
Linux Ubuntu 22.4.5 Manual Pages on command 'ksh2020.1'

$ man ksh2020.1

KSH(1) General Commands Manual KSH(1)

NAME

 ksh2020, rksh2020 - KornShell, a standard/restricted command and programming lan?

 guage

NOTE

 Currently, rksh and pfksh are not available on macOS / Darwin.

SYNOPSIS

 ksh [?abcefhiknoprstuvxBCDP] [-R file] [?o option] ... [-] [arg ...]

DESCRIPTION

 Ksh is a command and programming language that executes commands read from a termi?

 nal or a file. Rksh is a restricted version of the command interpreter ksh; See

 Invocation below for the meaning of arguments to the shell.

 Definitions.

 A metacharacter is one of the following characters:

 ; & () ? < > new-line space tab

 A blank is a tab or a space. An identifier is a sequence of letters, digits, or

 underscores starting with a letter or underscore. Identifiers are used as compo?

 nents of variable names. A vname is a sequence of one or more identifiers sepa?

 rated by a . and optionally preceded by a .. Vnames are used as function and vari?

 able names. A word is a sequence of characters from the character set defined by

 the current locale, excluding non-quoted metacharacters.

 A command is a sequence of characters in the syntax of the shell language. The
Page 1/82

 shell reads each command and carries out the desired action either directly or by

 invoking separate utilities. A built-in command is a command that is carried out

 by the shell itself without creating a separate process. Some commands are built-

 in purely for convenience and are not documented here. Built-ins that cause side

 effects in the shell environment and built-ins that are found before performing a

 path search (see Execution below) are documented here. For historical reasons,

 some of these built-ins behave differently than other built-ins and are called spe?

 cial built-ins.

 Commands.

 A simple-command is a list of variable assignments (see Variable Assignments below)

 or a sequence of blank separated words which may be preceded by a list of variable

 assignments (see Environment below). The first word specifies the name of the com?

 mand to be executed. Except as specified below, the remaining words are passed as

 arguments to the invoked command. The command name is passed as argument 0 (see

 exec(2)). The value of a simple-command is its exit status; 0-255 if it terminates

 normally; 256+signum if it terminates abnormally (the name of the signal corre?

 sponding to the exit status can be obtained via the -l option of the kill built-in

 utility).

 A pipeline is a sequence of one or more commands separated by ?. The standard out?

 put of each command but the last is connected by a pipe(2) to the standard input of

 the next command. Each command, except possibly the last, is run as a separate

 process; the shell waits for the last command to terminate. The exit status of a

 pipeline is the exit status of the last command unless the pipefail option is en?

 abled. Each pipeline can be preceded by the reserved word ! which causes the exit

 status of the pipeline to become 0 if the exit status of the last command is non-

 zero, and 1 if the exit status of the last command is 0.

 A list is a sequence of one or more pipelines separated by ;, &, ?&, &&, or ??, and

 optionally terminated by ;, &, or ?&. Of these five symbols, ;, &, and ?& have

 equal precedence, which is lower than that of && and ??. The symbols && and ??

 also have equal precedence. A semicolon (;) causes sequential execution of the

 preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding

 pipeline (i.e., the shell does not wait for that pipeline to finish). The symbol

 ?& causes asynchronous execution of the preceding pipeline with a two-way pipe es? Page 2/82

 tablished to the parent shell; the standard input and output of the spawned pipe?

 line can be written to and read from by the parent shell by applying the redirect?

 ion operators <& and >& with arg p to commands and by using -p option of the built-

 in commands read and print described later. The symbol && (??) causes the list

 following it to be executed only if the preceding pipeline returns a zero (non-

 zero) value. One or more new-lines may appear in a list instead of a semicolon, to

 delimit a command. The first item of the first pipeline of a list that is a sim?

 ple command not beginning with a redirection, and not occurring within a while, un?

 til, or if list, can be preceded by a semicolon. This semicolon is ignored unless

 the showme option is enabled as described with the set built-in below.

 A command is either a simple-command or one of the following. Unless otherwise

 stated, the value returned by a command is that of the last simple-command executed

 in the command.

 for vname [in word ...] ;do list ;done

 Each time a for command is executed, vname is set to the next word taken

 from the in word list. If in word ... is omitted, then the for command ex?

 ecutes the do list once for each positional parameter that is set starting

 from 1 (see Parameter Expansion below). Execution ends when there are no

 more words in the list.

 for (([expr1] ; [expr2] ; [expr3])) ;do list ;done

 The arithmetic expression expr1 is evaluated first (see Arithmetic evalua?

 tion below). The arithmetic expression expr2 is repeatedly evaluated until

 it evaluates to zero and when non-zero, list is executed and the arithmetic

 expression expr3 evaluated. If any expression is omitted, then it behaves

 as if it evaluated to 1.

 select vname [in word ...] ;do list ;done

 A select command prints on standard error (file descriptor 2) the set of

 words, each preceded by a number. If in word ... is omitted, then the po?

 sitional parameters starting from 1 are used instead (see Parameter Expan?

 sion below). The PS3 prompt is printed and a line is read from the standard

 input. If this line consists of the number of one of the listed words, then

 the value of the variable vname is set to the word corresponding to this

 number. If this line is empty, the selection list is printed again. Other? Page 3/82

 wise the value of the variable vname is set to null. The contents of the

 line read from standard input is saved in the variable REPLY. The list is

 executed for each selection until a break or end-of-file is encountered. If

 the REPLY variable is set to null by the execution of list, then the selec?

 tion list is printed before displaying the PS3 prompt for the next selec?

 tion.

 case word in [[(]pattern [? pattern] ...) list ;;] ... esac

 A case command executes the list associated with the first pattern that

 matches word. The form of the patterns is the same as that used for file-

 name generation (see File Name Generation below). The ;; operator causes

 execution of case to terminate. If ;& is used in place of ;; the next sub?

 sequent list, if any, is executed.

 if list ;then list [;elif list ;then list] ... [;else list] ;fi

 The list following if is executed and, if it returns a zero exit status, the

 list following the first then is executed. Otherwise, the list following

 elif is executed and, if its value is zero, the list following the next then

 is executed. Failing each successive elif list, the else list is executed.

 If the if list has non-zero exit status and there is no else list, then the

 if command returns a zero exit status.

 while list ;do list ;done

 until list ;do list ;done

 A while command repeatedly executes the while list and, if the exit status

 of the last command in the list is zero, executes the do list; otherwise the

 loop terminates. If no commands in the do list are executed, then the while

 command returns a zero exit status; until may be used in place of while to

 negate the loop termination test.

 ((expression))

 The expression is evaluated using the rules for arithmetic evaluation de?

 scribed below. If the value of the arithmetic expression is non-zero, the

 exit status is 0, otherwise the exit status is 1.

 (list)

 Execute list in a separate environment. Note, that if two adjacent open

 parentheses are needed for nesting, a space must be inserted to avoid evalu? Page 4/82

 ation as an arithmetic command as described above.

 { list;}

 list is simply executed. Note that unlike the metacharacters (and), { and

 } are reserved words and must occur at the beginning of a line or after a ;

 in order to be recognized.

 [[expression]]

 Evaluates expression and returns a zero exit status when expression is true.

 See Conditional Expressions below, for a description of expression.

 function varname { list ;}

 varname () { list ;}

 Define a function which is referenced by varname. A function whose varname

 contains a . is called a discipline function and the portion of the varname

 preceding the last . must refer to an existing variable. The body of the

 function is the list of commands between { and }. A function defined with

 the function varname syntax can also be used as an argument to the . spe?

 cial built-in command to get the equivalent behavior as if the varname()

 syntax were used to define it. (See Functions below.)

 namespace varname { list ;}

 Defines or uses the name space identifier and runs the commands in list in

 this name space. (See Name Spaces below.)

 & [name [arg...]]

 Causes subsequent list commands terminated by & to be placed in the back?

 ground job pool name. If name is omitted a default unnamed pool is used.

 Commands in a named background pool may be executed remotely.

 time [pipeline]

 If pipeline is omitted the user and system time for the current shell and

 completed child processes is printed on standard error. Otherwise, pipeline

 is executed and the elapsed time as well as the user and system time are

 printed on standard error. The TIMEFORMAT variable may be set to a format

 string that specifies how the timing information should be displayed. See

 Shell Variables below for a description of the TIMEFORMAT variable.

 The following reserved words are recognized as reserved only when they are the

 first word of a command and are not quoted: Page 5/82

 if then else elif fi case esac for while until do done { } function select time [[

]] !

 Variable Assignments.

 One or more variable assignments can start a simple command or can be arguments to

 the typeset, enum, export, or readonly special built-in commands as well as to

 other declaration commands created as types. The syntax for an assignment is of

 the form:

 varname=word

 varname[word]=word

 No space is permitted between varname and the = or between = and word.

 varname=(assign_list)

 No space is permitted between varname and the =. The variable varname is

 unset before the assignment. An assign_list can be one of the following:

 word ...

 Indexed array assignment.

 [word]=word ...

 Associative array assignment. If preceded by typeset -a this

 will create an indexed array instead.

 assignment ...

 Compound variable assignment. This creates a compound vari?

 able varname with sub-variables of the form varname.name,

 where name is the name portion of assignment. The value of

 varname will contain all the assignment elements. Additional

 assignments made to sub-variables of varname will also be

 displayed as part of the value of varname. If no assignments

 are specified, varname will be a compound variable allowing

 subsequence child elements to be defined.

 typeset [options] assignment ...

 Nested variable assignment. Multiple assignments can be

 specified by separating each of them with a ;. The previous

 value is unset before the assignment. Other declaration com?

 mands such as readonly, enum, and other declaration commands

 can be used in place of typeset. Page 6/82

 . filename

 Include the assignment commands contained in filename.

 In addition, a += can be used in place of the = to signify adding to or appending

 to the previous value. When += is applied to an arithmetic type, word is evaluated

 as an arithmetic expression and added to the current value. When applied to a

 string variable, the value defined by word is appended to the value. For compound

 assignments, the previous value is not unset and the new values are appended to the

 current ones provided that the types are compatible.

 The right hand side of a variable assignment undergoes all the expansion listed be?

 low except word splitting, brace expansion, and file name generation. When the

 left hand side is an assignment is a compound variable and the right hand is the

 name of a compound variable, the compound variable on the right will be copied or

 appended to the compound variable on the left.

 Comments.

 A word beginning with # causes that word and all the following characters up to a

 new-line to be ignored.

 Aliasing.

 The first word of each command is replaced by the text of an alias if an alias for

 this word has been defined. An alias name consists of any number of characters ex?

 cluding metacharacters, quoting characters, file expansion characters, parameter

 expansion and command substitution characters, the characters / and =. The re?

 placement string can contain any valid shell script including the metacharacters

 listed above. The first word of each command in the replaced text, other than any

 that are in the process of being replaced, will be tested for aliases. If the last

 character of the alias value is a blank then the word following the alias will also

 be checked for alias substitution. Aliases can be used to redefine built-in com?

 mands but cannot be used to redefine the reserved words listed above. Aliases can

 be created and listed with the alias command and can be removed with the unalias

 command.

