PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'javadoc.l'
$ man javadoc.1
JAVADOC(1) JDK Commands JAVADOC(1)
NAME
javadoc - generate HTML pages of APl documentation from Java source files
SYNOPSIS
javadoc [options] [packagenames] [sourcefiles] [@files]
options
Specifies command-line options, separated by spaces. See Standard javadoc Options,
Extra javadoc Options, Standard Options for the Standard Doclet, and Extra Options
for the Standard Doclet.
packagenames
Specifies names of packages that you want to document, separated by spaces, for ex?
ample java.lang java.lang.reflect java.awt. If you want to also document the sub?
packages, then use the -subpackages option to specify the packages.
By default, javadoc looks for the specified packages in the current directory and
subdirectories. Use the -sourcepath option to specify the list of directories
where to look for packages.
sourcefiles
Specifies names of Java source files that you want to document, separated by spa?
ces, for example Class.java Object.java Button.java. By default, javadoc looks for
the specified classes in the current directory. However, you can specify the full
path to the class file and use wildcard characters, for example /home/srcl/ja?
va/awt/Graphics*.java. You can also specify the path relative to the current di?

rectory.

FPDF Library

Page 1/24

@files Specifies names of files that contain a list of javadoc tool options, package
names, and source file names in any order.
DESCRIPTION
The javadoc tool parses the declarations and documentation comments in a set of Java
source files and produces corresponding HTML pages that describe (by default) the public
and protected classes, nested and unnamed classes (but not anonymous inner classes), in?
terfaces, constructors, methods, and fields. You can use thejavadoc tool to generate the
API documentation or the implementation documentation for a set of source files.
You can run the javadoc tool on entire packages, individual source files, or both. When
documenting entire packages, you can use the -subpackages option either to recursively
traverse a directory and its subdirectories, or to pass in an explicit list of package
names. When you document individual source files, pass in a list of Java source file
names.
Conformance
The Standard Doclet does not validate the content of documentation comments for confor?
mance, nor does it attempt to correct any errors in documentation comments. Anyone run?
ning javadoc is advised to be aware of the problems that may arise when generating non-
conformant output or output containing executable content, such as JavaScript. The Stan?
dard Doclet does provide the DocLint feature to help developers detect common problems in
documentation comments; but it is also recommended to check the generated output with any
appropriate conformance and other checking tools.
For more details on the conformance requirements for HTML5 documents, see Conformance re?
quirements [https://www.w3.0rg/TR/html5/infrastructure.html#conformance-requirements] in
the HTML5 Specification. For more details on security issues related to web pages, see
the Open Web Application Security Project (OWASP) [https://lwww.owasp.org] page.
OPTIONS
javadoc supports command-line options for both the main javadoc tool and the currently se?
lected doclet. The Standard Doclet is used if no other doclet is specified.
GNU-style options (that is, those beginning with --) can use an equal sign (=) instead of
whitespace characters to separate the name of an option from its value.
Standard javadoc Options
The following core javadoc options are equivalent to corresponding javac options. See

Standard Options in javac for the detailed descriptions of using these options: Page 2/24

? --add-modules

? -bootclasspath

? --class-path, -classpath, or -cp
? --enable-preview

? -encoding

? -extdirs

? --limit-modules

? --module

? --module-path or -p

? --module-source-path

? --release

? --source or -source

? --source-path or -sourcepath
? --system

? --upgrade-module-path

The following options are the core javadoc options that are not equivalent to a corre?
sponding javac option:
-breakiterator

Computes the first sentence with Breaklterator. The first sentence is copied to

the package, class, or member summary and to the alphabetic index. The Breakltera?

tor class is used to determine the end of a sentence for all languages except for

English.

? English default sentence-break algorithm --- Stops at a period followed by a
space or an HTML block tag, such as <P>.

? Breakiterator sentence-break algorithm --- Stops at a period, question mark, or
exclamation point followed by a space when the next word starts with a capital
letter. This is meant to handle most abbreviations (such as "The serial no. is
valid”, but will not handle "Mr. Smith"). The -breakiterator option doesn't
stop at HTML tags or sentences that begin with numbers or symbols. The algorithm
stops at the last period in ../filename, even when embedded in an HTML tag.

