedicated PIN reader.

-providerName providerName

If more than one provider was configured in the java.security security properties file, Page 15/23

then you can use the -providerName option to target a specific provider instance. The
argument to this option is the name of the provider.
For the Oracle PKCS #11 provider, providerName is of the form SunPKCS11-TokenName, where
TokenName is the name suffix that the provider instance has been configured with, as de?
tailed in the configuration attributes table. For example, the following command lists
the contents of the PKCS #11 keystore provider instance with name suffix SmartCard:
jarsigner -keystore NONE -storetype PKCS11 -providerName SunPKCS11-SmartCard
-list
-addprovider name [-providerArg arg]
Adds a security provider by hame (such as SunPKCS11) and an optional configure argument.
The value of the security provider is the name of a security provider that is defined in
a module.
Used with the -providerArg ConfigFilePath option, the keytool and jarsigner tools in?
stall the provider dynamically and use ConfigFilePath for the path to the token configu?
ration file. The following example shows a command to list a PKCS #11 keystore when the
Oracle PKCS #11 provider wasn't configured in the security properties file.
jarsigner -keystore NONE -storetype PKCS11 -addprovider SunPKCS11 -providerArg
/mydirl/mydir2/token.config
-providerClass provider-class-name [-providerArg arg]
Used to specify the name of cryptographic service provider's master class file when the
service provider isn't listed in the java.security security properties file. Adds a se?
curity provider by fully-qualified class name and an optional configure argument.
Note:
The preferred way to load PKCS11 is by using modules. See -addprovider.
-providerPath classpath
Used to specify the classpath for providers specified by the -providerClass option.
Multiple paths should be separated by the system-dependent path-separator character.
-Jjavaoption
Passes through the specified javaoption string directly to the Java interpreter. The
jarsigner command is a wrapper around the interpreter. This option shouldn't contain
any spaces. ltis useful for adjusting the execution environment or memory usage. For

a list of possible interpreter options, type java -h or java -X at the command line.

-strict Page 16/23

During the signing or verifying process, the command may issue warning messages. If you
specify this option, the exit code of the tool reflects the severe warning messages that
this command found. See Errors and Warnings.
-conf url
Specifies a pre-configured options file. Read the keytool documentation for details.
The property keys supported are "jarsigner.all" for all actions, "jarsigner.sign" for
signing, and "jarsigner.verify" for verification. jarsigner arguments including the JAR
file name and alias name(s) cannot be set in this file.
-version
Prints the program version.
ERRORS AND WARNINGS
During the signing or verifying process, the jarsigner command may issue various errors or
warnings.
If there is a failure, the jarsigner command exits with code 1. If there is no failure,
but there are one or more severe warnings, the jarsigner command exits with code 0 when
the -strict option is not specified, or exits with the OR-value of the warning codes when
the -strict is specified. If there is only informational warnings or no warning at all,
the command always exits with code 0.
For example, if a certificate used to sign an entry is expired and has a KeyUsage exten?
sion that doesn't allow it to sign a file, the jarsigner command exits with code 12 (=4+8)
when the -strict option is specified.
Note: Exit codes are reused because only the values from 0 to 255 are legal on Linux and
macOS.
The following sections describes the names, codes, and descriptions of the errors and
warnings that the jarsigner command can issue.
FAILURE
Reasons why the jarsigner command fails include (but aren't limited to) a command line
parsing error, the inability to find a keypair to sign the JAR file, or the verification
of a signed JAR falils.
failure
Code 1. The signing or verifying fails.

SEVERE WARNINGS
Note: Page 17/23

Severe warnings are reported as errors if you specify the -strict option.
Reasons why the jarsigner command issues a severe warning include the certificate used to
sign the JAR file has an error or the signed JAR file has other problems.
hasExpiredCert
Code 4. This JAR contains entries whose signer certificate has expired.
hasExpiredTsaCert
Code 4. The timestamp has expired.
notYetValidCert
Code 4. This JAR contains entries whose signer certificate isn't yet valid.
chainNotValidated
Code 4. This JAR contains entries whose certificate chain isn't validated.
tsaChainNotValidated
Code 64. The timestamp is invalid.
signerSelfSigned
Code 4. This JAR contains entries whose signer certificate is self signed.
disabledAlg
Code 4. An algorithm used is considered a security risk and is disabled.
badKeyUsage
Code 8. This JAR contains entries whose signer certificate's KeyUsage extension
doesn't allow code signing.
badExtendedKeyUsage
Code 8. This JAR contains entries whose signer certificate's ExtendedKeyUsage ex?
tension doesn't allow code signing.
badNetscapeCertType
Code 8. This JAR contains entries whose signer certificate's NetscapeCertType ex?
tension doesn't allow code signing.
hasUnsignedEntry
Code 16. This JAR contains unsigned entries which haven't been integrity-checked.
notSignedByAlias
Code 32. This JAR contains signed entries which aren't signed by the specified
alias(es).
aliasNotInStore