 Aliasing is performed when scripts are read, not while they are executed. There?

 fore, for an alias to take effect, the alias definition command has to be executed

 before the command which references the alias is read.

 The following aliases are compiled into the shell but can be unset or redefined: Page 7/82

 autoload=?typeset -fu?

 bool=?_Bool?

 command=?command ?

 compound=?typeset -C?

 fc=hist

 float=?typeset -lE?

 functions=?typeset -f?

 hash=?alias -t --?

 history=?hist -l?

 integer=?typeset -li?

 nameref=?typeset -n?

 nohup=?nohup ?

 r=?hist -s?

 redirect=?command exec?

 source=?command .?

 stop=?kill -s STOP?

 suspend=?kill -s STOP "$$"?

 type=?whence -v?

 Tilde Substitution.

 After alias substitution is performed, each word is checked to see if it begins

 with an unquoted ?. For tilde substitution, word also refers to the word portion

 of parameter expansion (see Parameter Expansion below). If it does, then the word

 up to a / is checked to see if it matches a user name in the password database (See

 getpwname(3).) If a match is found, the ? and the matched login name are replaced

 by the login directory of the matched user. If no match is found, the original

 text is left unchanged. A ? by itself, or in front of a /, is replaced by $HOME.

 A ? followed by a + or - is replaced by the value of $PWD and $OLDPWD respectively.

 A ? followed by {fd} where fd is a file descriptor number or the name of a variable

 whose value is a file descriptor, is replaced by a string that is the equivalent to

 the path name of the file or directory corresponding to this file descriptor.

 In addition, when expanding a variable assignment, tilde substitution is attempted

 when the value of the assignment begins with a ?, and when a ? appears after a :.

 The : also terminates a ? login name. Page 8/82

 Command Substitution.

 The standard output from a command list enclosed in parentheses preceded by a dol?

 lar sign ($(list)), or in a brace group preceded by a dollar sign (${ list;}),

 or in a pair of grave accents (``) may be used as part or all of a word; trailing

 new-lines are removed. In the second case, the { and } are treated as a reserved

 words so that { must be followed by a blank and } must appear at the beginning of

 the line or follow a ;. In the third (obsolete) form, the string between the

 quotes is processed for special quoting characters before the command is executed

 (see Quoting below). The command substitution $(cat file) can be replaced by the

 equivalent but faster $(<file). The command substitution $(n<#) will expand to the

 current byte offset for file descriptor n. Except for the second form, the command

 list is run in a subshell so that no side effects are possible. For the second

 form, the final } will be recognized as a reserved word after any token.

 Arithmetic Substitution.

 An arithmetic expression enclosed in double parentheses preceded by a dollar sign (

 $(())) is replaced by the value of the arithmetic expression within the double

 parentheses.

 Process Substitution.

 Each command argument of the form <(list) or >(list) will run process list asyn?

 chronously connected to some file in /dev/fd if this directory exists, or else a

 fifo a temporary directory. The name of this file will become the argument to the

 command. If the form with > is selected then writing on this file will provide in?

 put for list. If < is used, then the file passed as an argument will contain the

 output of the list process. For example,

 paste <(cut -f1 file1) <(cut -f3 file2) | tee >(process1) >(process2)

 cuts fields 1 and 3 from the files file1 and file2 respectively, pastes the results

 together, and sends it to the processes process1 and process2, as well as putting

 it onto the standard output. Note that the file, which is passed as an argument to

 the command, is a UNIX pipe(2) so programs that expect to lseek(2) on the file will

 not work.

 Process substitution of the form <(list) can also be used with the < redirection

 operator which causes the output of list to be standard input or the input for

 whatever file descriptor is specified. Page 9/82

 Parameter Expansion.

 A parameter is a variable, one or more digits, or any of the characters *, @, #, ?,

 -, $, and !. A variable is denoted by a vname. To create a variable whose vname

 contains a ., a variable whose vname consists of everything before the last . must

 already exist. A variable has a value and zero or more attributes. Variables can

 be assigned values and attributes by using the typeset special built-in command.

 The attributes supported by the shell are described later with the typeset special

 built-in command. Exported variables pass values and attributes to the environ?

 ment.

 The shell supports both indexed and associative arrays. An element of an array

 variable is referenced by a subscript. A subscript for an indexed array is denoted

 by an arithmetic expression (see Arithmetic evaluation below) between a [and a].

 To assign values to an indexed array, use vname=(value ...) or set -A vname value

 The value of all non-negative subscripts must be in the range of 0 through

 4,194,303. A negative subscript is treated as an offset from the maximum current

 index +1 so that -1 refers to the last element. Indexed arrays can be declared

 with the -a option to typeset. Indexed arrays need not be declared. Any reference

 to a variable with a valid subscript is legal and an array will be created if nec?

 essary.

 An associative array is created with the -A option to typeset. A subscript for an

 associative array is denoted by a string enclosed between [and].

 Referencing any array without a subscript is equivalent to referencing the array

 with subscript 0.

 The value of a variable may be assigned by writing:

 vname=value [vname=value] ...

 or

 vname[subscript]=value [vname[subscript]=value] ...

 Note that no space is allowed before or after the =.

 Attributes assigned by the typeset special built-in command apply to all elements

 of the array. An array element can be a simple variable, a compound variable or an

 array variable. An element of an indexed array can be either an indexed array or

 an associative array. An element of an associative array can also be either. To

 refer to an array element that is part of an array element, concatenate the sub? Page 10/82

 script in brackets. For example, to refer to the foobar element of an associative

 array that is defined as the third element of the indexed array, use

 ${vname[3][foobar]}

 A nameref is a variable that is a reference to another variable. A nameref is cre?

 ated with the -n attribute of typeset. The value of the variable at the time of

 the typeset command becomes the variable that will be referenced whenever the

 nameref variable is used. The name of a nameref cannot contain a .. When a vari?

 able or function name contains a ., and the portion of the name up to the first .

 matches the name of a nameref, the variable referred to is obtained by replacing

 the nameref portion with the name of the variable referenced by the nameref. If a

 nameref is used as the index of a for loop, a name reference is established for

 each item in the list. A nameref provides a convenient way to refer to the vari?

 able inside a function whose name is passed as an argument to a function. For ex?

 ample, if the name of a variable is passed as the first argument to a function, the

 command

 typeset -n var=$1

 inside the function causes references and assignments to var to be references and

 assignments to the variable whose name has been passed to the function.

 If any of the floating point attributes, -E, -F, or -X, or the integer attribute,

 -i, is set for vname, then the value is subject to arithmetic evaluation as de?

 scribed below.

 Positional parameters, parameters denoted by a number, may be assigned values with

 the set special built-in command. Parameter $0 is set from argument zero when the

 shell is invoked.

 The character $ is used to introduce substitutable parameters.

 ${parameter}

 The shell reads all the characters from ${ to the matching } as part of the

 same word even if it contains braces or metacharacters. The value, if any,

 of the parameter is substituted. The braces are required when parameter is

 followed by a letter, digit, or underscore that is not to be interpreted as

 part of its name, when the variable name contains a .. The braces are also

 required when a variable is subscripted unless it is part of an Arithmetic

 Expression or a Conditional Expression. If parameter is one or more digits Page 11/82

 then it is a positional parameter. A positional parameter of more than one

 digit must be enclosed in braces. If parameter is * or @, then all the po?

 sitional parameters, starting with $1, are substituted (separated by a field

 separator character). If an array vname with last subscript * @, or for in?

 dex arrays of the form sub1 .. sub2. is used, then the value for each of

 the elements between sub1 and sub2 inclusive (or all elements for * and @)

 is substituted, separated by the first character of the value of IFS.

 ${#parameter}

 If parameter is * or @, the number of positional parameters is substituted.

 Otherwise, the length of the value of the parameter is substituted.

 ${#vname[*]}

 ${#vname[@]}

 The number of elements in the array vname is substituted.

 ${@vname}

 Expands to the type name (See Type Variables below) or attributes of the

 variable referred to by vname.

 ${$parameter}

 If $parameter expands to the name of a variable, this expands to the value

 of that variable. Otherwise, it expands to the empty string. It is unde?

 fined for special parameters.

 ${!vname}

 Expands to the name of the variable referred to by vname. This will be

 vname except when vname is a name reference.

 ${!vname[subscript]}

 Expands to name of the subscript unless subscript is *, @. or of the form

 sub1 .. sub2. When subscript is *, the list of array subscripts for vname

 is generated. For a variable that is not an array, the value is 0 if the

 variable is set. Otherwise it is null. When subscript is @, same as above,

 except that when used in double quotes, each array subscript yields a sepa?

 rate argument. When subscript is of the form sub1 .. sub2 it expands to

 the list of subscripts between sub1 and sub2 inclusive using the same quot?

 ing rules as @.

 ${!prefix*} Page 12/82

 Expands to the names of the variables whose names begin with prefix.

 ${parameter:-word}

 If parameter is set and is non-null then substitute its value; otherwise

 substitute word.

 ${parameter:=word}

 If parameter is not set or is null then set it to word; the value of the pa?

 rameter is then substituted. Positional parameters may not be assigned to

 in this way.

 ${parameter:?word}

 If parameter is set and is non-null then substitute its value; otherwise,

 print word and exit from the shell (if not interactive). If word is omitted

 then a standard message is printed.

 ${parameter:+word}

 If parameter is set and is non-null then substitute word; otherwise substi?

 tute nothing.

 In the above, word is not evaluated unless it is to be used as the substituted

 string, so that, in the following example, pwd is executed only if d is not set or

 is null:

 print ${d:-$(pwd)}

 If the colon (:) is omitted from the above expressions, then the shell only

 checks whether parameter is set or not.

 ${parameter:offset:length}

 ${parameter:offset}

 Expands to the portion of the value of parameter starting at the character

 (counting from 0) determined by expanding offset as an arithmetic expression

 and consisting of the number of characters determined by the arithmetic ex?

 pression defined by length. In the second form, the remainder of the value

 is used. If A negative offset counts backwards from the end of parameter.

 Note that one or more blanks is required in front of a minus sign to prevent

 the shell from interpreting the operator as :-. If parameter is * or @, or

 is an array name indexed by * or @, then offset and length refer to the ar?

 ray index and number of elements respectively. A negative offset is taken

 relative to one greater than the highest subscript for indexed arrays. The Page 13/82

 order for associate arrays is unspecified.

 ${parameter#pattern}

 ${parameter##pattern}

 If the shell pattern matches the beginning of the value of parameter, then

 the value of this expansion is the value of the parameter with the matched

 portion deleted; otherwise the value of this parameter is substituted. In

 the first form the smallest matching pattern is deleted and in the second

 form the largest matching pattern is deleted. When parameter is @, *, or an

 array variable with subscript @ or *, the substring operation is applied to

 each element in turn.

