
Rocky Enterprise Linux 9.2 Manual Pages on command 'javadoc.1'

$ man javadoc.1

JAVADOC(1) JDK Commands JAVADOC(1)

NAME

 javadoc - generate HTML pages of API documentation from Java source files

SYNOPSIS

 javadoc [options] [packagenames] [sourcefiles] [@files]

 options

 Specifies command-line options, separated by spaces. See Standard javadoc Options,

 Extra javadoc Options, Standard Options for the Standard Doclet, and Extra Options

 for the Standard Doclet.

 packagenames

 Specifies names of packages that you want to document, separated by spaces, for ex?

 ample java.lang java.lang.reflect java.awt. If you want to also document the sub?

 packages, then use the -subpackages option to specify the packages.

 By default, javadoc looks for the specified packages in the current directory and

 subdirectories. Use the -sourcepath option to specify the list of directories

 where to look for packages.

 sourcefiles

 Specifies names of Java source files that you want to document, separated by spa?

 ces, for example Class.java Object.java Button.java. By default, javadoc looks for

 the specified classes in the current directory. However, you can specify the full

 path to the class file and use wildcard characters, for example /home/src/ja?

 va/awt/Graphics*.java. You can also specify the path relative to the current di?

 rectory. Page 1/24

 @files Specifies names of files that contain a list of javadoc tool options, package

 names, and source file names in any order.

DESCRIPTION

 The javadoc tool parses the declarations and documentation comments in a set of Java

 source files and produces corresponding HTML pages that describe (by default) the public

 and protected classes, nested and unnamed classes (but not anonymous inner classes), in?

 terfaces, constructors, methods, and fields. You can use thejavadoc tool to generate the

 API documentation or the implementation documentation for a set of source files.

 You can run the javadoc tool on entire packages, individual source files, or both. When

 documenting entire packages, you can use the -subpackages option either to recursively

 traverse a directory and its subdirectories, or to pass in an explicit list of package

 names. When you document individual source files, pass in a list of Java source file

 names.

 Conformance

 The Standard Doclet does not validate the content of documentation comments for confor?

 mance, nor does it attempt to correct any errors in documentation comments. Anyone run?

 ning javadoc is advised to be aware of the problems that may arise when generating non-

 conformant output or output containing executable content, such as JavaScript. The Stan?

 dard Doclet does provide the DocLint feature to help developers detect common problems in

 documentation comments; but it is also recommended to check the generated output with any

 appropriate conformance and other checking tools.

 For more details on the conformance requirements for HTML5 documents, see Conformance re?

 quirements [https://www.w3.org/TR/html5/infrastructure.html#conformance-requirements] in

 the HTML5 Specification. For more details on security issues related to web pages, see

 the Open Web Application Security Project (OWASP) [https://www.owasp.org] page.

OPTIONS

 javadoc supports command-line options for both the main javadoc tool and the currently se?

 lected doclet. The Standard Doclet is used if no other doclet is specified.

 GNU-style options (that is, those beginning with --) can use an equal sign (=) instead of

 whitespace characters to separate the name of an option from its value.

 Standard javadoc Options

 The following core javadoc options are equivalent to corresponding javac options. See

 Standard Options in javac for the detailed descriptions of using these options: Page 2/24

 ? --add-modules

 ? -bootclasspath

 ? --class-path, -classpath, or -cp

 ? --enable-preview

 ? -encoding

 ? -extdirs

 ? --limit-modules

 ? --module

 ? --module-path or -p

 ? --module-source-path

 ? --release

 ? --source or -source

 ? --source-path or -sourcepath

 ? --system

 ? --upgrade-module-path

 The following options are the core javadoc options that are not equivalent to a corre?

 sponding javac option:

 -breakiterator

 Computes the first sentence with BreakIterator. The first sentence is copied to

 the package, class, or member summary and to the alphabetic index. The BreakItera?

 tor class is used to determine the end of a sentence for all languages except for

 English.

 ? English default sentence-break algorithm --- Stops at a period followed by a

 space or an HTML block tag, such as <P>.

 ? Breakiterator sentence-break algorithm --- Stops at a period, question mark, or

 exclamation point followed by a space when the next word starts with a capital

 letter. This is meant to handle most abbreviations (such as "The serial no. is

 valid", but will not handle "Mr. Smith"). The -breakiterator option doesn't

 stop at HTML tags or sentences that begin with numbers or symbols. The algorithm

 stops at the last period in ../filename, even when embedded in an HTML tag.

 -doclet class

 Generates output by using an alternate doclet. Use the fully qualified name. This

 doclet defines the content and formats the output. If the -doclet option isn't Page 3/24

 used, then the javadoc tool uses the standard doclet for generating the default

 HTML format. This class must contain the start(Root) method. The path to this

 starting class is defined by the -docletpath option.

 -docletpath path

 Specifies where to find doclet class files (specified with the -doclet option) and

 any JAR files it depends on. If the starting class file is in a JAR file, then

 this option specifies the path to that JAR file. You can specify an absolute path

 or a path relative to the current directory. If classpathlist contains multiple

 paths or JAR files, then they should be separated with a colon (:) on Linux and a

 semi-colon (;) on Windows. This option isn't necessary when the doclet starting

 class is already in the search path.

