
Rocky Enterprise Linux 9.2 Manual Pages on command 'kexec_load.2'

$ man kexec_load.2

KEXEC_LOAD(2) Linux Programmer's Manual KEXEC_LOAD(2)

NAME

 kexec_load, kexec_file_load - load a new kernel for later execution

SYNOPSIS

 #include <linux/kexec.h>

 long kexec_load(unsigned long entry, unsigned long nr_segments,

 struct kexec_segment *segments, unsigned long flags);

 long kexec_file_load(int kernel_fd, int initrd_fd,

 unsigned long cmdline_len, const char *cmdline,

 unsigned long flags);

 Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION

 The kexec_load() system call loads a new kernel that can be executed later by reboot(2).

 The flags argument is a bit mask that controls the operation of the call. The following

 values can be specified in flags:

 KEXEC_ON_CRASH (since Linux 2.6.13)

 Execute the new kernel automatically on a system crash. This "crash kernel" is

 loaded into an area of reserved memory that is determined at boot time using the

 crashkernel kernel command-line parameter. The location of this reserved memory is

 exported to user space via the /proc/iomem file, in an entry labeled "Crash ker?

 nel". A user-space application can parse this file and prepare a list of segments

 (see below) that specify this reserved memory as destination. If this flag is

 specified, the kernel checks that the target segments specified in segments fall Page 1/5

 within the reserved region.

 KEXEC_PRESERVE_CONTEXT (since Linux 2.6.27)

 Preserve the system hardware and software states before executing the new kernel.

 This could be used for system suspend. This flag is available only if the kernel

 was configured with CONFIG_KEXEC_JUMP, and is effective only if nr_segments is

 greater than 0.

 The high-order bits (corresponding to the mask 0xffff0000) of flags contain the architec?

 ture of the to-be-executed kernel. Specify (OR) the constant KEXEC_ARCH_DEFAULT to use

 the current architecture, or one of the following architecture constants KEXEC_ARCH_386,

 KEXEC_ARCH_68K, KEXEC_ARCH_X86_64, KEXEC_ARCH_PPC, KEXEC_ARCH_PPC64,

KEXEC_ARCH_IA_64,

 KEXEC_ARCH_ARM, KEXEC_ARCH_S390, KEXEC_ARCH_SH, KEXEC_ARCH_MIPS, and

KEXEC_ARCH_MIPS_LE.

 The architecture must be executable on the CPU of the system.

 The entry argument is the physical entry address in the kernel image. The nr_segments ar?

 gument is the number of segments pointed to by the segments pointer; the kernel imposes an

 (arbitrary) limit of 16 on the number of segments. The segments argument is an array of

 kexec_segment structures which define the kernel layout:

 struct kexec_segment {

 void *buf; /* Buffer in user space */

 size_t bufsz; /* Buffer length in user space */

 void *mem; /* Physical address of kernel */

 size_t memsz; /* Physical address length */

 };

 The kernel image defined by segments is copied from the calling process into the kernel

 either in regular memory or in reserved memory (if KEXEC_ON_CRASH is set). The kernel

 first performs various sanity checks on the information passed in segments. If these

 checks pass, the kernel copies the segment data to kernel memory. Each segment specified

 in segments is copied as follows:

 * buf and bufsz identify a memory region in the caller's virtual address space that is

 the source of the copy. The value in bufsz may not exceed the value in the memsz

 field.

 * mem and memsz specify a physical address range that is the target of the copy. The Page 2/5

 values specified in both fields must be multiples of the system page size.

 * bufsz bytes are copied from the source buffer to the target kernel buffer. If bufsz is

 less than memsz, then the excess bytes in the kernel buffer are zeroed out.

 In case of a normal kexec (i.e., the KEXEC_ON_CRASH flag is not set), the segment data is

 loaded in any available memory and is moved to the final destination at kexec reboot time

 (e.g., when the kexec(8) command is executed with the -e option).

 In case of kexec on panic (i.e., the KEXEC_ON_CRASH flag is set), the segment data is

 loaded to reserved memory at the time of the call, and, after a crash, the kexec mechanism

 simply passes control to that kernel.

 The kexec_load() system call is available only if the kernel was configured with CON?

 FIG_KEXEC.

 kexec_file_load()

 The kexec_file_load() system call is similar to kexec_load(), but it takes a different set

 of arguments. It reads the kernel to be loaded from the file referred to by the file de?

 scriptor kernel_fd, and the initrd (initial RAM disk) to be loaded from file referred to

 by the file descriptor initrd_fd. The cmdline argument is a pointer to a buffer contain?

 ing the command line for the new kernel. The cmdline_len argument specifies size of the

 buffer. The last byte in the buffer must be a null byte ('\0').

 The flags argument is a bit mask which modifies the behavior of the call. The following

 values can be specified in flags:

 KEXEC_FILE_UNLOAD

 Unload the currently loaded kernel.

 KEXEC_FILE_ON_CRASH

 Load the new kernel in the memory region reserved for the crash kernel (as for

 KEXEC_ON_CRASH). This kernel is booted if the currently running kernel crashes.

 KEXEC_FILE_NO_INITRAMFS

 Loading initrd/initramfs is optional. Specify this flag if no initramfs is being

 loaded. If this flag is set, the value passed in initrd_fd is ignored.

 The kexec_file_load() system call was added to provide support for systems where "kexec"

 loading should be restricted to only kernels that are signed. This system call is avail?

 able only if the kernel was configured with CONFIG_KEXEC_FILE.

RETURN VALUE

 On success, these system calls returns 0. On error, -1 is returned and errno is set to Page 3/5

 indicate the error.

ERRORS

 EADDRNOTAVAIL

 The KEXEC_ON_CRASH flags was specified, but the region specified by the mem and

 memsz fields of one of the segments entries lies outside the range of memory re?

 served for the crash kernel.

 EADDRNOTAVAIL

 The value in a mem or memsz field in one of the segments entries is not a multiple

 of the system page size.

 EBADF kernel_fd or initrd_fd is not a valid file descriptor.

 EBUSY Another crash kernel is already being loaded or a crash kernel is already in use.

 EINVAL flags is invalid.

 EINVAL The value of a bufsz field in one of the segments entries exceeds the value in the

 corresponding memsz field.

 EINVAL nr_segments exceeds KEXEC_SEGMENT_MAX (16).

 EINVAL Two or more of the kernel target buffers overlap.

 EINVAL The value in cmdline[cmdline_len-1] is not '\0'.

 EINVAL The file referred to by kernel_fd or initrd_fd is empty (length zero).

 ENOEXEC

 kernel_fd does not refer to an open file, or the kernel can't load this file. Cur?

 rently, the file must be a bzImage and contain an x86 kernel that is loadable above

 4 GiB in memory (see the kernel source file Documentation/x86/boot.txt).

 ENOMEM Could not allocate memory.

 EPERM The caller does not have the CAP_SYS_BOOT capability.

VERSIONS

 The kexec_load() system call first appeared in Linux 2.6.13. The kexec_file_load() system

 call first appeared in Linux 3.17.

CONFORMING TO

 These system calls are Linux-specific.

NOTES

 Currently, there is no glibc support for these system calls. Call them using syscall(2).

SEE ALSO

 reboot(2), syscall(2), kexec(8) Page 4/5

 The kernel source files Documentation/kdump/kdump.txt and Documentation/admin-guide/ker?

 nel-parameters.txt

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 KEXEC_LOAD(2)

Page 5/5