 ${parameter%pattern}

 ${parameter%%pattern}

 If the shell pattern matches the end of the value of parameter, then the

 value of this expansion is the value of the parameter with the matched part

 deleted; otherwise substitute the value of parameter. In the first form the

 smallest matching pattern is deleted and in the second form the largest

 matching pattern is deleted. When parameter is @, *, or an array variable

 with subscript @ or *, the substring operation is applied to each element in

 turn.

 ${parameter/pattern/string}

 ${parameter//pattern/string}

 ${parameter/#pattern/string}

 ${parameter/%pattern/string}

 Expands parameter and replaces the longest match of pattern with the given

 string. Each occurrence of \n in string is replaced by the portion of pa?

 rameter that matches the n-th sub-pattern. In the first form, only the

 first occurrence of pattern is replaced. In the second form, each match for

 pattern is replaced by the given string. The third form restricts the pat?

 tern match to the beginning of the string while the fourth form restricts

 the pattern match to the end of the string. When string is null, the pat?

 tern will be deleted and the / in front of string may be omitted. When pa?

 rameter is @, *, or an array variable with subscript @ or *, the substitu?

 tion operation is applied to each element in turn. In this case, the string Page 14/82

 portion of word will be re-evaluated for each element.

 ${parameter^pattern}

 ${parameter^^pattern}

 ${parameter,pattern}

 ${parameter,,pattern}

 Case modification. This expansion modifies the case of alphabetic charac?

 ters in parameter. The pattern is expanded to produce a pattern just as

 in pathname expansion. The ^ operator converts lowercase characters match?

 ing pattern to uppercase. The , operator converts matching uppercase char?

 acters to lowercase. The ^^ and ,, expansions convert all matched char?

 acter in the expanded value. The ^ and , expansions match and convert

 only the first character in the expanded value. If pattern is omitted it

 is treated like a ?, which matches every character. If parameter is @ or *,

 or an array subscripted by @ or *, the case modification operation is ap?

 plied to each element.

 The following parameters are automatically set by the shell:

 # The number of positional parameters in decimal.

 - Options supplied to the shell on invocation or by the set command.

 ? The decimal value returned by the last executed command.

 $ The process number of this shell.

 _ Initially, the value of _ is an absolute pathname of the shell or

 script being executed as passed in the environment. Subsequently it

 is assigned the last argument of the previous command. This parame?

 ter is not set for commands which are asynchronous. This parameter

 is also used to hold the name of the matching MAIL file when checking

 for mail. While defining a compound variable or a type, _ is ini?

 tialized as a reference to the compound variable or type. When a

 discipline function is invoked, _ is initialized as a reference to

 the variable associated with the call to this function. Finally when

 _ is used as the name of the first variable of a type definition, the

 new type is derived from the type of the first variable (See Type

 Variables below.).

 ! The process id or the pool name and job number of the last background Page 15/82

 command invoked or the most recent job put in the background with the

 bg built-in command. Background jobs started in a named pool will be

 in the form pool.number where pool is the pool name and number is the

 job number within that pool.

 .sh.command

 When processing a DEBUG trap, this variable contains the current com?

 mand line that is about to run.

 .sh.edchar

 This variable contains the value of the keyboard character (or se?

 quence of characters if the first character is an ESC, ascii 033)

 that has been entered when processing a KEYBD trap (see Key Bindings

 below). If the value is changed as part of the trap action, then the

 new value replaces the key (or key sequence) that caused the trap.

 .sh.edcol

 The character position of the cursor at the time of the most recent

 KEYBD trap.

 .sh.edmode

 The value is set to ESC when processing a KEYBD trap while in vi in?

 sert mode. (See Vi Editing Mode below.) Otherwise, .sh.edmode is

 null when processing a KEYBD trap.

 .sh.edtext

 The characters in the input buffer at the time of the most recent

 KEYBD trap. The value is null when not processing a KEYBD trap.

 .sh.file

 The pathname of the file than contains the current command.

 .sh.fun

 The name of the current function that is being executed.

 .sh.level

 Set to the current function depth. This can be changed inside a DE?

 BUG trap and will set the context to the specified level.

 .sh.lineno

 Set during a DEBUG trap to the line number for the caller of each

 function. Page 16/82

 .sh.match

 An indexed array which stores the most recent match and sub-pattern

 matches after conditional pattern matches that match and after vari?

 ables expansions using the operators #, %, or /. The 0-th element

 stores the complete match and the i-th. element stores the i-th sub?

 match. For // the array is two dimensional with the first subscript

 indicating the most recent match and sub-pattern match and the second

 script indicating which match with 0 representing the first match.

 The .sh.match variable becomes unset when the variable that has ex?

 panded is assigned a new value.

 .sh.math

 Used for defining arithmetic functions (see Arithmetic evaluation be?

 low). and stores the list of user defined arithmetic functions.

 .sh.name

 Set to the name of the variable at the time that a discipline func?

 tion is invoked.

 .sh.op_astbin

 The directory where several shell built-in commands are bound to.

 The default is /opt/ast/bin. When the value is /bin, then builtins

 will be bound to /bin or /usr/bin depending on where the executable

 is found. This variable can be set by including it in the SH_OPTIONS

 variable.

 .sh.pgrp

 The current process group of this shell.

 .sh.pwdfd

 The file descriptor number for the present working directory.

 .sh.sig

 Set when executing a trap to the information contained in the sig?

 info_t structure (See siginfo(2) for a description of this struc?

 ture.)

 .sh.subscript

 Set to the name subscript of the variable at the time that a disci?

 pline function is invoked. Page 17/82

 .sh.subshell

 The current depth for subshells and command substitution.

 .sh.value

 Set to the value of the variable at the time that the set or append

 discipline function is invoked. When a user defined arithmetic func?

 tion is invoked, the value of .sh.value is saved and .sh.value is set

 to long double precision floating point. .sh.value is restored when

 the function returns.

 .sh.version

 Set to a value that identifies the version of this shell.

 KSH_VERSION

 A name reference to .sh.version.

 LINENO The current line number within the script or function being executed.

 OLDPWD The previous working directory set by the cd command.

 OPTARG The value of the last option argument processed by the getopts built-

 in command.

 OPTIND The index of the last option argument processed by the getopts built-

 in command.

 PPID The process number of the parent of the shell.

 PWD The present working directory set by the cd command.

 RANDOM Each time this variable is referenced, a random integer, uniformly

 distributed between 0 and 32767, is generated. The sequence of ran?

 dom numbers can be initialized by assigning a numeric value to RAN?

 DOM.

 REPLY This variable is set by the select statement and by the read built-in

 command when no arguments are supplied.

 SECONDS

 Each time this variable is referenced, the number of seconds since

 shell invocation is returned. If this variable is assigned a value,

 then the value returned upon reference will be the value that was as?

 signed plus the number of seconds since the assignment.

 SHLVL An integer variable the is incremented each time the shell is invoked

 and is exported. If SHLVL is not in the environment when the shell Page 18/82

 is invoked, it is set to 1.

 The following variables are used by the shell:

 CDPATH The search path for the cd command.

 COLUMNS

 If this variable is set, the value is used to define the width of the

 edit window for the shell edit modes and for printing select lists.

 EDITOR If the VISUAL variable is not set, the value of this variable will be

 checked for the patterns as described with VISUAL below and the cor?

 responding editing option (see Special Command set below) will be

 turned on.

 ENV If this variable is set, then parameter expansion, command substitu?

 tion, and arithmetic substitution are performed on the value to gen?

 erate the pathname of the script that will be executed when the shell

 is invoked interactively (see Invocation below). This file is typi?

 cally used for alias and function definitions. The default value is

 $HOME/.kshrc. On systems that support a system wide /etc/ksh.kshrc

 initialization file, if the filename generated by the expansion of

 ENV begins with /./ or ././ the system wide initialization file will

 not be executed.

 FCEDIT Obsolete name for the default editor name for the hist command.

 FCEDIT is not used when HISTEDIT is set.

 FIGNORE

 A pattern that defines the set of filenames that will be ignored when

 performing filename matching.

 FPATH The search path for function definitions. The directories in this

 path are searched for a file with the same name as the function or

 command when a function with the -u attribute is referenced and when

 a command is not found. If an executable file with the name of that

 command is found, then it is read and executed in the current envi?

 ronment. Unlike PATH, the current directory must be represented ex?

 plicitly by . rather than by adjacent : characters or a beginning or

 ending :.

 HISTCMD Page 19/82

 Number of the current command in the history file.

 HISTEDIT

 Name for the default editor name for the hist command.

 HISTFILE

 If this variable is set when the shell is invoked, then the value is

 the pathname of the file that will be used to store the command his?

 tory (see Command Re-entry below).

 HISTSIZE

 If this variable is set when the shell is invoked, then the number of

 previously entered commands that are accessible by this shell will be

 greater than or equal to this number. The default is 512.

 HOME The default argument (home directory) for the cd command.

 IFS Internal field separators, normally space, tab, and new-line that are

 used to separate the results of command substitution or parameter ex?

 pansion and to separate fields with the built-in command read. The

 first character of the IFS variable is used to separate arguments for

 the "$*" substitution (see Quoting below). Each single occurrence of

 an IFS character in the string to be split, that is not in the iss?

 pace character class, and any adjacent characters in IFS that are in

 the isspace character class, delimit a field. One or more characters

 in IFS that belong to the isspace character class, delimit a field.

 In addition, if the same isspace character appears consecutively in?

 side IFS, this character is treated as if it were not in the isspace

 class, so that if IFS consists of two tab characters, then two adja?

 cent tab characters delimit a null field.

 JOBMAX This variable defines the maximum number running background jobs that

 can run at a time. When this limit is reached, the shell will wait

 for a job to complete before staring a new job.

 LANG This variable determines the locale category for any category not

 specifically selected with a variable starting with LC_ or LANG.

 LC_ALL This variable overrides the value of the LANG variable and any other

 LC_ variable.

 LC_COLLATE Page 20/82

 This variable determines the locale category for character collation

 information.

 LC_CTYPE

 This variable determines the locale category for character handling

 functions. It determines the character classes for pattern matching

 (see File Name Generation below).

 LC_NUMERIC

 This variable determines the locale category for the decimal point

 character.

 LINES If this variable is set, the value is used to determine the column

 length for printing select lists. Select lists will print vertically

 until about two-thirds of LINES lines are filled.

 MAIL If this variable is set to the name of a mail file and the MAILPATH

 variable is not set, then the shell informs the user of arrival of

 mail in the specified file.

 MAILCHECK

 This variable specifies how often (in seconds) the shell will check

 for changes in the modification time of any of the files specified by

 the MAILPATH or MAIL variables. The default value is 600 seconds.

 When the time has elapsed the shell will check before issuing the

 next prompt.

 MAILPATH

 A colon (:) separated list of file names. If this variable is set,

 then the shell informs the user of any modifications to the specified

 files that have occurred within the last MAILCHECK seconds. Each

 file name can be followed by a ? and a message that will be printed.