 -exclude pkglist

 Unconditionally, excludes the specified packages and their subpackages from the

 list formed by -subpackages. It excludes those packages even when they would oth?

 erwise be included by some earlier or later -subpackages option.

 The following example would include java.io, java.util, and java.math (among oth?

 ers), but would exclude packages rooted at java.net and java.lang. Notice that

 these examples exclude java.lang.ref, which is a subpackage of java.lang.

 ? Linux and macOS:

 javadoc -sourcepath /home/user/src -subpackages java -exclude java.net:java.lang

 ? Windows:

 javadoc -sourcepath \user\src -subpackages java -exclude java.net:java.lang

 --expand-requires value

 Instructs the javadoc tool to expand the set of modules to be documented. By de?

 fault, only the modules given explicitly on the command line are documented. Sup?

 ports the following values:

 ? transitive: additionally includes all the required transitive dependencies of

 those modules.

 ? all: includes all dependencies.

 --help, -help, -h, or -?

 Prints a synopsis of the standard options.

 --help-extra or -X

 Prints a synopsis of the set of extra options. Page 4/24

 -Jflag Passes flag directly to the Java Runtime Environment (JRE) that runs the javadoc

 tool. For example, if you must ensure that the system sets aside 32 MB of memory

 in which to process the generated documentation, then you would call the -Xmx op?

 tion as follows: javadoc -J-Xmx32m -J-Xms32m com.mypackage. Be aware that -Xms is

 optional because it only sets the size of initial memory, which is useful when you

 know the minimum amount of memory required.

 There is no space between the J and the flag.

 Use the -version option to report the version of the JRE being used to run the

 javadoc tool.

 javadoc -J-version

 java version "17" 2021-09-14 LTS

 Java(TM) SE Runtime Environment (build 17+35-LTS-2724)

 Java HotSpot(TM) 64-Bit Server VM (build 17+35-LTS-2724, mixed mode, sharing)

 -locale name

 Specifies the locale that the javadoc tool uses when it generates documentation.

 The argument is the name of the locale, as described in java.util.Locale documenta?

 tion, such as en_US (English, United States) or en_US_WIN (Windows variant).

 Specifying a locale causes the javadoc tool to choose the resource files of that

 locale for messages such as strings in the navigation bar, headings for lists and

 tables, help file contents, comments in the stylesheet.css file, and so on. It al?

 so specifies the sorting order for lists sorted alphabetically, and the sentence

 separator to determine the end of the first sentence. The -locale option doesn't

 determine the locale of the documentation comment text specified in the source

 files of the documented classes.

 -package

 Shows only package, protected, and public classes and members.

 -private

 Shows all classes and members.

 -protected

 Shows only protected and public classes and members. This is the default.

 -public

 Shows only the public classes and members.

 -quiet Shuts off messages so that only the warnings and errors appear to make them easier Page 5/24

 to view. It also suppresses the version string.

 --show-members value

 Specifies which members (fields or methods) are documented, where value can be any

 of the following:

 ? public --- shows only public members

 ? protected --- shows public and protected members; this is the default

 ? package --- shows public, protected, and package members

 ? private --- shows all members

 --show-module-contents value

 Specifies the documentation granularity of module declarations, where value can be

 api or all.

 --show-packages value

 Specifies which modules packages are documented, where value can be exported or all

 packages.

 --show-types value

 Specifies which types (classes, interfaces, etc.) are documented, where value can

 be any of the following:

 ? public --- shows only public types

 ? protected --- shows public and protected types; this is the default

 ? package --- shows public, protected, and package types

 ? private --- shows all types

 -subpackages subpkglist

 Generates documentation from source files in the specified packages and recursively

 in their subpackages. This option is useful when adding new subpackages to the

 source code because they are automatically included. Each package argument is any

 top-level subpackage (such as java) or fully qualified package (such as

 javax.swing) that doesn't need to contain source files. Arguments are separated by

 colons on all operating systems. Wild cards aren't allowed. Use -sourcepath to

 specify where to find the packages. This option doesn't process source files that

 are in the source tree but don't belong to the packages.

 For example, the following commands generates documentation for packages named java

 and javax.swing and all of their subpackages.

 ? Linux and macOS: Page 6/24

 javadoc -d docs -sourcepath /home/user/src -subpackages java:javax.swing

 ? Windows:

 javadoc -d docs -sourcepath \user\src -subpackages java:javax.swing

 -verbose

 Provides more detailed messages while the javadoc tool runs. Without the -verbose

 option, messages appear for loading the source files, generating the documentation

 (one message per source file), and sorting. The -verbose option causes the print?

 ing of additional messages that specify the number of milliseconds to parse each

 Java source file.

 --version

 Prints version information.

 -Werror

 Reports an error if any warnings occur.

 Extra javadoc Options

 Note: The additional options for javadoc are subject to change without notice.

 The following additional javadoc options are equivalent to corresponding javac options.