-doclet class
Generates output by using an alternate doclet. Use the fully qualified name. This

doclet defines the content and formats the output. If the -doclet option isn't Page 3/24

used, then the javadoc tool uses the standard doclet for generating the default
HTML format. This class must contain the start(Root) method. The path to this
starting class is defined by the -docletpath option.
-docletpath path
Specifies where to find doclet class files (specified with the -doclet option) and
any JAR files it depends on. If the starting class file isin a JAR file, then
this option specifies the path to that JAR file. You can specify an absolute path
or a path relative to the current directory. If classpathlist contains multiple
paths or JAR files, then they should be separated with a colon () on Linux and a
semi-colon (;) on Windows. This option isn't necessary when the doclet starting
class is already in the search path.
-exclude pkglist
Unconditionally, excludes the specified packages and their subpackages from the
list formed by -subpackages. It excludes those packages even when they would oth?
erwise be included by some earlier or later -subpackages option.
The following example would include java.io, java.util, and java.math (among oth?
ers), but would exclude packages rooted at java.net and java.lang. Notice that
these examples exclude java.lang.ref, which is a subpackage of java.lang.
? Linux and macOS:
javadoc -sourcepath /home/user/src -subpackages java -exclude java.net:java.lang
? Windows:
javadoc -sourcepath \user\src -subpackages java -exclude java.net:java.lang
--expand-requires value
Instructs the javadoc tool to expand the set of modules to be documented. By de?
fault, only the modules given explicitly on the command line are documented. Sup?
ports the following values:
? transitive: additionally includes all the required transitive dependencies of
those modules.
? all: includes all dependencies.
--help, -help, -h, or -?
Prints a synopsis of the standard options.
--help-extra or -X

Prints a synopsis of the set of extra options.

Page 4/24

-Jflag Passes flag directly to the Java Runtime Environment (JRE) that runs the javadoc
tool. For example, if you must ensure that the system sets aside 32 MB of memory
in which to process the generated documentation, then you would call the -Xmx op?
tion as follows: javadoc -J-Xmx32m -J-Xms32m com.mypackage. Be aware that -Xms is
optional because it only sets the size of initial memory, which is useful when you
know the minimum amount of memory required.

There is no space between the J and the flag.
Use the -version option to report the version of the JRE being used to run the
javadoc tool.

javadoc -J-version

java version "17" 2021-09-14 LTS

Java(TM) SE Runtime Environment (build 17+35-LTS-2724)

Java HotSpot(TM) 64-Bit Server VM (build 17+35-LTS-2724, mixed mode, sharing)

-locale name
Specifies the locale that the javadoc tool uses when it generates documentation.
The argument is the name of the locale, as described in java.util.Locale documenta?
tion, such as en_US (English, United States) or en_US_WIN (Windows variant).
Specifying a locale causes the javadoc tool to choose the resource files of that
locale for messages such as strings in the navigation bar, headings for lists and
tables, help file contents, comments in the stylesheet.css file, and so on. It al?
so specifies the sorting order for lists sorted alphabetically, and the sentence
separator to determine the end of the first sentence. The -locale option doesn't
determine the locale of the documentation comment text specified in the source
files of the documented classes.

-package
Shows only package, protected, and public classes and members.

-private
Shows all classes and members.

-protected
Shows only protected and public classes and members. This is the default.

-public
Shows only the public classes and members.

-quiet Shuts off messages so that only the warnings and errors appear to make them easier Page 5/24

to view. It also suppresses the version string.

--show-members value
Specifies which members (fields or methods) are documented, where value can be any
of the following:
? public --- shows only public members
? protected --- shows public and protected members; this is the default
? package --- shows public, protected, and package members
? private --- shows all members

--show-module-contents value
Specifies the documentation granularity of module declarations, where value can be
api or all.

--show-packages value
Specifies which modules packages are documented, where value can be exported or all
packages.

--show-types value
Specifies which types (classes, interfaces, etc.) are documented, where value can
be any of the following:
? public --- shows only public types
? protected --- shows public and protected types; this is the default
? package --- shows public, protected, and package types
? private --- shows all types

-subpackages subpkglist
Generates documentation from source files in the specified packages and recursively
in their subpackages. This option is useful when adding new subpackages to the
source code because they are automatically included. Each package argument is any
top-level subpackage (such as java) or fully qualified package (such as
javax.swing) that doesn't need to contain source files. Arguments are separated by
colons on all operating systems. Wild cards aren't allowed. Use -sourcepath to
specify where to find the packages. This option doesn't process source files that
are in the source tree but don't belong to the packages.
For example, the following commands generates documentation for packages named java
and javax.swing and all of their subpackages.

? Linux and macQOS: Page 6/24

javadoc -d docs -sourcepath /home/user/src -subpackages java:javax.swing
? Windows:
javadoc -d docs -sourcepath \user\src -subpackages java:javax.swing
-verbose
Provides more detailed messages while the javadoc tool runs. Without the -verbose
option, messages appear for loading the source files, generating the documentation
(one message per source file), and sorting. The -verbose option causes the print?
ing of additional messages that specify the number of milliseconds to parse each
Java source file.
--version
Prints version information.
-Werror
Reports an error if any warnings occur.
Extra javadoc Options
Note: The additional options for javadoc are subject to change without notice.
The following additional javadoc options are equivalent to corresponding javac options.
See Extra Options in javac for the detailed descriptions of using these options:
? --add-exports
? --add-reads
? --patch-module
? -Xmaxerrs
? -Xmaxwarns
Standard Options for the Standard Doclet
The following options are provided by the standard doclet.
--add-script file
Adds file as an additional JavaScript file to the generated documentation. This
option can be used one or more times to specify additional script files.
Command-line example:
javadoc --add-script first_script.js --add-script second_script.js pkg_foo
--add-stylesheet file
Adds file as an additional stylesheet file to the generated documentation. This
option can be used one or more times to specify additional stylesheets included in

the documentation.