 The message will undergo parameter expansion, command substitution,

 and arithmetic substitution with the variable $_ defined as the name

 of the file that has changed. The default message is you have mail

 in $_.

 PATH The search path for commands (see Execution below). The user may not

 change PATH if executing under rksh (except in .profile).

 PS1 The value of this variable is expanded for parameter expansion, com? Page 21/82

 mand substitution, and arithmetic substitution to define the primary

 prompt string which by default is ``$ ''. The character ! in the

 primary prompt string is replaced by the command number (see Command

 Re-entry below). Two successive occurrences of ! will produce a

 single ! when the prompt string is printed.

 PS2 Secondary prompt string, by default ``> ''.

 PS3 Selection prompt string used within a select loop, by default ``#?

 ''.

 PS4 The value of this variable is expanded for parameter evaluation, com?

 mand substitution, and arithmetic substitution and precedes each line

 of an execution trace. By default, PS4 is ``+ ''. In addition when

 PS4 is unset, the execution trace prompt is also ``+ ''.

 SH_OPTIONS

 The value consists of blank separated name=value words. For each

 name that is the name of a known option the variable .sh.opt_name is

 assigned value. Currently the only valid option name is astbin.

 SHELL The pathname of the shell is kept in the environment. At invocation,

 if the basename of this variable is rsh, rksh, or krsh, then the

 shell becomes restricted.

 TIMEFORMAT

 The value of this parameter is used as a format string specifying how

 the timing information for pipelines prefixed with the time reserved

 word should be displayed. The % character introduces a format se?

 quence that is expanded to a time value or other information. The

 format sequences and their meanings are as follows.

 %% A literal %.

 %[p][l]R The elapsed time in seconds.

 %[p][l]U The number of CPU seconds spent in user mode.

 %[p][l]S The number of CPU seconds spent in system mode.

 %[p][l]C The total number of CPU seconds; i.e., the sum of the time

 spent in user plus system mode.

 %P The CPU percentage (i.e., CPU utilization), computed as C /

 R. Page 22/82

 The brackets denote optional portions. The optional p is a digit

 specifying the precision, the number of fractional digits after a

 decimal point. A value of 0 causes no decimal point or fraction to

 be output. At most three places after the decimal point can be dis?

 played; values of p greater than 3 are treated as 3. If p is not

 specified, the value 3 is used.

 The optional l specifies a longer format, including hours if greater

 than zero, minutes, and seconds of the form HHhMMmSS.FFs. The value

 of p determines whether or not the fraction is included.

 All other characters are output without change and a trailing newline

 is added. If unset, the default value,

 $'\nreal\t%2lR\nuser\t%2lU\nsys%2lS', is used. If the value is null,

 no timing information is displayed.

 TMOUT If set to a value greater than zero, TMOUT will be the default time?

 out value for the read built-in command. The select compound command

 terminates after TMOUT seconds when input is from a terminal. Other?

 wise, the shell will terminate if a line is not entered within the

 prescribed number of seconds while reading from a terminal. (Note

 that the shell can be compiled with a maximum bound for this value

 which cannot be exceeded.)

 VISUAL If the value of this variable matches the pattern *[Vv][Ii]*, then

 the vi option (see Special Command set below) is turned on. If the

 value matches the pattern *gmacs* , the gmacs option is turned on.

 If the value matches the pattern *macs*, then the emacs option will

 be turned on. The value of VISUAL overrides the value of EDITOR.

 The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK, FCEDIT,

 TMOUT and IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell

 (although HOME is set by login(1)). On some systems MAIL and SHELL are also set by

 login(1).

 Field Splitting.

 After parameter expansion and command substitution, the results of substitutions

 are scanned for the field separator characters (those found in IFS) and split into

 distinct fields where such characters are found. Explicit null fields ("" or ??) Page 23/82

 are retained. Implicit null fields (those resulting from parameters that have no

 values or command substitutions with no output) are removed.

 If the braceexpand (-B) option is set then each of the fields resulting from IFS

 are checked to see if they contain one or more of the brace patterns {*,*},

 {l1..l2} , {n1..n2} , {n1..n2% fmt} , {n1..n2 ..n3} , or {n1..n2 ..n3%fmt} , where

 * represents any character, l1,l2 are letters and n1,n2,n3 are signed numbers and

 fmt is a format specified as used by printf. In each case, fields are created by

 prepending the characters before the { and appending the characters after the } to

 each of the strings generated by the characters between the { and }. The resulting

 fields are checked to see if they have any brace patterns.

 In the first form, a field is created for each string between { and ,, between ,

 and ,, and between , and }. The string represented by * can contain embedded

 matching { and } without quoting. Otherwise, each { and } with * must be quoted.

 In the seconds form, l1 and l2 must both be either upper case or both be lower case

 characters in the C locale. In this case a field is created for each character

 from l1 thru l2.

 In the remaining forms, a field is created for each number starting at n1 and con?

 tinuing until it reaches n2 incrementing n1 by n3. The cases where n3 is not spec?

 ified behave as if n3 where 1 if n1<=n2 and -1 otherwise. If forms which specify

 %fmt any format flags, widths and precisions can be specified and fmt can end in

 any of the specifiers cdiouxX. For example, {a,z}{1..5..3%02d}{b..c}x expands to

 the 8 fields, a01bx, a01cx, a04bx, a04cx, z01bx, z01cx, z04bx and z4cx.

 File Name Generation.

 Following splitting, each field is scanned for the characters *, ?, (, and [unless

 the -f option has been set. If one of these characters appears, then the word is

 regarded as a pattern. Each file name component that contains any pattern charac?

 ter is replaced with a lexicographically sorted set of names that matches the pat?

 tern from that directory. If no file name is found that matches the pattern, then

 that component of the filename is left unchanged unless the pattern is prefixed

 with ?(N) in which case it is removed as described below. If FIGNORE is set, then

 each file name component that matches the pattern defined by the value of FIGNORE

 is ignored when generating the matching filenames. The names . and .. are also

 ignored. If FIGNORE is not set, the character . at the start of each file name Page 24/82

 component will be ignored unless the first character of the pattern corresponding

 to this component is the character . itself. Note, that for other uses of pattern

 matching the / and . are not treated specially.

 * Matches any string, including the null string. When used for file?

 name expansion, if the globstar option is on, an isolated pattern of

 two adjacent *'s will match all files and zero or more directories

 and subdirectories. If followed by a / then only directories and

 subdirectories will match.

 ? Matches any single character.

 [...] Matches any one of the enclosed characters. A pair of characters

 separated by - matches any character lexically between the pair, in?

 clusive. If the first character following the opening [is a ! or ^

 then any character not enclosed is matched. A - can be included in

 the character set by putting it as the first or last character.

 Within [and], character classes can be specified with the syntax

 [:class:] where class is one of the following classes defined in the

 ANSI-C standard: (Note that word is equivalent to alnum plus the

 character _.)

 alnum alpha blank cntrl digit graph lower print punct space upper

 word xdigit

 Within [and], an equivalence class can be specified with the syntax

 [=c=] which matches all characters with the same primary collation

 weight (as defined by the current locale) as the character c. Within

 [and], [.symbol.] matches the collating symbol symbol.

 A pattern-list is a list of one or more patterns separated from each other with a &

 or ?. A & signifies that all patterns must be matched whereas ? requires that only

 one pattern be matched. Composite patterns can be formed with one or more of the

 following sub-patterns:

 ?(pattern-list)

 Optionally matches any one of the given patterns.

 *(pattern-list)

 Matches zero or more occurrences of the given patterns.

 +(pattern-list) Page 25/82

 Matches one or more occurrences of the given patterns.

 {n}(pattern-list)

 Matches n occurrences of the given patterns.

 {m,n}(pattern-list)

 Matches from m to n occurrences of the given patterns. If m is omit?

 ted, 0 will be used. If n is omitted at least m occurrences will be

 matched.

 @(pattern-list)

 Matches exactly one of the given patterns.

 !(pattern-list)

 Matches anything except one of the given patterns.

 By default, each pattern, or sub-pattern will match the longest string possible

 consistent with generating the longest overall match. If more than one match is

 possible, the one starting closest to the beginning of the string will be chosen.

 However, for each of the above compound patterns a - can be inserted in front of

 the (to cause the shortest match to the specified pattern-list to be used.

 When pattern-list is contained within parentheses, the backslash character \ is

 treated specially even when inside a character class. All ANSI-C character es?

 capes are recognized and match the specified character. In addition the following

 escape sequences are recognized:

 \d Matches any character in the digit class.

 \D Matches any character not in the digit class.

 \s Matches any character in the space class.

 \S Matches any character not in the space class.

 \w Matches any character in the word class.

 \W Matches any character not in the word class.

 A pattern of the form %(pattern-pair(s)) is a sub-pattern that can be used to match

 nested character expressions. Each pattern-pair is a two character sequence which

 cannot contain & or ?. The first pattern-pair specifies the starting and ending

 characters for the match. Each subsequent pattern-pair represents the beginning

 and ending characters of a nested group that will be skipped over when counting

 starting and ending character matches. The behavior is unspecified when the first

 character of a pattern-pair is alpha-numeric except for the following: Page 26/82

 D Causes the ending character to terminate the search for this pattern

 without finding a match.

 E Causes the ending character to be interpreted as an escape character.

 L Causes the ending character to be interpreted as a quote character

 causing all characters to be ignored when looking for a match.

 Q Causes the ending character to be interpreted as a quote character

 causing all characters other than any escape character to be ignored

 when looking for a match.

 Thus, %({}Q"E\), matches characters starting at { until the matching } is found not

 counting any { or } that is inside a double quoted string or preceded by the escape

 character \. Without the {} this pattern matches any C language string.

 Each sub-pattern in a composite pattern is numbered, starting at 1, by the location

 of the (within the pattern. The sequence \n, where n is a single digit and \n

 comes after the n-th. sub-pattern, matches the same string as the sub-pattern it?

 self.

 Finally a pattern can contain sub-patterns of the form ?(options:pattern-list),

 where either options or :pattern-list can be omitted. Unlike the other compound

 patterns, these sub-patterns are not counted in the numbered sub-patterns. :pat?

 tern-list must be omitted for options F, G, N , and V below. If options is

 present, it can consist of one or more of the following:

 + Enable the following options. This is the default.

 - Disable the following options.

 E The remainder of the pattern uses extended regular expression syntax

 like the egrep(1) command.

 F The remainder of the pattern uses fgrep(1) expression syntax.

 G The remainder of the pattern uses basic regular expression syntax

 like the grep(1) command.

 K The remainder of the pattern uses shell pattern syntax. This is the

 default.

 N This is ignored. However, when it is the first letter and is used

 with file name generation, and no matches occur, the file pattern ex?

 pands to the empty string.

 X The remainder of the pattern uses augmented regular expression syntax Page 27/82

 like the xgrep(1) command.

 P The remainder of the pattern uses perl(1) regular expression syntax.