 See Extra Options in javac for the detailed descriptions of using these options:

 ? --add-exports

 ? --add-reads

 ? --patch-module

 ? -Xmaxerrs

 ? -Xmaxwarns

 Standard Options for the Standard Doclet

 The following options are provided by the standard doclet.

 --add-script file

 Adds file as an additional JavaScript file to the generated documentation. This

 option can be used one or more times to specify additional script files.

 Command-line example:

 javadoc --add-script first_script.js --add-script second_script.js pkg_foo

 --add-stylesheet file

 Adds file as an additional stylesheet file to the generated documentation. This

 option can be used one or more times to specify additional stylesheets included in

 the documentation. Page 7/24

 Command-line example:

 javadoc --add-stylesheet new_stylesheet_1.css --add-stylesheet new_stylesheet_2.css pkg_foo

 --allow-script-in-comments

 Allow JavaScript in options and comments.

 -author

 Includes the @author text in the generated docs.

 -bottom html-code

 Specifies the text to be placed at the bottom of each output file. The text is

 placed at the bottom of the page, underneath the lower navigation bar. The text

 can contain HTML tags and white space, but when it does, the text must be enclosed

 in quotation marks. Use escape characters for any internal quotation marks within

 text.

 -charset name

 Specifies the HTML character set for this document. The name should be a preferred

 MIME name as specified in the IANA Registry, Character Sets

 [http://www.iana.org/assignments/character-sets].

 For example:

 javadoc -charset "iso-8859-1" mypackage

 This command inserts the following line in the head of every generated page:

 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

 The meta tag is described in the HTML standard (4197265 and 4137321), HTML Document

 Representation [http://www.w3.org/TR/REC-html40/charset.html#h-5.2.2].

 -d directory

 Specifies the destination directory where the javadoc tool saves the generated HTML

 files. If you omit the -d option, then the files are saved to the current directo?

 ry. The directory value can be absolute or relative to the current working direc?

 tory. The destination directory is automatically created when the javadoc tool

 runs.

 ? Linux and macOS: For example, the following command generates the documentation

 for the package com.mypackage and saves the results in the /user/doc/ directory:

 javadoc -d /user/doc/ com.mypackage

 ? Windows: For example, the following command generates the documentation for the

 package com.mypackage and saves the results in the \user\doc\ directory: Page 8/24

 javadoc -d \user\doc\ com.mypackage

 -docencoding name

 Specifies the encoding of the generated HTML files. The name should be a preferred

 MIME name as specified in the IANA Registry, Character Sets

 [http://www.iana.org/assignments/character-sets].

 Three options are available for use in a javadoc encoding command. The -encoding

 option is used for encoding the files read by the javadoc tool, while the -docen?

 coding and -charset options are used for encoding the files written by the tool.

 Of the three available options, at most, only the input and an output encoding op?

 tion are used in a single encoding command. If you specify both input and output

 encoding options in a command, they must be the same value. If you specify neither

 output option, it defaults to the input encoding.

 For example:

 javadoc -docencoding "iso-8859-1" mypackage

 -docfilessubdirs

 Recursively copies doc-file subdirectories. Enables deep copying of doc-files di?

 rectories. Subdirectories and all contents are recursively copied to the destina?

 tion. For example, the directory doc-files/example/images and all of its contents

 are copied. The -excludedocfilessubdir option can be used to exclude specific sub?

 directories.

 -doctitle html-code

 Specifies the title to place near the top of the overview summary file. The text

 specified in the title tag is placed as a centered, level-one heading directly be?

 neath the top navigation bar. The title tag can contain HTML tags and white space,

 but when it does, you must enclose the title in quotation marks. Additional quota?

 tion marks within the title tag must be escaped. For example, javadoc -doctitle

 "My Library
v1.0" com.mypackage.

 -excludedocfilessubdir name1,name2...

 Excludes any subdirectories with the given names when recursively copying doc-file

 subdirectories. See -docfilessubdirs. For historical reasons, : can be used any?

 where in the argument as a separator instead of ,.

 -footer html-code

 Specifies the footer text to be placed at the bottom of each output file. Thehtml- Page 9/24

 code value is placed to the right of the lower navigation bar. The html-code value

 can contain HTML tags and white space, but when it does, the html-code value must

 be enclosed in quotation marks. Use escape characters for any internal quotation

 marks within a footer.

 -group name p1,p2...

 Group the specified packages together in the Overview page. For historical rea?

 sons, : can be used as a separator anywhere in the argument instead of ,.

 -header html-code

 Specifies the header text to be placed at the top of each output file. The header

 is placed to the right of the upper navigation bar. The header can contain HTML

 tags and white space, but when it does, the header must be enclosed in quotation

 marks. Use escape characters for internal quotation marks within a header. For

 example, javadoc -header "My Library
v1.0" com.mypackage.