Page 7/24

Command-line example:
javadoc --add-stylesheet new_stylesheet 1.css --add-stylesheet new_stylesheet 2.css pkg_foo
--allow-script-in-comments
Allow JavaScript in options and comments.
-author
Includes the @author text in the generated docs.
-bottom html-code
Specifies the text to be placed at the bottom of each output file. The text is
placed at the bottom of the page, underneath the lower navigation bar. The text
can contain HTML tags and white space, but when it does, the text must be enclosed
in quotation marks. Use escape characters for any internal quotation marks within
text.
-charset name
Specifies the HTML character set for this document. The name should be a preferred
MIME name as specified in the IANA Registry, Character Sets
[http://www.iana.org/assignments/character-sets].
For example:
javadoc -charset "is0-8859-1" mypackage
This command inserts the following line in the head of every generated page:
<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
The meta tag is described in the HTML standard (4197265 and 4137321), HTML Document
Representation [http://www.w3.0rg/TR/REC-html40/charset.html#h-5.2.2].
-d directory
Specifies the destination directory where the javadoc tool saves the generated HTML
files. If you omit the -d option, then the files are saved to the current directo?
ry. The directory value can be absolute or relative to the current working direc?
tory. The destination directory is automatically created when the javadoc tool
runs.
? Linux and macQOS: For example, the following command generates the documentation
for the package com.mypackage and saves the results in the /user/doc/ directory:
javadoc -d /user/doc/ com.mypackage
? Windows: For example, the following command generates the documentation for the

package com.mypackage and saves the results in the \user\doc\ directory: Page 8/24

javadoc -d \user\doc\ com.mypackage

-docencoding name
Specifies the encoding of the generated HTML files. The name should be a preferred
MIME name as specified in the IANA Registry, Character Sets
[http://www.iana.org/assignments/character-sets].
Three options are available for use in a javadoc encoding command. The -encoding
option is used for encoding the files read by the javadoc tool, while the -docen?
coding and -charset options are used for encoding the files written by the tool.
Of the three available options, at most, only the input and an output encoding op?
tion are used in a single encoding command. If you specify both input and output
encoding options in a command, they must be the same value. If you specify neither
output option, it defaults to the input encoding.
For example:

javadoc -docencoding "iso-8859-1" mypackage

-docfilessubdirs
Recursively copies doc-file subdirectories. Enables deep copying of doc-files di?
rectories. Subdirectories and all contents are recursively copied to the destina?
tion. For example, the directory doc-files/example/images and all of its contents
are copied. The -excludedocfilessubdir option can be used to exclude specific sub?
directories.

-doctitle html-code
Specifies the title to place near the top of the overview summary file. The text
specified in the title tag is placed as a centered, level-one heading directly be?
neath the top navigation bar. The title tag can contain HTML tags and white space,
but when it does, you must enclose the title in quotation marks. Additional quota?
tion marks within the title tag must be escaped. For example, javadoc -doctitle
"My Library
v1.0" com.mypackage.

-excludedocfilessubdir namel,name?2...
Excludes any subdirectories with the given names when recursively copying doc-file
subdirectories. See -docfilessubdirs. For historical reasons, : can be used any?
where in the argument as a separator instead of ,.

-footer html-code

Specifies the footer text to be placed at the bottom of each output file. Thehtml- Page 9/24

code value is placed to the right of the lower navigation bar. The html-code value
can contain HTML tags and white space, but when it does, the html-code value must
be enclosed in quotation marks. Use escape characters for any internal quotation
marks within a footer.

-group name pl,p2...
Group the specified packages together in the Overview page. For historical rea?
sons, : can be used as a separator anywhere in the argument instead of ,.

-header html-code
Specifies the header text to be placed at the top of each output file. The header
is placed to the right of the upper navigation bar. The header can contain HTML
tags and white space, but when it does, the header must be enclosed in quotation
marks. Use escape characters for internal quotation marks within a header. For
example, javadoc -header "My Library
v1.0" com.mypackage.

-helpfile filename
Includes the file that links to the HELP link in the top and bottom navigation bars

Without this option, the javadoc tool creates a help file help-doc.html that is
hard-coded in the javadoc tool. This option lets you override the default. The
filename can be any name and isn't restricted to help-doc.html. The javadoc tool
adjusts the links in the navigation bar accordingly. For example:
? Linux and macOS:
javadoc -helpfile /home/user/myhelp.html java.awt
? Windows:
javadoc -helpfile C:\user\myhelp.html java.awt

-htmlI5 This option is a no-op and is just retained for backwards compatibility.