 Not all perl regular expression syntax is currently implemented.

 V The remainder of the pattern uses System V regular expression syntax.

 i Treat the match as case insensitive.

 g File the longest match (greedy). This is the default.

 l Left anchor the pattern. This is the default for K style patterns.

 r Right anchor the pattern. This is the default for K style patterns.

 If both options and :pattern-list are specified, then the options apply only to

 pattern-list. Otherwise, these options remain in effect until they are disabled by

 a subsequent ?(...) or at the end of the sub-pattern containing ?(...).

 Quoting.

 Each of the metacharacters listed earlier (see Definitions above) has a special

 meaning to the shell and causes termination of a word unless quoted. A character

 may be quoted (i.e., made to stand for itself) by preceding it with a \. The pair

 \new-line is removed. All characters enclosed between a pair of single quote marks

 (??) that is not preceded by a $ are quoted. A single quote cannot appear within

 the single quotes. A single quoted string preceded by an unquoted $ is processed

 as an ANSI-C string except for the following:

 \0 Causes the remainder of the string to be ignored.

 \E Equivalent to the escape character (ascii 033),

 \e Equivalent to the escape character (ascii 033),

 \cx Expands to the character control-x.

 \C[.name.]

 Expands to the collating element name.

 Inside double quote marks (""), parameter and command substitution occur and \

 quotes the characters \, `, ", and $. A $ in front of a double quoted string will

 be ignored in the "C" or "POSIX" locale, and may cause the string to be replaced by

 a locale specific string otherwise. The meaning of $* and $@ is identical when not

 quoted or when used as a variable assignment value or as a file name. However,

 when used as a command argument, "$*" is equivalent to "$1d$2d...", where d is the

 first character of the IFS variable, whereas "$@" is equivalent to "$1" "$2"

 Inside grave quote marks (``), \ quotes the characters \, `, and $. If the grave Page 28/82

 quotes occur within double quotes, then \ also quotes the character ".

 The special meaning of reserved words or aliases can be removed by quoting any

 character of the reserved word. The recognition of function names or built-in com?

 mand names listed below cannot be altered by quoting them.

 Arithmetic Evaluation.

 The shell performs arithmetic evaluation for arithmetic substitution, to evaluate

 an arithmetic command, to evaluate an indexed array subscript, and to evaluate ar?

 guments to the built-in commands shift and let. Evaluations are performed using

 double precision floating point arithmetic or long double precision floating point

 for systems that provide this data type. Floating point constants follow the ANSI-

 C programming language floating point conventions. The floating point constants

 Nan and Inf can be use to represent "not a number" and infinity respectively. In?

 teger constants follow the ANSI-C programming language integer constant conventions

 although only single byte character constants are recognized and character casts

 are not recognized. In addition constants can be of the form [base#]n where base

 is a decimal number between two and sixty-four representing the arithmetic base and

 n is a number in that base. The digits above 9 are represented by the lower case

 letters, the upper case letters, @, and _ respectively. For bases less than or

 equal to 36, upper and lower case characters can be used interchangeably.

 An arithmetic expression uses the same syntax, precedence, and associativity of ex?

 pression as the C language. All the C language operators that apply to floating

 point quantities can be used. In addition, the operator ** can be used for expo?

 nentiation. It has higher precedence than multiplication and is left associative.

 In addition, when the value of an arithmetic variable or sub-expression can be rep?

 resented as a long integer, all C language integer arithmetic operations can be

 performed. Variables can be referenced by name within an arithmetic expression

 without using the parameter expansion syntax. When a variable is referenced, its

 value is evaluated as an arithmetic expression.

 Any of the following math library functions that are in the C math library can be

 used within an arithmetic expression:

 abs acos acosh asin asinh atan atan2 atanh cbrt ceil copysign cos cosh erf erfc exp

 exp2 expm1 fabs fdim finite floor fma fmax fmin fmod hypot ilogb int isfinite sinf

 isnan isnormal issubnormal issubordered iszero j0 j1 jn lgamma log log10 log2 logb Page 29/82

 nearbyint pow remainder rint round scanb signbit sin sinh sqrt tan tanh tgamma

 trunc y0 y1 yn In addition, arithmetic functions can be defined as shell functions

 with a variant of the function name syntax,

 function .sh.math.name ident ... { list ;}

 where name is the function name used in the arithmetic expression. If the

 calling argument corresponding to ident is the name of an array variable,

 then ident is a name reference to this array. Otherwise, ident is a refer?

 ence to long double precision floating point variable containing the value

 from the caller. The value of .sh.value when the function returns is the

 value of this function. User defined functions can take up to 3 arguments

 and override C math library functions.

 An internal representation of a variable as a double precision floating point can

 be specified with the -E [n], -F [n], or -X [n] option of the typeset special

 built-in command. The -E option causes the expansion of the value to be repre?

 sented using scientific notation when it is expanded. The optional option argument

 n defines the number of significant figures. The -F option causes the expansion to

 be represented as a floating decimal number when it is expanded. The -X option

 cause the expansion to be represented using the %a format defined by ISO C-99. The

 optional option argument n defines the number of places after the decimal (or

 radix) point in this case.

 An internal integer representation of a variable can be specified with the -i [n]

 option of the typeset special built-in command. The optional option argument n

 specifies an arithmetic base to be used when expanding the variable. If you do not

 specify an arithmetic base, base 10 will be used.

 Arithmetic evaluation is performed on the value of each assignment to a variable

 with the -E, -F, -X, or -i attribute. Assigning a floating point number to a vari?

 able whose type is an integer causes the fractional part to be truncated.

 Inside an arithmetic expression, all integer and floating point variables can be

 following by .MIN, .MAX, or .DIG to give the maximum value, minimum value, or num?

 ber of significant digits for variables of that type.

 Floating point variables can be also followed by .INT_MAX or .INT_MIN to give the

 largest or smallest integers represented by that type.

 Floating point variables can also be followed by .EPSILON to give the distance to Page 30/82

 the next floating point number of that type. Floating point variables can be fol?

 lowed by MAX_10_EXP to give the maximum base 10 exponent that can be represented by

 that type.

 Inside an arithmetic expression, the following constants are recongnized and are of

 type typeset-lE.

 NaN Not a number. It is case insensitive.

 Inf Infinity. It is case insensitive.

 E

 PI

 1_PI 1.0/PI.

 2_PI 2.0/PI.

 PI_2 PI/2.0

 PI_4 PI/4.0.

 SQRTPI sqrt(PI).

 SQRT2 sqrt(2.0).

 SQRT1_2

 sqrt(1./2.)

 LOGE log(E)

 LOG10E log10(E)

 LN2 log(2.0)

 LOG2E log2(E)

 Array Sorting.

 The -s option of the set built-in command can be used to sort its arguments or to

 sort indexed arrays, indexed arrays of compound variables, and indexed arrays of

 types (see "Type Variables" section below). By default the sort order is defined

 by the current locale. For compound variables and for types, the -K option for set

 can be followed by a comma separated list of sub-fields to sort on. Each field can

 be followed by a : and the letter n for numerical sorting and/or r for reverse

 sorting. For an plain indexed array the -K option can be followed by :n and :r

 for numerical or reverse sorting.

 Prompting.

 When used interactively, the shell prompts with the value of PS1 after expanding it

 for parameter expansion, command substitution, and arithmetic substitution, before Page 31/82

 reading a command. In addition, each single ! in the prompt is replaced by the

 command number. A !! is required to place ! in the prompt. If at any time a

 new-line is typed and further input is needed to complete a command, then the sec?

 ondary prompt (i.e., the value of PS2) is issued.

 Conditional Expressions.

 A conditional expression is used with the [[compound command to test attributes of

 files and to compare strings. Field splitting and file name generation are not

 performed on the words between [[and]]. Each expression can be constructed from

 one or more of the following unary or binary expressions:

 string True, if string is not null.

 -a file

 Same as -e below. This is obsolete.

 -b file

 True, if file exists and is a block special file.

 -c file

 True, if file exists and is a character special file.

 -d file

 True, if file exists and is a directory.

 -e file

 True, if file exists.

 -f file

 True, if file exists and is an ordinary file.

 -g file

 True, if file exists and it has its setgid bit set.

 -k file

 True, if file exists and it has its sticky bit set.

 -n string

 True, if length of string is non-zero.

 -o ?option

 True, if option named option is a valid option name.

 -o option

 True, if option named option is on.

 -p file Page 32/82

 True, if file exists and is a fifo special file or a pipe.

 -r file

 True, if file exists and is readable by current process.

 -s file

 True, if file exists and has size greater than zero.

 -t fildes

 True, if file descriptor number fildes is open and associated with a termi?

 nal device.

 -u file

 True, if file exists and it has its setuid bit set.

 -v name

 True, if variable name is a valid variable name and is set.

 -w file

 True, if file exists and is writable by current process.

 -x file

 True, if file exists and is executable by current process. If file exists

 and is a directory, then true if the current process has permission to

 search in the directory.

 -z string

 True, if length of string is zero.

 -L file

 True, if file exists and is a symbolic link.

 -h file

 True, if file exists and is a symbolic link.

 -N file

 True, if file exists and the modification time is greater than the last ac?

 cess time.

 -O file

 True, if file exists and is owned by the effective user id of this process.

 -G file

 True, if file exists and its group matches the effective group id of this

 process.

 -R name Page 33/82

 True if variable name is a name reference.

 -S file

 True, if file exists and is a socket.

 file1 -nt file2

 True, if file1 exists and file2 does not, or file1 is newer than file2.

 file1 -ot file2

 True, if file2 exists and file1 does not, or file1 is older than file2.

 file1 -ef file2

 True, if file1 and file2 exist and refer to the same file.

 string == pattern

 True, if string matches pattern. Any part of pattern can be quoted to cause

 it to be matched as a string. With a successful match to a pattern, the

 .sh.match array variable will contain the match and sub-pattern matches.

 string = pattern

 Same as == above, but is obsolete.

 string != pattern

 True, if string does not match pattern. When the string matches the pattern

 the .sh.match array variable will contain the match and sub-pattern matches.

 string =? ere

 True if string matches the pattern ?(E)ere where ere is an extended regular

 expression.

 string1 < string2

 True, if string1 comes before string2 based on the current locale.

 string1 > string2

 True, if string1 comes after string2 based on the current locale.

 The following obsolete arithmetic comparisons are also permitted:

 exp1 -eq exp2

 True, if exp1 is equal to exp2.

 exp1 -ne exp2

 True, if exp1 is not equal to exp2.

 exp1 -lt exp2

 True, if exp1 is less than exp2.

 exp1 -gt exp2 Page 34/82

 True, if exp1 is greater than exp2.

 exp1 -le exp2

 True, if exp1 is less than or equal to exp2.

 exp1 -ge exp2

 True, if exp1 is greater than or equal to exp2.

 In each of the above expressions, if file is of the form /dev/fd/n, where n is an

 integer, then the test is applied to the open file whose descriptor number is n.