 -helpfile filename

 Includes the file that links to the HELP link in the top and bottom navigation bars

 . Without this option, the javadoc tool creates a help file help-doc.html that is

 hard-coded in the javadoc tool. This option lets you override the default. The

 filename can be any name and isn't restricted to help-doc.html. The javadoc tool

 adjusts the links in the navigation bar accordingly. For example:

 ? Linux and macOS:

 javadoc -helpfile /home/user/myhelp.html java.awt

 ? Windows:

 javadoc -helpfile C:\user\myhelp.html java.awt

 -html5 This option is a no-op and is just retained for backwards compatibility.

 --javafx or -javafx

 Enables JavaFX functionality. This option is enabled by default if the JavaFX li?

 brary classes are detected on the module path.

 -keywords

 Adds HTML keyword <meta> tags to the generated file for each class. These tags can

 help search engines that look for <meta> tags find the pages. Most search engines

 that search the entire Internet don't look at <meta> tags, because pages can misuse

 them. Search engines offered by companies that confine their searches to their own

 website can benefit by looking at <meta> tags. The <meta> tags include the fully Page 10/24

 qualified name of the class and the unqualified names of the fields and methods.

 Constructors aren't included because they are identical to the class name. For ex?

 ample, the class String starts with these keywords:

 <meta name="keywords" content="java.lang.String class">

 <meta name="keywords" content="CASE_INSENSITIVE_ORDER">

 <meta name="keywords" content="length()">

 <meta name="keywords" content="charAt()">

 -link url

 Creates links to existing javadoc generated documentation of externally referenced

 classes. The url argument is the absolute or relative URL of the directory that

 contains the external javadoc generated documentation. You can specify multiple

 -link options in a specified javadoc tool run to link to multiple documents.

 Either a package-list or an element-list file must be in this url directory (other?

 wise, use the -linkoffline option).

 Note: The package-list and element-list files are generated by the javadoc tool

 when generating the API documentation and should not be modified by the user.

 When you use the javadoc tool to document packages, it uses the package-list file

 to determine the packages declared in an API. When you generate API documents for

 modules, the javadoc tool uses the element-list file to determine the modules and

 packages declared in an API.

 The javadoc tool reads the names from the appropriate list file and then links to

 the packages or modules at that URL.

 When the javadoc tool runs, the url value is copied into the <A HREF> links that

 are created. Therefore, url must be the URL to the directory and not to a file.

 You can use an absolute link for url to enable your documents to link to a document

 on any web site, or you can use a relative link to link only to a relative loca?

 tion. If you use a relative link, then the value you pass in should be the rela?

 tive path from the destination directory (specified with the -d option) to the di?

 rectory containing the packages being linked to. When you specify an absolute

 link, you usually use an HTTP link. However, if you want to link to a file system

 that has no web server, then you can use a file link. Use a file link only when

 everyone who wants to access the generated documentation shares the same file sys?

 tem. In all cases, and on all operating systems, use a slash as the separator, Page 11/24

 whether the URL is absolute or relative, and https:, http:, or file: as specified

 in the URL Memo: Uniform Resource Locators [http://www.ietf.org/rfc/rfc1738.txt].

 -link https://<host>/<directory>/<directory>/.../<name>

 -link http://<host>/<directory>/<directory>/.../<name>

 -link file://<host>/<directory>/<directory>/.../<name>

 -link <directory>/<directory>/.../<name>

 --link-modularity-mismatch (warn|info)

 Specifies whether external documentation with wrong modularity (e.g. non-modular

 documentation for a modular library, or the reverse case) should be reported as a

 warning (warn) or just a message (info). The default behavior is to report a warn?

 ing.

 -linkoffline url1 url2

 This option is a variation of the -link option. They both create links to javadoc

 generated documentation for externally referenced classes. You can specify multi?

 ple -linkoffline options in a specified javadoc tool run.

 Use the -linkoffline option when:

 ? Linking to a document on the web that the javadoc tool can't access through a web

 connection

 ? The package-list or element-list file of the external document either isn't ac?

 cessible or doesn't exist at the URL location, but does exist at a different lo?

 cation and can be specified by either the package-list or element-list file (typ?

 ically local).

 Note: The package-list and element-list files are generated by the javadoc tool

 when generating the API documentation and should not be modified by the user.

 If url1 is accessible only on the World Wide Web, then the -linkoffline option re?

 moves the constraint that the javadoc tool must have a web connection to generate

 documentation.

 Another use of the -linkoffline option is as a work-around to update documents.

 After you have run the javadoc tool on a full set of packages or modules, you can

 run the javadoc tool again on a smaller set of changed packages or modules, so that

 the updated files can be inserted back into the original set.

 For example, the -linkoffline option takes two arguments. The first is for the

 string to be embedded in the <a href> links, and the second tells the javadoc tool Page 12/24

 where to find either the package-list or element-list file.

 The url1 or url2 value is the absolute or relative URL of the directory that con?

 tains the external javadoc generated documentation that you want to link to. When

 relative, the value should be the relative path from the destination directory

 (specified with the -d option) to the root of the packages being linked to. See

 url in the -link option.

 --link-platform-properties url

 Specifies a properties file used to configure links to platform documentation.