--javafx or -javafx
Enables JavaFX functionality. This option is enabled by default if the JavaFX [i?
brary classes are detected on the module path.

-keywords
Adds HTML keyword <meta> tags to the generated file for each class. These tags can
help search engines that look for <meta> tags find the pages. Most search engines
that search the entire Internet don't look at <meta> tags, because pages can misuse
them. Search engines offered by companies that confine their searches to their own

website can benefit by looking at <meta> tags. The <meta> tags include the fully Page 10/24

qualified name of the class and the unqualified names of the fields and methods.
Constructors aren't included because they are identical to the class name. For ex?
ample, the class String starts with these keywords:

<meta name="keywords" content="java.lang.String class">

<meta name="keywords" content="CASE_INSENSITIVE_ORDER">

<meta name="keywords" content="length()">

<meta name="keywords" content="charAt()">

-link url

Creates links to existing javadoc generated documentation of externally referenced
classes. The url argument is the absolute or relative URL of the directory that
contains the external javadoc generated documentation. You can specify multiple
-link options in a specified javadoc tool run to link to multiple documents.
Either a package-list or an element-list file must be in this url directory (other?
wise, use the -linkoffline option).
Note: The package-list and element-list files are generated by the javadoc tool
when generating the APl documentation and should not be modified by the user.
When you use the javadoc tool to document packages, it uses the package-list file
to determine the packages declared in an API. When you generate APl documents for
modules, the javadoc tool uses the element-list file to determine the modules and
packages declared in an API.
The javadoc tool reads the names from the appropriate list file and then links to
the packages or modules at that URL.
When the javadoc tool runs, the url value is copied into the <A HREF> links that
are created. Therefore, url must be the URL to the directory and not to a file.
You can use an absolute link for url to enable your documents to link to a document
on any web site, or you can use a relative link to link only to a relative loca?
tion. If you use a relative link, then the value you pass in should be the rela?
tive path from the destination directory (specified with the -d option) to the di?
rectory containing the packages being linked to. When you specify an absolute
link, you usually use an HTTP link. However, if you want to link to a file system
that has no web server, then you can use a file link. Use a file link only when
everyone who wants to access the generated documentation shares the same file sys?

tem. In all cases, and on all operating systems, use a slash as the separator, Page 11/24

whether the URL is absolute or relative, and https:, http:, or file: as specified
in the URL Memo: Uniform Resource Locators [http://www.ietf.org/rfc/rfc1738.txt].
-link https://<host>/<directory>/<directory>/.../<name>
-link http://<host>/<directory>/<directory>/.../<name>
-link file://<host>/<directory>/<directory>/.../<name>
-link <directory>/<directory>/.../<name>
--link-modularity-mismatch (warn|info)
Specifies whether external documentation with wrong modularity (e.g. non-modular
documentation for a modular library, or the reverse case) should be reported as a
warning (warn) or just a message (info). The default behavior is to report a warn?
ing.
-linkoffline urll url2
This option is a variation of the -link option. They both create links to javadoc
generated documentation for externally referenced classes. You can specify multi?
ple -linkoffline options in a specified javadoc tool run.
Use the -linkoffline option when:
? Linking to a document on the web that the javadoc tool can't access through a web
connection
? The package-list or element-list file of the external document either isn't ac?
cessible or doesn't exist at the URL location, but does exist at a different lo?
cation and can be specified by either the package-list or element-list file (typ?
ically local).
Note: The package-list and element-list files are generated by the javadoc tool
when generating the API documentation and should not be modified by the user.
If urll is accessible only on the World Wide Web, then the -linkoffline option re?
moves the constraint that the javadoc tool must have a web connection to generate
documentation.
Another use of the -linkoffline option is as a work-around to update documents.
After you have run the javadoc tool on a full set of packages or modules, you can
run the javadoc tool again on a smaller set of changed packages or modules, so that
the updated files can be inserted back into the original set.
For example, the -linkoffline option takes two arguments. The first is for the

string to be embedded in the <a href> links, and the second tells the javadoc tool Page 12/24