Code 32. This JAR contains signed entries that aren't signed by alias in this key? Page 18/23

store.
tsaChainNotValidated
Code 64. This JAR contains entries whose TSA certificate chain is invalid.
INFORMATIONAL WARNINGS
Informational warnings include those that aren't errors but regarded as bad practice.
They don't have a code.
extraAttributesDetected
The POSIX file permissions and/or symlink attributes are detected during signing or
verifying a JAR file. The jarsigner tool preserves these attributes in the newly
signed file but warns that these attributes are unsigned and not protected by the
signature.
hasExpiringCert
This JAR contains entries whose signer certificate expires within six months.
hasExpiringTsaCert
The timestamp will expire within one year on YYYY-MM-DD.
legacyAlg
An algorithm used is considered a security risk but not disabled.
noTimestamp
This JAR contains signatures that doesn't include a timestamp. Without a time?
stamp, users may not be able to validate this JAR file after the signer certifi?
cate's expiration date (YYYY-MM-DD) or after any future revocation date.
EXAMPLE OF SIGNING A JAR FILE
Use the following command to sign bundle.jar with the private key of a user whose keystore
alias is jane in a keystore named mystore in the working directory and name the signed JAR
file sbundle.jar:
jarsigner -keystore /working/mystore -storepass keystore_password -keypass pri?
vate_key password -signedjar sbundle.jar bundle.jar jane
There is no -sigfile specified in the previous command so the generated .SF and signature
block files to be placed in the signed JAR file have default names based on the alias
name. They are named JANE.SF and JANE.RSA.
If you want to be prompted for the store password and the private key password, then you
could shorten the previous command to the following:

jarsigner -keystore /working/mystore -signedjar sbundle.jar bundle.jar jane Page 19/23

If the keystore is the default keystore (.keystore in your home directory), then you don't
need to specify a keystore, as follows:
jarsigner -signedjar sbundle.jar bundle.jar jane
If you want the signed JAR file to overwrite the input JAR file (bundle.jar), then you
don't need to specify a -signedjar option, as follows:
jarsigner bundle.jar jane
EXAMPLE OF VERIFYING A SIGNED JAR FILE
To verify a signed JAR file to ensure that the signature is valid and the JAR file wasn't
been tampered with, use a command such as the following:
jarsigner -verify ButtonDemo.jar
When the verification is successful, jar verified is displayed. Otherwise, an error mes?
sage is displayed. You can get more information when you use the -verbose option. A sam?
ple use of jarsigner with the -verbose option follows:
jarsigner -verify -verbose ButtonDemao.jar
S 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF
825 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.SF
7475 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.RSA
0 Tue Sep 12 20:07:54 EDT 2017 META-INF/
0 Tue Sep 12 20:07:16 EDT 2017 components/
0 Tue Sep 12 20:07:16 EDT 2017 components/images/
sm 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$1.class
sm 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class
sm 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnlp
sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.qgif
sm 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.qgif
sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif
s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore
- Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,
ST=California, C=US"
Digest algorithm: SHA-256

Signature algorithm: SHA256withRSA, 2048-bit key Page 20/23

Timestamped by "CN=Symantec Time Stamping Services Signher - G4, O=Symantec Corporation, C=US" on Tue
Sep 12 20:08:49 UTC 2017
Timestamp digest algorithm: SHA-1
Timestamp signature algorithm: SHA1withRSA, 2048-bit key
jar verified.
The signer certificate expired on 2018-02-01. However, the JAR will be valid until the timestamp expires on
2020-12-29.
EXAMPLE OF VERIFICATION WITH CERTIFICATE INFORMATION
If you specify the -certs option with the -verify and -verbose options, then the output
includes certificate information for each signer of the JAR file. The information in?
cludes the certificate type, the signer distinguished name information (when it is an
X.509 certificate), and in parentheses, the keystore alias for the signer when the public
key certificate in the JAR file matches the one in a keystore entry, for example:
jarsigner -keystore $JAVA HOME!/lib/security/cacerts -verify -verbose -certs ButtonDemo.jar
sk 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF
>>> Signer
X.509, CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,
ST=California, C=US
[certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01, 6:59 PM]
X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust Network, O=Symantec
Corporation, C=US
[certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09, 6:59 PM]
X.509, CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc. - For
authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US (verisignclass3g5ca [jdk])
[trusted certificate]
>>> TSA
X.509, CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US
[certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29, 6:59 PM]
X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec Corporation, C=US
[certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30, 6:59 PM]
825 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.SF
7475 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE_C.RSA

0 Tue Sep 12 20:07:54 EDT 2017 META-INF/ Page 21/23

0 Tue Sep 12 20:07:16 EDT 2017 components/
0 Tue Sep 12 20:07:16 EDT 2017 components/images/
smk 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$1.class
[entry was signed on 2017-09-12, 4:08 PM]
>>> Signer
X.509, CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=Redwood City,
ST=California, C=US
[certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01, 6:59 PM]
X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust Network, O=Symantec
Corporation, C=US
[certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09, 6:59 PM]
X.509, CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc. - For
authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US (verisignclass3g5ca [jdk])
[trusted certificate]
>>> TSA
X.509, CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US
[certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29, 6:59 PM]
X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec Corporation, C=US
[certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30, 6:59 PM]

smk 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class

smk 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnip

smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.gif

smk 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.gif

smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif

S = signature was verified

m = entry is listed in manifest

k = at least one certificate was found in keystore

- Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle America, Inc.", L=REQI68GRLiy,

ST=California, C=US"
Digest algorithm: SHA-256
Signature algorithm: SHA256withRSA, 2048-bit key
Timestamped by "CN=Symantec Time Stamping Services Signer - G4, O=Symantec Corporation, C=US" on Tue
Sep 12 20:08:49 UTC 2017
Timestamp digest algorithm: SHA-1
Timestamp signature algorithm: SHA1withRSA, 2048-bit key
jar verified.
The signer certificate expired on 2018-02-01. However, the JAR will be valid until the timestamp expires on
2020-12-29.
If the certificate for a signer isn't an X.509 certificate, then there is no distinguished
name information. In that case, just the certificate type and the alias are shown. For
example, if the certificate is a PGP certificate, and the alias is bob, then you would
get: PGP, (bob).

JDK 21 2023 JARSIGNER(1)

Page 23/23