 A compound expression can be constructed from these primitives by using any of the

 following, listed in decreasing order of precedence.

 (expression)

 True, if expression is true. Used to group expressions.

 ! expression

 True if expression is false.

 expression1 && expression2

 True, if expression1 and expression2 are both true.

 expression1 ?? expression2

 True, if either expression1 or expression2 is true.

 Input/Output.

 Before a command is executed, its input and output may be redirected using a spe?

 cial notation interpreted by the shell. The following may appear anywhere in a

 simple-command or may precede or follow a command and are not passed on to the in?

 voked command. Command substitution, parameter expansion, and arithmetic substitu?

 tion occur before word or digit is used except as noted below. File name genera?

 tion occurs only if the shell is interactive and the pattern matches a single file.

 Field splitting is not performed.

 In each of the following redirections, if file is of the form /dev/sctp/host/port,

 /dev/tcp/host/port, or /dev/udp/host/port, where host is a hostname or host ad?

 dress, and port is a service given by name or an integer port number, then the re?

 direction attempts to make a tcp, sctp or udp connection to the corresponding

 socket.

 No intervening space is allowed between the characters of redirection operators.

 <word Use file word as standard input (file descriptor 0).

 >word Use file word as standard output (file descriptor 1). If the file Page 35/82

 does not exist then it is created. If the file exists, and the no?

 clobber option is on, this causes an error; otherwise, it is trun?

 cated to zero length.

 >|word Same as >, except that it overrides the noclobber option.

 >;word Write output to a temporary file. If the command completes success?

 fully rename it to word, otherwise, delete the temporary file.

 >;word cannot be used with the exec(2). built-in.

 >>word Use file word as standard output. If the file exists, then output is

 appended to it (by first seeking to the end-of-file); otherwise, the

 file is created.

 <>word Open file word for reading and writing as standard input.

 <>;word The same as <>word except that if the command completes successfully,

 word is truncated to the offset at command completion. <>;word can?

 not be used with the exec(2). built-in.

 <<[-]word The shell input is read up to a line that is the same as word after

 any quoting has been removed, or to an end-of-file. No parameter

 substitution, command substitution, arithmetic substitution or file

 name generation is performed on word. The resulting document, called

 a here-document, becomes the standard input. If any character of

 word is quoted, then no interpretation is placed upon the characters

 of the document; otherwise, parameter expansion, command substitu?

 tion, and arithmetic substitution occur, \new-line is ignored, and \

 must be used to quote the characters \, $, `. If - is appended to

 <<, then all leading tabs are stripped from word and from the docu?

 ment. If # is appended to <<, then leading spaces and tabs will be

 stripped off the first line of the document and up to an equivalent

 indentation will be stripped from the remaining lines and from word.

 A tab stop is assumed to occur at every 8 columns for the purposes of

 determining the indentation.

 <<<word A short form of here document in which word becomes the contents of

 the here-document after any parameter expansion, command substitu?

 tion, and arithmetic substitution occur.

 <&digit The standard input is duplicated from file descriptor digit (see Page 36/82

 dup(2)). Similarly for the standard output using >&digit.

 <&digit- The file descriptor given by digit is moved to standard input. Simi?

 larly for the standard output using >&digit-.

 <&- The standard input is closed. Similarly for the standard output us?

 ing >&-.

 <&p The input from the co-process is moved to standard input.

 >&p The output to the co-process is moved to standard output.

 <#((expr)) Evaluate arithmetic expression expr and position file descriptor 0 to

 the resulting value bytes from the start of the file. The variables

 CUR and EOF evaluate to the current offset and end-of-file offset re?

 spectively when evaluating expr.

 >#((offset)) The same as <# except applies to file descriptor 1.

 <#pattern Seeks forward to the beginning of the next line containing pattern.

 <##pattern The same as <# except that the portion of the file that is skipped is

 copied to standard output.

 If one of the above is preceded by a digit, with no intervening space, then the

 file descriptor number referred to is that specified by the digit (instead of the

 default 0 or 1). If one of the above, other than >&- and the ># and <# forms, is

 preceded by {varname} with no intervening space, then a file descriptor number > 10

 will be selected by the shell and stored in the variable varname. If >&- or the

 any of the ># and <# forms is preceded by {varname} the value of varname defines

 the file descriptor to close or position. For example:

 ... 2>&1

 means file descriptor 2 is to be opened for writing as a duplicate of file descrip?

 tor 1 and

 exec {n}<file

 means open file named file for reading and store the file descriptor number in

 variable n.

 The order in which redirections are specified is significant. The shell evaluates

 each redirection in terms of the (file descriptor, file) association at the time of

 evaluation. For example:

 ... 1>fname 2>&1

 first associates file descriptor 1 with file fname. It then associates file de? Page 37/82

 scriptor 2 with the file associated with file descriptor 1 (i.e. fname). If the

 order of redirections were reversed, file descriptor 2 would be associated with the

 terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be

 associated with file fname.

 If a command is followed by & and job control is not active, then the default stan?

 dard input for the command is the empty file /dev/null. Otherwise, the environment

 for the execution of a command contains the file descriptors of the invoking shell

 as modified by input/output specifications.

 Environment.

 The environment (see environ(7)) is a list of name-value pairs that is passed to an

 executed program in the same way as a normal argument list. The names must be

 identifiers and the values are character strings. The shell interacts with the en?

 vironment in several ways. On invocation, the shell scans the environment and cre?

 ates a variable for each name found, giving it the corresponding value and at?

 tributes and marking it export. Executed commands inherit the environment. If the

 user modifies the values of these variables or creates new ones, using the export

 or typeset -x commands, they become part of the environment. The environment seen

 by any executed command is thus composed of any name-value pairs originally inher?

 ited by the shell, whose values may be modified by the current shell, plus any ad?

 ditions which must be noted in export or typeset -x commands.

 The environment for any simple-command or function may be augmented by prefixing it

 with one or more variable assignments. A variable assignment argument is a word of

 the form identifier=value. Thus:

 TERM=450 cmd args and

 (export TERM; TERM=450; cmd args)

 are equivalent (as far as the above execution of cmd is concerned except for spe?

 cial built-in commands listed below - those that are preceded with a dagger).

 If the obsolete -k option is set, all variable assignment arguments are placed in

 the environment, even if they occur after the command name. The following first

 prints a=b c and then c:

 echo a=b c

 set -k

 echo a=b c Page 38/82

 This feature is intended for use with scripts written for early versions of the

 shell and its use in new scripts is strongly discouraged. It is likely to disap?

 pear someday.

 Functions.

 For historical reasons, there are two ways to define functions, the name() syntax

 and the function name syntax, described in the Commands section above. Shell func?

 tions are read in and stored internally. Alias names are resolved when the func?

 tion is read. Functions are executed like commands with the arguments passed as

 positional parameters. (See Execution below.)

 Functions defined by the function name syntax and called by name execute in the

 same process as the caller and share all files and present working directory with

 the caller. Traps caught by the caller are reset to their default action inside

 the function. A trap condition that is not caught or ignored by the function

 causes the function to terminate and the condition to be passed on to the caller.

 A trap on EXIT set inside a function is executed in the environment of the caller

 after the function completes. Ordinarily, variables are shared between the calling

 program and the function. However, the typeset special built-in command used

 within a function defines local variables whose scope includes the current func?

 tion. They can be passed to functions that they call in the variable assignment

 list that precedes the call or as arguments passed as name references. Errors

 within functions return control to the caller.

 Functions defined with the name() syntax and functions defined with the function

 name syntax that are invoked with the . special built-in are executed in the

 caller's environment and share all variables and traps with the caller. Errors

 within these function executions cause the script that contains them to abort.

 The special built-in command return is used to return from function calls.

 Function names can be listed with the -f or +f option of the typeset special built-

 in command. The text of functions, when available, will also be listed with -f.

 Functions can be undefined with the -f option of the unset special built-in com?

 mand.

 Ordinarily, functions are unset when the shell executes a shell script. Functions

 that need to be defined across separate invocations of the shell should be placed

 in a directory and the FPATH variable should contain the name of this directory. Page 39/82

 They may also be specified in the ENV file.

 Discipline Functions.

 Each variable can have zero or more discipline functions associated with it. The

 shell initially understands the discipline names get, set, append, and unset but

 can be added when defining new types. On most systems others can be added at run

 time via the C programming interface extension provided by the builtin built-in

 utility. If the get discipline is defined for a variable, it is invoked whenever

 the given variable is referenced. If the variable .sh.value is assigned a value

 inside the discipline function, the referenced variable will evaluate to this value

 instead. If the set discipline is defined for a variable, it is invoked whenever

 the given variable is assigned a value. If the append discipline is defined for a

 variable, it is invoked whenever a value is appended to the given variable. The

 variable .sh.value is given the value of the variable before invoking the disci?

 pline, and the variable will be assigned the value of .sh.value after the disci?

 pline completes. If .sh.value is unset inside the discipline, then that value is

 unchanged. If the unset discipline is defined for a variable, it is invoked when?

 ever the given variable is unset. The variable will not be unset unless it is un?

 set explicitly from within this discipline function.

 The variable .sh.name contains the name of the variable for which the discipline

 function is called, .sh.subscript is the subscript of the variable, and .sh.value

 will contain the value being assigned inside the set discipline function. The

 variable _ is a reference to the variable including the subscript if any. For the

 set discipline, changing .sh.value will change the value that gets assigned. Fi?

 nally, the expansion ${var.name}, when name is the name of a discipline, and there

 is no variable of this name, is equivalent to the command substitution ${

 var.name;}.

 Name Spaces.

 Commands and functions that are executed as part of the list of a namespace command

 that modify variables or create new ones, create a new variable whose name is the

 name of the name space as given by identifier preceded by .. When a variable whose

 name is name is referenced, it is first searched for using .identifier.name. Simi?

 larly, a function defined by a command in the namespace list is created using the

 name space name preceded by a .. Page 40/82

 When the list of a namespace command contains a namespace command, the names of

 variables and functions that are created consist of the variable or function name

 preceded by the list of identifiers each preceded by ..

 Outside of a name space, a variable or function created inside a name space can be

 referenced by preceding it with the name space name.

 By default, variables staring with .sh are in the sh name space.

 Type Variables.

 Typed variables provide a way to create data structure and objects. A type can be

 defined either by a shared library, by the enum built-in command described below,

 or by using the new -T option of the typeset built-in command. With the -T option

 of typeset, the type name, specified as an option argument to -T, is set with a

 compound variable assignment that defines the type. Function definitions can ap?

 pear inside the compound variable assignment and these become discipline functions

 for this type and can be invoked or redefined by each instance of the type. The

 function name create is treated specially. It is invoked for each instance of the

 type that is created but is not inherited and cannot be redefined for each in?

 stance.