where to find either the package-list or element-list file.
The urll or url2 value is the absolute or relative URL of the directory that con?
tains the external javadoc generated documentation that you want to link to. When
relative, the value should be the relative path from the destination directory
(specified with the -d option) to the root of the packages being linked to. See
url in the -link option.
--link-platform-properties url
Specifies a properties file used to configure links to platform documentation.
The url argument is expected to point to a properties file containing one or more
entries with the following format, where <version> is the platform version as
passed to the --release or --source option and <url> is the base URL of the corre?
sponding platform APl documentation:
doclet.platform.docs.<version>=<url>
For instance, a properties file containing URLSs for releases 15 to 17 might contain
the following lines:
doclet.platform.docs.15=https://example.com/api/15/
doclet.platform.docs.16=https://example.com/api/16/
doclet.platform.docs.17=https://example.com/api/17/
If the properties file does not contain an entry for a particular release no plat?
form links are generated.
-linksource
Creates an HTML version of each source file (with line numbers) and adds links to
them from the standard HTML documentation. Links are created for classes, inter?
faces, constructors, methods, and fields whose declarations are in a source file.
Otherwise, links aren't created, such as for default constructors and generated
classes.
This option exposes all private implementation details in the included source
files, including private classes, private fields, and the bodies of private meth?
ods, regardless of the -public, -package, -protected, and -private options. Unless
you also use the -private option, not all private classes or interfaces are acces?
sible through links.
Each link appears on the name of the identifier in its declaration. For example,

the link to the source code of the Button class would be on the word Button: Page 13/24

public class Button extends Component implements Accessible
The link to the source code of the getLabel method in the Button class is on the
word getLabel:
public String getLabel()
--main-stylesheet file or -stylesheetfile file
Specifies the path of an alternate stylesheet file that contains the definitions
for the CSS styles used in the generated documentation. This option lets you over?
ride the default. If you do not specify the option, the javadoc tool will create
and use a default stylesheet. The file name can be any name and isn't restricted
to stylesheet.css. The --main-stylesheet option is the preferred form.
Command-line example:
javadoc --main-stylesheet main_stylesheet.css pkg_foo
-nocomment
Suppresses the entire comment body, including the main description and all tags,
and generate only declarations. This option lets you reuse source files that were
originally intended for a different purpose so that you can produce skeleton HTML
documentation during the early stages of a new project.
-nodeprecated
Prevents the generation of any deprecated API in the documentation. This does what
the -nodeprecatedlist option does, and it doesn't generate any deprecated API
throughout the rest of the documentation. This is useful when writing code when
you don't want to be distracted by the deprecated code.
-nodeprecatedlist
Prevents the generation of the file that contains the list of deprecated APIs (dep?
recated-list.html) and the link in the navigation bar to that page. The javadoc
tool continues to generate the deprecated API throughout the rest of the document.
This is useful when your source code contains no deprecated APls, and you want to
make the navigation bar cleaner.
-nohelp
Omits the HELP link in the navigation bar at the top of each page of output.
-noindex

Omits the index from the generated documents. The index is produced by default.

-nonavbar Page 14/24

Prevents the generation of the navigation bar, header, and footer, that are usually
found at the top and bottom of the generated pages. The -nonavbar option has no
effect on the -bottom option. The -nonavbar option is useful when you are inter?
ested only in the content and have no need for navigation, such as when you are
converting the files to PostScript or PDF for printing only.

--no-platform-links
Prevents the generation of links to platform documentation. These links are gener?
ated by default.

-noqualifier namel,name2...
Excludes the list of qualifiers from the output. The package name is removed from
places where class or interface names appear. For historical reasons, : can be
used anywhere in the argument as a separator instead of ,.
The following example omits all package qualifiers: -noqualifier all.
The following example omits java.lang and java.io package qualifiers: -noqualifier
java.lang:java.io.
The following example omits package qualifiers starting with java and com.sun sub?
packages, but not javax: -noqualifier java.*:com.sun.*.
Where a package qualifier would appear due to the previous behavior, the name can
be suitably shortened. This rule is in effect whether or not the -noqualifier op?
tion is used.

-nosince
Omits from the generated documents the Since sections associated with the @since
tags.

-notimestamp
Suppresses the time stamp, which is hidden in an HTML comment in the generated HTML
near the top of each page. The -notimestamp option is useful when you want to run
the javadoc tool on two source bases and get the differences between diff them, be?
cause it prevents time stamps from causing a diff (which would otherwise be a diff
on every page). The time stamp includes the javadoc tool release number.

-notree
Omits the class and interface hierarchy pages from the generated documents. These
are the pages you reach using the Tree button in the navigation bar. The hierarchy

is produced by default. Page 15/24

--override-methods (detail|summary)

Documents overridden methods in the detail or summary sections. The default is de?

tail.

-overview filename

Specifies that the javadoc tool should retrieve the text for the overview documen?

tation from the source file specified by filename and place it on the Overview page

(overview-summary.html). A relative path specified with the file name is relative

to the current working directory.

While you can use any name you want for the filename value and place it anywhere

you want for the path, it is typical to name it overview.html and place it in the

source tree at the directory that contains the topmost package directories. In

this location, no path is needed when documenting packages, because the -sourcepath

option points to this file.