 The url argument is expected to point to a properties file containing one or more

 entries with the following format, where <version> is the platform version as

 passed to the --release or --source option and <url> is the base URL of the corre?

 sponding platform API documentation:

 doclet.platform.docs.<version>=<url>

 For instance, a properties file containing URLs for releases 15 to 17 might contain

 the following lines:

 doclet.platform.docs.15=https://example.com/api/15/

 doclet.platform.docs.16=https://example.com/api/16/

 doclet.platform.docs.17=https://example.com/api/17/

 If the properties file does not contain an entry for a particular release no plat?

 form links are generated.

 -linksource

 Creates an HTML version of each source file (with line numbers) and adds links to

 them from the standard HTML documentation. Links are created for classes, inter?

 faces, constructors, methods, and fields whose declarations are in a source file.

 Otherwise, links aren't created, such as for default constructors and generated

 classes.

 This option exposes all private implementation details in the included source

 files, including private classes, private fields, and the bodies of private meth?

 ods, regardless of the -public, -package, -protected, and -private options. Unless

 you also use the -private option, not all private classes or interfaces are acces?

 sible through links.

 Each link appears on the name of the identifier in its declaration. For example,

 the link to the source code of the Button class would be on the word Button: Page 13/24

 public class Button extends Component implements Accessible

 The link to the source code of the getLabel method in the Button class is on the

 word getLabel:

 public String getLabel()

 --main-stylesheet file or -stylesheetfile file

 Specifies the path of an alternate stylesheet file that contains the definitions

 for the CSS styles used in the generated documentation. This option lets you over?

 ride the default. If you do not specify the option, the javadoc tool will create

 and use a default stylesheet. The file name can be any name and isn't restricted

 to stylesheet.css. The --main-stylesheet option is the preferred form.

 Command-line example:

 javadoc --main-stylesheet main_stylesheet.css pkg_foo

 -nocomment

 Suppresses the entire comment body, including the main description and all tags,

 and generate only declarations. This option lets you reuse source files that were

 originally intended for a different purpose so that you can produce skeleton HTML

 documentation during the early stages of a new project.

 -nodeprecated

 Prevents the generation of any deprecated API in the documentation. This does what

 the -nodeprecatedlist option does, and it doesn't generate any deprecated API

 throughout the rest of the documentation. This is useful when writing code when

 you don't want to be distracted by the deprecated code.

 -nodeprecatedlist

 Prevents the generation of the file that contains the list of deprecated APIs (dep?

 recated-list.html) and the link in the navigation bar to that page. The javadoc

 tool continues to generate the deprecated API throughout the rest of the document.

 This is useful when your source code contains no deprecated APIs, and you want to

 make the navigation bar cleaner.

 -nohelp

 Omits the HELP link in the navigation bar at the top of each page of output.

 -noindex

 Omits the index from the generated documents. The index is produced by default.

 -nonavbar Page 14/24

 Prevents the generation of the navigation bar, header, and footer, that are usually

 found at the top and bottom of the generated pages. The -nonavbar option has no

 effect on the -bottom option. The -nonavbar option is useful when you are inter?

 ested only in the content and have no need for navigation, such as when you are

 converting the files to PostScript or PDF for printing only.

 --no-platform-links

 Prevents the generation of links to platform documentation. These links are gener?

 ated by default.

 -noqualifier name1,name2...

 Excludes the list of qualifiers from the output. The package name is removed from

 places where class or interface names appear. For historical reasons, : can be

 used anywhere in the argument as a separator instead of ,.

 The following example omits all package qualifiers: -noqualifier all.

 The following example omits java.lang and java.io package qualifiers: -noqualifier

 java.lang:java.io.

 The following example omits package qualifiers starting with java and com.sun sub?

 packages, but not javax: -noqualifier java.*:com.sun.*.

 Where a package qualifier would appear due to the previous behavior, the name can

 be suitably shortened. This rule is in effect whether or not the -noqualifier op?

 tion is used.

 -nosince

 Omits from the generated documents the Since sections associated with the @since

 tags.

 -notimestamp

 Suppresses the time stamp, which is hidden in an HTML comment in the generated HTML

 near the top of each page. The -notimestamp option is useful when you want to run

 the javadoc tool on two source bases and get the differences between diff them, be?

 cause it prevents time stamps from causing a diff (which would otherwise be a diff

 on every page). The time stamp includes the javadoc tool release number.

 -notree

 Omits the class and interface hierarchy pages from the generated documents. These

 are the pages you reach using the Tree button in the navigation bar. The hierarchy

 is produced by default. Page 15/24

 --override-methods (detail|summary)

 Documents overridden methods in the detail or summary sections. The default is de?

 tail.

 -overview filename

 Specifies that the javadoc tool should retrieve the text for the overview documen?

 tation from the source file specified by filename and place it on the Overview page

 (overview-summary.html). A relative path specified with the file name is relative

 to the current working directory.

 While you can use any name you want for the filename value and place it anywhere

 you want for the path, it is typical to name it overview.html and place it in the

 source tree at the directory that contains the topmost package directories. In

 this location, no path is needed when documenting packages, because the -sourcepath

 option points to this file.