 When a type is defined a special built-in command of that name is added. These

 built-ins are declaration commands and follow the same expansion rules as all the

 special built-in commands defined below that are preceded by ??. These commands

 can subsequently be used inside further type definitions. The man page for these

 commands can be generated by using the --man option or any of the other -- options

 described with getopts. The -r, -a, -A, -h, and -S options of typeset are permit?

 ted with each of these new built-ins.

 An instance of a type is created by invoking the type name followed by one or more

 instance names. Each instance of the type is initialized with a copy of the sub-

 variables except for sub-variables that are defined with the -S option. Variables

 defined with the -S are shared by all instances of the type. Each instance can

 change the value of any sub-variable and can also define new discipline functions

 of the same names as those defined by the type definition as well as any standard

 discipline names. No additional sub-variables can be defined for any instance.

 When defining a type, if the value of a sub-variable is not set and the -r attri?

 bute is specified, it causes the sub-variable to be a required sub-variable. When? Page 41/82

 ever an instance of a type is created, all required sub-variables must be speci?

 fied. These sub-variables become readonly in each instance.

 When unset is invoked on a sub-variable within a type, and the -r attribute has not

 been specified for this field, the value is reset to the default value associative

 with the type. Invoking unset on a type instance not contained within another type

 deletes all sub-variables and the variable itself.

 A type definition can be derived from another type definition by defining the first

 sub-variable name as _ and defining its type as the base type. Any remaining defi?

 nitions will be additions and modifications that apply to the new type. If the new

 type name is the same as that of the base type, the type will be replaced and the

 original type will no longer be accessible.

 The typeset command with the -T and no option argument or operands will write all

 the type definitions to standard output in a form that can be read in to create all

 the types.

 Jobs.

 If the monitor option of the set command is turned on, an interactive shell asso?

 ciates a job with each pipeline. It keeps a table of current jobs, printed by the

 jobs command, and assigns them small integer numbers. When a job is started asyn?

 chronously with &, the shell prints a line which looks like:

 [1] 1234

 indicating that the job which was started asynchronously was job number 1 and had

 one (top-level) process, whose process id was 1234.

 This paragraph and the next require features that are not in all versions of UNIX

 and may not apply. If you are running a job and wish to do something else you may

 hit the key ^Z (control-Z) which sends a STOP signal to the current job. The shell

 will then normally indicate that the job has been `Stopped', and print another

 prompt. You can then manipulate the state of this job, putting it in the back?

 ground with the bg command, or run some other commands and then eventually bring

 the job back into the foreground with the foreground command fg. A ^Z takes effect

 immediately and is like an interrupt in that pending output and unread input are

 discarded when it is typed.

 A job being run in the background will stop if it tries to read from the terminal.

 Background jobs are normally allowed to produce output, but this can be disabled by Page 42/82

 giving the command stty tostop. If you set this tty option, then background jobs

 will stop when they try to produce output like they do when they try to read input.

 A job pool is a collection of jobs started with list & associated with a name.

 There are several ways to refer to jobs in the shell. A job can be referred to by

 the process id of any process of the job or by one of the following:

 %number

 The job with the given number.

 pool All the jobs in the job pool named by pool.

 pool.number

 The job number number in the job pool named by pool.

 %string

 Any job whose command line begins with string.

 %?string

 Any job whose command line contains string.

 %% Current job.

 %+ Equivalent to %%.

 %- Previous job. In addition, unless noted otherwise, wherever a job can be

 specified, the name of a background job pool can be used to represent all

 the jobs in that pool.

 The shell learns immediately whenever a process changes state. It normally informs

 you whenever a job becomes blocked so that no further progress is possible, but

 only just before it prints a prompt. This is done so that it does not otherwise

 disturb your work. The notify option of the set command causes the shell to print

 these job change messages as soon as they occur.

 When the monitor option is on, each background job that completes triggers any trap

 set for CHLD.

 When you try to leave the shell while jobs are running or stopped, you will be

 warned that `You have stopped(running) jobs.' You may use the jobs command to see

 what they are. If you immediately try to exit again, the shell will not warn you a

 second time, and the stopped jobs will be terminated. When a login shell receives

 a HUP signal, it sends a HUP signal to each job that has not been disowned with the

 disown built-in command described below.

 Signals. Page 43/82

 The INT and QUIT signals for an invoked command are ignored if the command is fol?

 lowed by & and the monitor option is active. Otherwise, signals have the values

 inherited by the shell from its parent (but see also the trap built-in command be?

 low).

 Execution.

 Each time a command is read, the above substitutions are carried out. If the com?

 mand name matches one of the Special Built-in Commands listed below, it is executed

 within the current shell process. Next, the command name is checked to see if it

 matches a user defined function. If it does, the positional parameters are saved

 and then reset to the arguments of the function call. A function is also executed

 in the current shell process. When the function completes or issues a return, the

 positional parameter list is restored. For functions defined with the function

 name syntax, any trap set on EXIT within the function is executed. The exit value

 of a function is the value of the last command executed. If a command name is not

 a special built-in command or a user defined function, but it is one of the built-

 in commands listed below, it is executed in the current shell process.

 The shell variables PATH followed by the variable FPATH defines the list of direc?

 tories to search for the command name. Alternative directory names are separated

 by a colon (:). The default path is equal to getconf PATH output. The current di?

 rectory can be specified by two or more adjacent colons, or by a colon at the be?

 ginning or end of the path list. If the command name contains a /, then the search

 path is not used. Otherwise, each directory in the list of directories defined by

 PATH and FPATH is checked in order. If the directory being searched is contained

 in FPATH and contains a file whose name matches the command being searched, then

 this file is loaded into the current shell environment as if it were the argument

 to the . command except that only preset aliases are expanded, and a function of

 the given name is executed as described above.

 If this directory is not in FPATH the shell first determines whether there is a

 built-in version of a command corresponding to a given pathname and if so it is in?

 voked in the current process. If no built-in is found, the shell checks for a file

 named .paths in this directory. If found and there is a line of the form

 FPATH=path where path names an existing directory then that directory is searched

 immediately after the current directory as if it were found in the FPATH variable. Page 44/82

 If path does not begin with /, it is checked for relative to the directory being

 searched.

 The .paths file is then checked for a line of the form PLUGIN_LIB=libname [: lib?

 name] Each library named by libname will be searched for as if it were an

 option argument to builtin -f, and if it contains a built-in of the specified name

 this will be executed instead of a command by this name. Any built-in loaded from

 a library found this way will be associated with the directory containing the

 .paths file so it will only execute if not found in an earlier directory.

 Finally, the directory will be checked for a file of the given name. If the file

 has execute permission but is not an a.out file, it is assumed to be a file con?

 taining shell commands. A separate shell is spawned to read it. All non-exported

 variables are removed in this case. If the shell command file doesn't have read

 permission, or if the setuid and/or setgid bits are set on the file, then the shell

 executes an agent whose job it is to set up the permissions and execute the shell

 with the shell command file passed down as an open file. If the .paths contains a

 line of the form name=value in the first or second line, then the environment vari?

 able name is modified by prepending the directory specified by value to the direc?

 tory list. If value is not an absolute directory, then it specifies a directory

 relative to the directory that the executable was found. If the environment vari?

 able name does not already exist it will be added to the environment list for the

 specified command. A parenthesized command is executed in a sub-shell without re?

 moving non-exported variables.

 Command Re-entry.

 The text of the last HISTSIZE (default 512) commands entered from a terminal device

 is saved in a history file. The file $HOME/.sh_history is used if the HISTFILE

 variable is not set or if the file it names is not writable. A shell can access

 the commands of all interactive shells which use the same named HISTFILE. The

 built-in command hist is used to list or edit a portion of this file. The portion

 of the file to be edited or listed can be selected by number or by giving the first

 character or characters of the command. A single command or range of commands can

 be specified. If you do not specify an editor program as an argument to hist then

 the value of the variable HISTEDIT is used. If HISTEDIT is unset, the obsolete

 variable FCEDIT is used. If FCEDIT is not defined, then /bin/ed is used. The Page 45/82

 edited command(s) is printed and re-executed upon leaving the editor unless you

 quit without writing. The -s option (and in obsolete versions, the editor name -)

 is used to skip the editing phase and to re-execute the command. In this case a

 substitution parameter of the form old=new can be used to modify the command before

 execution. For example, with the preset alias r, which is aliased to ?hist -s?,

 typing `r bad=good c' will re-execute the most recent command which starts with the

 letter c, replacing the first occurrence of the string bad with the string good.

 In-line Editing Options.

 Normally, each command line entered from a terminal device is simply typed followed

 by a new-line (`RETURN' or `LINE FEED'). If either the emacs, gmacs, or vi option

 is active, the user can edit the command line. To be in either of these edit modes

 set the corresponding option. An editing option is automatically selected each

 time the VISUAL or EDITOR variable is assigned a value ending in either of these

 option names.

 The editing features require that the user's terminal accept `RETURN' as carriage

 return without line feed and that a space (` ') must overwrite the current charac?

 ter on the screen.

 Unless the multiline option is on, the editing modes implement a concept where the

 user is looking through a window at the current line. The window width is the

 value of COLUMNS if it is defined, otherwise 80. If the window width is too small

 to display the prompt and leave at least 8 columns to enter input, the prompt is

 truncated from the left. If the line is longer than the window width minus two, a

 mark is displayed at the end of the window to notify the user. As the cursor moves

 and reaches the window boundaries the window will be centered about the cursor.

 The mark is a > (<, *) if the line extends on the right (left, both) side(s) of the

 window.

 The search commands in each edit mode provide access to the history file. Only

 strings are matched, not patterns, although a leading ^ in the string restricts the

 match to begin at the first character in the line.

 Each of the edit modes has an operation to list the files or commands that match a

 partially entered word. When applied to the first word on the line, or the first

 word after a ;, ?, &, or (, and the word does not begin with ? or contain a /, the

 list of aliases, functions, and executable commands defined by the PATH variable Page 46/82

 that could match the partial word is displayed. Otherwise, the list of files that

 match the given word is displayed. If the partially entered word does not contain

 any file expansion characters, a * is appended before generating these lists. Af?

 ter displaying the generated list, the input line is redrawn. These operations are

 called command name listing and file name listing, respectively. There are addi?

 tional operations, referred to as command name completion and file name completion,

 which compute the list of matching commands or files, but instead of printing the

 list, replace the current word with a complete or partial match. For file name

 completion, if the match is unique, a / is appended if the file is a directory and

 a space is appended if the file is not a directory. Otherwise, the longest common

 prefix for all the matching files replaces the word. For command name completion,

 only the portion of the file names after the last / are used to find the longest

 command prefix. If only a single name matches this prefix, then the word is re?

 placed with the command name followed by a space. When using a tab for completion

 that does not yield a unique match, a subsequent tab will provide a numbered list

 of matching alternatives. A specific selection can be made by entering the selec?

 tion number followed by a tab.

 Key Bindings.