? Linux and macQOS: For example, if the source tree for the java.lang package is
src/classes/javal/lang/, then you could place the overview file at src/class?
es/overview.html.

? Windows: For example, if the source tree for the java.lang package is src\class?
es\javallang\, then you could place the overview file at src\classes\over?
view.htm|

The overview page is created only when you pass two or more package names to the

javadoc tool. The title on the overview page is set by -doctitle.

-serialwarn

Generates compile-time warnings for missing @serial tags. By default, Javadoc gen?

erates no serial warnings. Use this option to display the serial warnings, which

helps to properly document default serializable fields and writeExternal methods.

--since release(,release)*

Generates documentation for APIs that were added or newly deprecated in the speci?

fied releases.

If the @since tag in the javadoc comment of an element in the documented source

code matches a release passed as option argument, information about the element and

the release it was added in is included in a "New API" page.

If the "Deprecated API" page is generated and the since element of the ja?

va.lang.Deprecated annotation of a documented element matches a release in the op?

Page 16/24

tion arguments, information about the release the element was deprecated in is
added to the "Deprecated API" page.
Releases are compared using case-sensitive string comparison.

--since-label text
Specifies the text to use in the heading of the "New API" page. This may contain
information about the releases covered in the page, e.g. "New APl in release 2.0",
or "New API since release 1".

--snippet-path snippetpathlist
Specifies the search paths for finding files for external snippets. The snippet?
pathlist can contain multiple paths by separating them with the platform path sepa?
rator (; on Windows; : on other platforms.) The Standard Doclet first searches the
shippet-files subdirectory in the package containing the snippet, and then searches
all the directories in the given list.

-sourcetab tab-length
Specifies the number of spaces each tab uses in the source.

--spec-base-url url
Specifies the base URL for relative URLs in @spec tags, to be used when generating
links to any external specifications. It can either be an absolute URL, or a rela?
tive URL, in which case it is evaluated relative to the base directory of the gen?
erated output files. The default value is equivalent to {@docRoot}/../specs.

-splitindex
Splits the index file into multiple files, alphabetically, one file per letter,
plus a file for any index entries that start with non-alphabetical symbols.

-tag name:locations:header
Specifies single argument custom tags. For the javadoc tool to spell-check tag
names, it is important to include a -tag option for every custom tag that is
present in the source code, disabling (with X) those that aren't being output in
the current run. The colon (:) is always the separator. To include a colon in the
tag name, escape it with a backward slash (\). The -tag option outputs the tag
heading, header, in bold, followed on the next line by the text from its single ar?
gument. Similar to any block tag, the argument text can contain inline tags, which
are also interpreted. The output is similar to standard one-argument tags, such as

the @return and @author tags. Omitting a header value causes the name to be the

Page 17/24

heading. locations is a list of characters specifying the kinds of declarations in
which the tag may be used. The following characters may be used, in either upper?
case or lowercase:

? A: all declarations

? C: constructors

? F: fields

? M: methods

? O: the overview page and other documentation files in doc-files subdirectories

? P: packages

? S: modules

? T: types (classes and interfaces)

? X: nowhere: the tag is disabled, and will be ignored

The order in which tags are given on the command line will be used as the order in
which the tags appear in the generated output. You can include standard tags in
the order given on the command line by using the -tag option with no locations or

header.

-taglet class

Specifies the fully qualified name of the taglet used in generating the documenta?
tion for that tag. Use the fully qualified name for the class value. This taglet
also defines the number of text arguments that the custom tag has. The taglet ac?
cepts those arguments, processes them, and generates the output.
Taglets are useful for block or inline tags. They can have any number of arguments
and implement custom behavior, such as making text bold, formatting bullets, writ?
ing out the text to a file, or starting other processes. Taglets can only deter?
mine where a tag should appear and in what form. All other decisions are made by
the doclet. A taglet can't do things such as remove a class name from the list of
included classes. However, it can execute side effects, such as printing the tag's
text to a file or triggering another process. Use the -tagletpath option to speci?
fy the path to the taglet. The following example inserts the To Do taglet after
Parameters and ahead of Throws in the generated pages.

-taglet com.sun.tools.doclets. ToDoTaglet

-tagletpath /home/taglets

_tag return Page 18/24

-tag param
-tag todo
-tag throws
-tag see
Alternately, you can use the -taglet option in place of its -tag option, but that
might be difficult to read.
-tagletpath tagletpathlist
Specifies the search paths for finding taglet class files. The tagletpathlist can
contain multiple paths by separating them with the platform path separator (; on
Windows; : on other platforms.) The javadoc tool searches all subdirectories of
the specified paths.
-top html-code

Specifies the text to be placed at the top of each output file.