 ? Linux and macOS: For example, if the source tree for the java.lang package is

 src/classes/java/lang/, then you could place the overview file at src/class?

 es/overview.html.

 ? Windows: For example, if the source tree for the java.lang package is src\class?

 es\java\lang\, then you could place the overview file at src\classes\over?

 view.html

 The overview page is created only when you pass two or more package names to the

 javadoc tool. The title on the overview page is set by -doctitle.

 -serialwarn

 Generates compile-time warnings for missing @serial tags. By default, Javadoc gen?

 erates no serial warnings. Use this option to display the serial warnings, which

 helps to properly document default serializable fields and writeExternal methods.

 --since release(,release)*

 Generates documentation for APIs that were added or newly deprecated in the speci?

 fied releases.

 If the @since tag in the javadoc comment of an element in the documented source

 code matches a release passed as option argument, information about the element and

 the release it was added in is included in a "New API" page.

 If the "Deprecated API" page is generated and the since element of the ja?

 va.lang.Deprecated annotation of a documented element matches a release in the op? Page 16/24

 tion arguments, information about the release the element was deprecated in is

 added to the "Deprecated API" page.

 Releases are compared using case-sensitive string comparison.

 --since-label text

 Specifies the text to use in the heading of the "New API" page. This may contain

 information about the releases covered in the page, e.g. "New API in release 2.0",

 or "New API since release 1".

 --snippet-path snippetpathlist

 Specifies the search paths for finding files for external snippets. The snippet?

 pathlist can contain multiple paths by separating them with the platform path sepa?

 rator (; on Windows; : on other platforms.) The Standard Doclet first searches the

 snippet-files subdirectory in the package containing the snippet, and then searches

 all the directories in the given list.

 -sourcetab tab-length

 Specifies the number of spaces each tab uses in the source.

 --spec-base-url url

 Specifies the base URL for relative URLs in @spec tags, to be used when generating

 links to any external specifications. It can either be an absolute URL, or a rela?

 tive URL, in which case it is evaluated relative to the base directory of the gen?

 erated output files. The default value is equivalent to {@docRoot}/../specs.

 -splitindex

 Splits the index file into multiple files, alphabetically, one file per letter,

 plus a file for any index entries that start with non-alphabetical symbols.

 -tag name:locations:header

 Specifies single argument custom tags. For the javadoc tool to spell-check tag

 names, it is important to include a -tag option for every custom tag that is

 present in the source code, disabling (with X) those that aren't being output in

 the current run. The colon (:) is always the separator. To include a colon in the

 tag name, escape it with a backward slash (\). The -tag option outputs the tag

 heading, header, in bold, followed on the next line by the text from its single ar?

 gument. Similar to any block tag, the argument text can contain inline tags, which

 are also interpreted. The output is similar to standard one-argument tags, such as

 the @return and @author tags. Omitting a header value causes the name to be the Page 17/24

 heading. locations is a list of characters specifying the kinds of declarations in

 which the tag may be used. The following characters may be used, in either upper?

 case or lowercase:

 ? A: all declarations

 ? C: constructors

 ? F: fields

 ? M: methods

 ? O: the overview page and other documentation files in doc-files subdirectories

 ? P: packages

 ? S: modules

 ? T: types (classes and interfaces)

 ? X: nowhere: the tag is disabled, and will be ignored

 The order in which tags are given on the command line will be used as the order in

 which the tags appear in the generated output. You can include standard tags in

 the order given on the command line by using the -tag option with no locations or

 header.

 -taglet class

 Specifies the fully qualified name of the taglet used in generating the documenta?

 tion for that tag. Use the fully qualified name for the class value. This taglet

 also defines the number of text arguments that the custom tag has. The taglet ac?

 cepts those arguments, processes them, and generates the output.

 Taglets are useful for block or inline tags. They can have any number of arguments

 and implement custom behavior, such as making text bold, formatting bullets, writ?

 ing out the text to a file, or starting other processes. Taglets can only deter?

 mine where a tag should appear and in what form. All other decisions are made by

 the doclet. A taglet can't do things such as remove a class name from the list of

 included classes. However, it can execute side effects, such as printing the tag's

 text to a file or triggering another process. Use the -tagletpath option to speci?

 fy the path to the taglet. The following example inserts the To Do taglet after

 Parameters and ahead of Throws in the generated pages.

 -taglet com.sun.tools.doclets.ToDoTaglet

 -tagletpath /home/taglets

 -tag return Page 18/24

 -tag param

 -tag todo

 -tag throws

 -tag see

 Alternately, you can use the -taglet option in place of its -tag option, but that

 might be difficult to read.

 -tagletpath tagletpathlist

 Specifies the search paths for finding taglet class files. The tagletpathlist can

 contain multiple paths by separating them with the platform path separator (; on

 Windows; : on other platforms.) The javadoc tool searches all subdirectories of

 the specified paths.

 -top html-code

 Specifies the text to be placed at the top of each output file.