-use Creates class and package usage pages. Includes one Use page for each documented

class and package. The page describes what packages, classes, methods, construc?
tors and fields use any API of the specified class or package. Given class C,
things that use class C would include subclasses of C, fields declared as C, meth?
ods that return C, and methods and constructors with parameters of type C. For ex?
ample, you can look at the Use page for the String type. Because the getName meth?
od in the java.awt.Font class returns type String, the getName method uses String
and so the getName method appears on the Use page for String. This documents only
uses of the API, not the implementation. When a method uses String in its imple?
mentation, but doesn't take a string as an argument or return a string, that isn't
considered a use of String.To access the generated Use page, go to the class or
package and click the Use link in the navigation bar.

-version
Includes the version text in the generated docs. This text is omitted by default.
To find out what version of the javadoc tool you are using, use the -J-version op?
tion.

-windowtitle title
Specifies the title to be placed in the HTML <title> tag. The text specified in
the title tag appears in the window title and in any browser bookmarks (favorite

places) that someone creates for this page. This title should not contain any HTML

Page 19/24

tags because a browser will not interpret them correctly. Use escape characters on

any internal quotation marks within the title tag. If the -windowtitle option is

omitted, then the javadoc tool uses the value of the -doctitle option for the -win?

dowtitle option. For example, javadoc -windowtitle "My Library" com.mypackage.
Extra Options for the Standard Doclet

The following are additional options provided by the Standard Doclet and are subject to

change without notice. Additional options are less commonly used or are otherwise regard?

ed as advanced.

--date date-and-time
Specifies the value to be used to timestamp the generated pages, in ISO 8601
[https://www.iso.org/iso-8601-date-and-time-format.html] format. The specified
value must be within 10 years of the current date and time. It is an error to
specify both -notimestamp and --date. Using a specific value means the generated
documentation can be part of a reproducible build [https://reproducible-
builds.org/]. If the option is not given, the default value is the current date
and time. For example:

javadoc --date 2022-02-01T17:41:59-08:00 mypackage

--legal-notices (default|none|directory)
Specifies the location from which to copy legal files to the generated documenta?
tion. If the option is not specified or is used with the value default, the files
are copied from the default location. If the argument is used with value none, no
files are copied. Every other argument is interpreted as directory from which to
copy the legal files.

--no-frames
This option is a no-op and is just retained for backwards compatibility.

-Xdoclint
Enables recommended checks for problems in documentation comments.
By default, the -Xdoclint option is enabled. Disable it with the option -Xdo?
clint:none.
For more details, see DoclLint.

-Xdoclint:flag,flag,...
Enable or disable specific checks for different kinds of issues in documentation

comments.

Page 20/24

Each flag can be one of all, none, or [-]group where group has one of the following

values: accessibility, html, missing, reference, syntax. For more details on these

values, see DocLint Groups.

When specifying two or more flags, you can either use a single -Xdoclint:... op?

tion, listing all the desired flags, or you can use multiple options giving one or

more flag in each option. For example, use either of the following commands to

check for the HTML, syntax, and accessibility issues in the file MyFile.java.

javadoc -Xdoclint:html -Xdoclint:syntax -Xdoclint:accessibility MyFile.java
javadoc -Xdoclint:html,syntax,accessibility MyFile.java

The following examples illustrate how to change what DocLint reports:

? -Xdoclint:none --- disables all checks

? -Xdoclint:group --- enables group checks

? -Xdoclint:all --- enables all groups of checks

? -Xdoclint:all,-group --- enables all checks except group checks

For more details, see DocLint.
-Xdoclint/package:[-]packages

Enables or disables checks in specific packages. packages is a comma separated

list of package specifiers. A package specifier is either a qualified name of a

package or a package name prefix followed by *, which expands to all subpackages of

the given package. Prefix the package specifier with - to disable checks for the

specified packages.

For more details, see DoclLint.
-Xdocrootparent url

Replaces all @docRoot items followed by /.. in documentation comments with url.

DOCLINT

DoclLint provides the ability to check for possible problems in documentation comments.
Problems may be reported as warnings or errors, depending on their severity. For example,
a missing comment may be bad style that deserves a warning, but a link to an unknown Java
declaration is more serious and deserves an error. Problems are organized into groups,
and options can be used to enable or disable messages in one or more groups. Within the
source code, messages in one or more groups can be suppressed by using @SuppressWarnings
annotations.

When invoked from javadoc, by default DocLint checks all comments that are used in the Page 21/24

generated documentation. It thus relies on other command-line options to determine which

declarations, and which corresponding documentation comments will be included. Note: this

may mean that even comments on some private members of serializable classes will also be
checked, if the members need to be documented in the generated Serialized Forms page.

In contrast, when DocLint is invoked from javac, DocLint solely relies on the various

-Xdoclint... options to determine which documentation comments to check.

DocLint doesn't attempt to fix invalid input, it just reports it.

Note: DocLint doesn't guarantee the completeness of these checks. In particular, it isn't

a full HTML compliance checker. The goal is to just report common errors in a convenient

manner.

Groups

The checks performed by DoclLint are organized into groups. The warnings and errors in

each group can be enabled or disabled with command-line options, or suppressed with @Sup?

pressWarnings annotations.

The groups are as follows:

? accessibility --- Checks for issues related to accessibility. For example, no alt at?
tribute specified in an element, or no caption or summary attributes specified in
a <table> element.

Issues are reported as errors if a downstream validation tool might be expected to re?
port an error in the files generated by javadoc.

For reference, see the Web Content Accessibility Guidelines
[https://iwww.w3.org/WAI/standards-guidelines/wcag/].

? html --- Detects common high-level HTML issues. For example, putting block elements in?
side inline elements, or not closing elements that require an end tag.

Issues are reported as errors if a downstream validation tool might be expected to re?
port an error in the files generated by javadoc.
For reference, see the HTML Living Standard [https://html.spec.whatwg.org/multipage/].

? missing --- Checks for missing documentation comments or tags. For example, a missing
comment on a class declaration, or a missing @param or @return tag in the comment for a
method declaration.

Issues related to missing items are typically reported as warnings because they are un?
likely to be reported as errors by downstream validation tools that may be used to check

the output generated by javadoc. Page 22/24

? reference --- Checks for issues relating to the references to Java API elements from
documentation comment tags. For example, the reference in @see or {@link ...} cannot be
found, or a bad name is given for @param or @throws.

Issues are typically reported as errors because while the issue may not cause problems
in the generated files, the author has likely made a mistake that will lead to incorrect
or unexpected documentation.

? syntax --- Checks for low-level syntactic issues in documentation comments. For exam?
ple, unescaped angle brackets (< and >) and ampersands (&) and invalid documentation
comment tags.

Issues are typically reported as errors because the issues may lead to incorrect or un?
expected documentation.
Suppressing Messages

DocLint checks for and recognizes two strings that may be present in the arguments for an

@SuppressWarnings annotation.

? doclint

? doclint:LIST

where LIST is a comma-separated list of one or more of accessibility, html, missing, syn?

tax, reference.

The names in LIST are the same group names supported by the command-line -Xdoclint option

for javac and javadoc. (This is the same convention honored by the javac -Xlint option

and the corresponding names supported by @SuppressWarnings.)

The names in LIST can equivalently be specified in separate arguments of the annotation.

For example, the following are equivalent:

? @SuppressWarnings("doclint:accessibility,missing”)

? @SuppressWarnings("doclint:accessibility”, "doclint:missing")

When DoclLint detects an issue in a documentation comment, it checks for the presence of

@SuppressWarnings on the associated declaration and on all lexically enclosing declara?

tions. The issue will be ignored if any such annotation is found containing the simple

string doclint or the longer form doclint:LIST where LIST contains the name of the group
for the issue.

Note: as with other uses of @SuppressWarnings, using the annotation on a module or package

declaration only affects that declaration; it does not affect the contents of the module

or package in other source files.

Page 23/24

All messages related to an issue are suppressed by the presence of an appropriate @Sup?

pressWarnings annotation: this includes errors as well as warnings.

Note: It is only possible to suppress messages. If an annotation of @SuppressWarn?

ings("doclint") is given on a top-level declaration, all DocLint messages for that decla?

ration and any enclosed declarations will be suppressed; it is not possible to selectively

re-enable messages for issues in enclosed declarations.

Comparison with downstream validation tools

DoclLint is a utility built into javac and javadoc that checks the content of documentation

comments, as found in source files. In contrast, downstream validation tools can be used

to validate the output generated from those documentation comments by javadoc and the

Standard Doclet.

Although there is some overlap in functionality, the two mechanisms are different and each

has its own strengths and weaknesses.

? Downstream validation tools can check the end result of any generated documentation, as
it will be seen by the end user. This includes content from all sources, including doc?
umentation comments, the Standard Doclet itself, user-provided taglets, and content sup?
plied via command-line options. Because such tools are analyzing complete HTML pages,
they can do more complete checks than can DocLint. However, when a problem is found in
the generated pages, it can be harder to track down exactly where in the build pipeline
the problem needs to be fixed.

? DocLint checks the content of documentation comments, in source files. This makes it
very easy to identify the exact position of any issues that may be found. DocLint can
also detect some semantic errors in documentation comments that downstream tools cannot
detect, such as missing comments, using an @return tag in a method returning void, or an
@param tag describing a non-existent parameter. But by its nature, DocLint cannot re?
port on problems such as missing links, or errors in user-provided custom taglets, or
problems in the Standard Doclet itself. It also cannot reliably detect errors in docu?
mentation comments at the boundaries between content in a documentation comment and con?
tent generated by a custom taglet.

JDK 21 2023 JAVADOC(1)

Page 24/24