 -use Creates class and package usage pages. Includes one Use page for each documented

 class and package. The page describes what packages, classes, methods, construc?

 tors and fields use any API of the specified class or package. Given class C,

 things that use class C would include subclasses of C, fields declared as C, meth?

 ods that return C, and methods and constructors with parameters of type C. For ex?

 ample, you can look at the Use page for the String type. Because the getName meth?

 od in the java.awt.Font class returns type String, the getName method uses String

 and so the getName method appears on the Use page for String. This documents only

 uses of the API, not the implementation. When a method uses String in its imple?

 mentation, but doesn't take a string as an argument or return a string, that isn't

 considered a use of String.To access the generated Use page, go to the class or

 package and click the Use link in the navigation bar.

 -version

 Includes the version text in the generated docs. This text is omitted by default.

 To find out what version of the javadoc tool you are using, use the -J-version op?

 tion.

 -windowtitle title

 Specifies the title to be placed in the HTML <title> tag. The text specified in

 the title tag appears in the window title and in any browser bookmarks (favorite

 places) that someone creates for this page. This title should not contain any HTML Page 19/24

 tags because a browser will not interpret them correctly. Use escape characters on

 any internal quotation marks within the title tag. If the -windowtitle option is

 omitted, then the javadoc tool uses the value of the -doctitle option for the -win?

 dowtitle option. For example, javadoc -windowtitle "My Library" com.mypackage.

 Extra Options for the Standard Doclet

 The following are additional options provided by the Standard Doclet and are subject to

 change without notice. Additional options are less commonly used or are otherwise regard?

 ed as advanced.

 --date date-and-time

 Specifies the value to be used to timestamp the generated pages, in ISO 8601

 [https://www.iso.org/iso-8601-date-and-time-format.html] format. The specified

 value must be within 10 years of the current date and time. It is an error to

 specify both -notimestamp and --date. Using a specific value means the generated

 documentation can be part of a reproducible build [https://reproducible-

 builds.org/]. If the option is not given, the default value is the current date

 and time. For example:

 javadoc --date 2022-02-01T17:41:59-08:00 mypackage

 --legal-notices (default|none|directory)

 Specifies the location from which to copy legal files to the generated documenta?

 tion. If the option is not specified or is used with the value default, the files

 are copied from the default location. If the argument is used with value none, no

 files are copied. Every other argument is interpreted as directory from which to

 copy the legal files.

 --no-frames

 This option is a no-op and is just retained for backwards compatibility.

 -Xdoclint

 Enables recommended checks for problems in documentation comments.

 By default, the -Xdoclint option is enabled. Disable it with the option -Xdo?

 clint:none.

 For more details, see DocLint.

 -Xdoclint:flag,flag,...

 Enable or disable specific checks for different kinds of issues in documentation

 comments. Page 20/24

 Each flag can be one of all, none, or [-]group where group has one of the following

 values: accessibility, html, missing, reference, syntax. For more details on these

 values, see DocLint Groups.

 When specifying two or more flags, you can either use a single -Xdoclint:... op?

 tion, listing all the desired flags, or you can use multiple options giving one or

 more flag in each option. For example, use either of the following commands to

 check for the HTML, syntax, and accessibility issues in the file MyFile.java.

 javadoc -Xdoclint:html -Xdoclint:syntax -Xdoclint:accessibility MyFile.java

 javadoc -Xdoclint:html,syntax,accessibility MyFile.java

 The following examples illustrate how to change what DocLint reports:

 ? -Xdoclint:none --- disables all checks

 ? -Xdoclint:group --- enables group checks

 ? -Xdoclint:all --- enables all groups of checks

 ? -Xdoclint:all,-group --- enables all checks except group checks

 For more details, see DocLint.

 -Xdoclint/package:[-]packages

 Enables or disables checks in specific packages. packages is a comma separated

 list of package specifiers. A package specifier is either a qualified name of a

 package or a package name prefix followed by *, which expands to all subpackages of

 the given package. Prefix the package specifier with - to disable checks for the

 specified packages.

 For more details, see DocLint.

 -Xdocrootparent url

 Replaces all @docRoot items followed by /.. in documentation comments with url.

DOCLINT

 DocLint provides the ability to check for possible problems in documentation comments.

 Problems may be reported as warnings or errors, depending on their severity. For example,

 a missing comment may be bad style that deserves a warning, but a link to an unknown Java

 declaration is more serious and deserves an error. Problems are organized into groups,

 and options can be used to enable or disable messages in one or more groups. Within the

 source code, messages in one or more groups can be suppressed by using @SuppressWarnings

 annotations.

 When invoked from javadoc, by default DocLint checks all comments that are used in the Page 21/24

 generated documentation. It thus relies on other command-line options to determine which

 declarations, and which corresponding documentation comments will be included. Note: this

 may mean that even comments on some private members of serializable classes will also be

 checked, if the members need to be documented in the generated Serialized Forms page.

 In contrast, when DocLint is invoked from javac, DocLint solely relies on the various

 -Xdoclint... options to determine which documentation comments to check.

 DocLint doesn't attempt to fix invalid input, it just reports it.

 Note: DocLint doesn't guarantee the completeness of these checks. In particular, it isn't

 a full HTML compliance checker. The goal is to just report common errors in a convenient

 manner.

 Groups

 The checks performed by DocLint are organized into groups. The warnings and errors in

 each group can be enabled or disabled with command-line options, or suppressed with @Sup?

 pressWarnings annotations.

 The groups are as follows:

 ? accessibility --- Checks for issues related to accessibility. For example, no alt at?

 tribute specified in an element, or no caption or summary attributes specified in

 a <table> element.

 Issues are reported as errors if a downstream validation tool might be expected to re?

 port an error in the files generated by javadoc.

 For reference, see the Web Content Accessibility Guidelines

 [https://www.w3.org/WAI/standards-guidelines/wcag/].

 ? html --- Detects common high-level HTML issues. For example, putting block elements in?

 side inline elements, or not closing elements that require an end tag.

 Issues are reported as errors if a downstream validation tool might be expected to re?

 port an error in the files generated by javadoc.

 For reference, see the HTML Living Standard [https://html.spec.whatwg.org/multipage/].

 ? missing --- Checks for missing documentation comments or tags. For example, a missing

 comment on a class declaration, or a missing @param or @return tag in the comment for a

 method declaration.

 Issues related to missing items are typically reported as warnings because they are un?

 likely to be reported as errors by downstream validation tools that may be used to check

 the output generated by javadoc. Page 22/24

 ? reference --- Checks for issues relating to the references to Java API elements from

 documentation comment tags. For example, the reference in @see or {@link ...} cannot be

 found, or a bad name is given for @param or @throws.

 Issues are typically reported as errors because while the issue may not cause problems

 in the generated files, the author has likely made a mistake that will lead to incorrect

 or unexpected documentation.

 ? syntax --- Checks for low-level syntactic issues in documentation comments. For exam?

 ple, unescaped angle brackets (< and >) and ampersands (&) and invalid documentation

 comment tags.

 Issues are typically reported as errors because the issues may lead to incorrect or un?

 expected documentation.

 Suppressing Messages

 DocLint checks for and recognizes two strings that may be present in the arguments for an

 @SuppressWarnings annotation.

 ? doclint

 ? doclint:LIST

 where LIST is a comma-separated list of one or more of accessibility, html, missing, syn?

 tax, reference.

 The names in LIST are the same group names supported by the command-line -Xdoclint option

 for javac and javadoc. (This is the same convention honored by the javac -Xlint option

 and the corresponding names supported by @SuppressWarnings.)

 The names in LIST can equivalently be specified in separate arguments of the annotation.

 For example, the following are equivalent:

 ? @SuppressWarnings("doclint:accessibility,missing")

 ? @SuppressWarnings("doclint:accessibility", "doclint:missing")

 When DocLint detects an issue in a documentation comment, it checks for the presence of

 @SuppressWarnings on the associated declaration and on all lexically enclosing declara?

 tions. The issue will be ignored if any such annotation is found containing the simple

 string doclint or the longer form doclint:LIST where LIST contains the name of the group

 for the issue.

 Note: as with other uses of @SuppressWarnings, using the annotation on a module or package

 declaration only affects that declaration; it does not affect the contents of the module

 or package in other source files. Page 23/24

 All messages related to an issue are suppressed by the presence of an appropriate @Sup?

 pressWarnings annotation: this includes errors as well as warnings.

 Note: It is only possible to suppress messages. If an annotation of @SuppressWarn?

 ings("doclint") is given on a top-level declaration, all DocLint messages for that decla?

 ration and any enclosed declarations will be suppressed; it is not possible to selectively

 re-enable messages for issues in enclosed declarations.

 Comparison with downstream validation tools

 DocLint is a utility built into javac and javadoc that checks the content of documentation

 comments, as found in source files. In contrast, downstream validation tools can be used

 to validate the output generated from those documentation comments by javadoc and the

 Standard Doclet.

 Although there is some overlap in functionality, the two mechanisms are different and each

 has its own strengths and weaknesses.

 ? Downstream validation tools can check the end result of any generated documentation, as

 it will be seen by the end user. This includes content from all sources, including doc?

 umentation comments, the Standard Doclet itself, user-provided taglets, and content sup?

 plied via command-line options. Because such tools are analyzing complete HTML pages,

 they can do more complete checks than can DocLint. However, when a problem is found in

 the generated pages, it can be harder to track down exactly where in the build pipeline

 the problem needs to be fixed.

 ? DocLint checks the content of documentation comments, in source files. This makes it

 very easy to identify the exact position of any issues that may be found. DocLint can

 also detect some semantic errors in documentation comments that downstream tools cannot

 detect, such as missing comments, using an @return tag in a method returning void, or an

 @param tag describing a non-existent parameter. But by its nature, DocLint cannot re?

 port on problems such as missing links, or errors in user-provided custom taglets, or

 problems in the Standard Doclet itself. It also cannot reliably detect errors in docu?

 mentation comments at the boundaries between content in a documentation comment and con?

 tent generated by a custom taglet.

JDK 21 2023 JAVADOC(1)

Page 24/24