 The KEYBD trap can be used to intercept keys as they are typed and change the char?

 acters that are actually seen by the shell. This trap is executed after each char?

 acter (or sequence of characters when the first character is ESC) is entered while

 reading from a terminal. The variable .sh.edchar contains the character or charac?

 ter sequence which generated the trap. Changing the value of .sh.edchar in the

 trap action causes the shell to behave as if the new value were entered from the

 keyboard rather than the original value.

 The variable .sh.edcol is set to the input column number of the cursor at the time

 of the input. The variable .sh.edmode is set to ESC when in vi insert mode (see

 below) and is null otherwise. By prepending ${.sh.editmode} to a value assigned to

 .sh.edchar it will cause the shell to change to control mode if it is not already

 in this mode.

 This trap is not invoked for characters entered as arguments to editing directives,

 or while reading input for a character search.

 Emacs Editing Mode. Page 47/82

 This mode is entered by enabling either the emacs or gmacs option. The only dif?

 ference between these two modes is the way they handle ^T. To edit, the user moves

 the cursor to the point needing correction and then inserts or deletes characters

 or words as needed. All the editing commands are control characters or escape se?

 quences. The notation for control characters is caret (^) followed by the charac?

 ter. For example, ^F is the notation for control F. This is entered by depressing

 `f' while holding down the `CTRL' (control) key. The `SHIFT' key is not depressed.

 (The notation ^? indicates the DEL (delete) key.)

 The notation for escape sequences is M- followed by a character. For example, M-f

 (pronounced Meta f) is entered by depressing ESC (ascii 033) followed by `f'. (M-F

 would be the notation for ESC followed by `SHIFT' (capital) `F'.)

 All edit commands operate from any place on the line (not just at the beginning).

 Neither the `RETURN' nor the `LINE FEED' key is entered after edit commands except

 when noted.

 ^F Move cursor forward (right) one character.

 M-[C Move cursor forward (right) one character.

 M-f Move cursor forward one word. (The emacs editor's idea of a word is a

 string of characters consisting of only letters, digits and underscores.)

 ^B Move cursor backward (left) one character.

 M-[D Move cursor backward (left) one character.

 M-b Move cursor backward one word.

 ^A Move cursor to start of line.

 M-[H Move cursor to start of line.

 ^E Move cursor to end of line.

 M-[Y Move cursor to end of line.

 ^]char Move cursor forward to character char on current line.

 M-^]char Move cursor backward to character char on current line.

 ^X^X Interchange the cursor and mark.

 erase (User defined erase character as defined by the stty(1) command, usually

 ^H or #.) Delete previous character.

 lnext (User defined literal next character as defined by the stty(1) command,

 or ^V if not defined.) Removes the next character's editing features (if

 any). Page 48/82

 ^D Delete current character.

 M-d Delete current word.

 M-^H (Meta-backspace) Delete previous word.

 M-h Delete previous word.

 M-^? (Meta-DEL) Delete previous word (if your interrupt character is ^? (DEL,

 the default) then this command will not work).

 ^T Transpose current character with previous character and advance the cur?

 sor in emacs mode. Transpose two previous characters in gmacs mode.

 ^C Capitalize current character.

 M-c Capitalize current word.

 M-l Change the current word to lower case.

 ^K Delete from the cursor to the end of the line. If preceded by a numeri?

 cal parameter whose value is less than the current cursor position, then

 delete from given position up to the cursor. If preceded by a numerical

 parameter whose value is greater than the current cursor position, then

 delete from cursor up to given cursor position.

 ^W Kill from the cursor to the mark.

 M-p Push the region from the cursor to the mark on the stack.

 kill (User defined kill character as defined by the stty command, usually ^G

 or @.) Kill the entire current line. If two kill characters are entered

 in succession, all kill characters from then on cause a line feed (useful

 when using paper terminals).

 ^Y Restore last item removed from line. (Yank item back to the line.)

 ^L Line feed and print current line.

 M-^L Clear the screen.

 ^@ (Null character) Set mark.

 M-space (Meta space) Set mark.

 ^J (New line) Execute the current line.

 ^M (Return) Execute the current line.

 eof End-of-file character, normally ^D, is processed as an End-of-file only

 if the current line is null.

 ^P Fetch previous command. Each time ^P is entered the previous command

 back in time is accessed. Moves back one line when not on the first line Page 49/82

 of a multi-line command.

 M-[A If the cursor is at the end of the line, it is equivalent to ^R with

 string set to the contents of the current line. Otherwise, it is equiva?

 lent to ^P.

 M-< Fetch the least recent (oldest) history line.

 M-> Fetch the most recent (youngest) history line.

 ^N Fetch next command line. Each time ^N is entered the next command line

 forward in time is accessed.

 M-[B Equivalent to ^N.

 ^Rstring Reverse search history for a previous command line containing string. If

 a parameter of zero is given, the search is forward. String is termi?

 nated by a `RETURN' or `NEW LINE'. If string is preceded by a ^, the

 matched line must begin with string. If string is omitted, then the next

 command line containing the most recent string is accessed. In this case

 a parameter of zero reverses the direction of the search.

 ^O Operate - Execute the current line and fetch the next line relative to

 current line from the history file.

 M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to

 the next command. The commands that accept a parameter are ^F, ^B,

 erase, ^C, ^D, ^K, ^R, ^P, ^N, ^], M-., M-^], M-_, M-=, M-b, M-c, M-d, M-

 f, M-h, M-l and M-^H.

 M-letter Soft-key - Your alias list is searched for an alias by the name _letter

 and if an alias of this name is defined, its value will be inserted on

 the input queue. The letter must not be one of the above meta-functions.

 M-[letter Soft-key - Your alias list is searched for an alias by the name __letter

 and if an alias of this name is defined, its value will be inserted on

 the input queue. This can be used to program function keys on many ter?

 minals.

 M-. The last word of the previous command is inserted on the line. If pre?

 ceded by a numeric parameter, the value of this parameter determines

 which word to insert rather than the last word.

 M-_ Same as M-..

 M-* Attempt file name generation on the current word. An asterisk is ap? Page 50/82

 pended if the word doesn't match any file or contain any special pattern

 characters.

 M-ESC Command or file name completion as described above.

 ^I tab Attempts command or file name completion as described above. If a par?

 tial completion occurs, repeating this will behave as if M-= were en?

 tered. If no match is found or entered after space, a tab is inserted.

 M-= If not preceded by a numeric parameter, it generates the list of matching

 commands or file names as described above. Otherwise, the word under the

 cursor is replaced by the item corresponding to the value of the numeric

 parameter from the most recently generated command or file list. If the

 cursor is not on a word, it is inserted instead.

 ^U Multiply parameter of next command by 4.

 \ Escape next character. Editing characters, the user's erase, kill and

 interrupt (normally ^?) characters may be entered in a command line or

 in a search string if preceded by a \. The \ removes the next charac?

 ter's editing features (if any).

 M-^V Display version of the shell.

 M-# If the line does not begin with a #, a # is inserted at the beginning of

 the line and after each new-line, and the line is entered. This causes a

 comment to be inserted in the history file. If the line begins with a #,

 the # is deleted and one # after each new-line is also deleted.

 Vi Editing Mode.

 There are two typing modes. Initially, when you enter a command you are in the in?

 put mode. To edit, the user enters control mode by typing ESC (033) and moves the

 cursor to the point needing correction and then inserts or deletes characters or

 words as needed. Most control commands accept an optional repeat count prior to

 the command.

 When in vi mode on most systems, canonical processing is initially enabled and the

 command will be echoed again if the speed is 1200 baud or greater and it contains

 any control characters or less than one second has elapsed since the prompt was

 printed. The ESC character terminates canonical processing for the remainder of

 the command and the user can then modify the command line. This scheme has the ad?

 vantages of canonical processing with the type-ahead echoing of raw mode. Page 51/82

 If the option viraw is also set, the terminal will always have canonical processing

 disabled. This mode is implicit for systems that do not support two alternate end

 of line delimiters, and may be helpful for certain terminals.

 Input Edit Commands

 By default the editor is in input mode.

 erase (User defined erase character as defined by the stty command, usu?

 ally ^H or #.) Delete previous character.

 ^W Delete the previous blank separated word.

 eof As the first character of the line causes the shell to terminate

 unless the ignoreeof option is set. Otherwise this character is

 ignored.

 lnext (User defined literal next character as defined by the stty(1) or

 ^V if not defined.) Removes the next character's editing features

 (if any).

 \ Escape the next erase or kill character.

 ^I tab Attempts command or file name completion as described above and

 returns to input mode. If a partial completion occurs, repeating

 this will behave as if = were entered from control mode. If no

 match is found or entered after space, a tab is inserted.

 Motion Edit Commands

 These commands will move the cursor.

 [count]l Cursor forward (right) one character.

 [count][C Cursor forward (right) one character.

 [count]w Cursor forward one alpha-numeric word.

 [count]W Cursor to the beginning of the next word that follows a blank.

 [count]e Cursor to end of word.

 [count]E Cursor to end of the current blank delimited word.

 [count]h Cursor backward (left) one character.

 [count][D Cursor backward (left) one character.

 [count]b Cursor backward one word.

 [count]B Cursor to preceding blank separated word.

 [count]? Cursor to column count.

 [count]fc Find the next character c in the current line. Page 52/82

 [count]Fc Find the previous character c in the current line.

 [count]tc Equivalent to f followed by h.

 [count]Tc Equivalent to F followed by l.

 [count]; Repeats count times, the last single character find command, f, F,

 t, or T.

 [count], Reverses the last single character find command count times.

 0 Cursor to start of line.

 ^ Cursor to start of line.

 [H Cursor to first non-blank character in line.

 $ Cursor to end of line.

 [Y Cursor to end of line.

 % Moves to balancing (,), {, }, [, or]. If cursor is not on one

 of the above characters, the remainder of the line is searched for

 the first occurrence of one of the above characters first.

 Search Edit Commands

 These commands access your command history.

 [count]k Fetch previous command. Each time k is entered the previous com?

 mand back in time is accessed.

 [count]- Equivalent to k.

 [count][A If cursor is at the end of the line it is equivalent to / with

 string^set to the contents of the current line. Otherwise, it is

 equivalent to k.

 [count]j Fetch next command. Each time j is entered the next command for?

 ward in time is accessed.

 [count]+ Equivalent to j.

 [count][B Equivalent to j.

 [count]G The command number count is fetched. The default is the least re?

 cent history command.

 /string Search backward through history for a previous command containing

 string. String is terminated by a `RETURN' or `NEW LINE'. If

 string is preceded by a ^, the matched line must begin with

 string. If string is null, the previous string will be used.

 ?string Same as / except that search will be in the forward direction. Page 53/82

 n Search for next match of the last pattern to / or ? commands.

 N Search for next match of the last pattern to / or ?, but in re?

 verse direction.

 Text Modification Edit Commands

 These commands will modify the line.

 a Enter input mode and enter text after the current character.

 A Append text to the end of the line. Equivalent to $a.

 [count]cmotion

 c[count]motion

 Delete current character through the character that motion would

 move the cursor to and enter input mode. If motion is c, the en?

 tire line will be deleted and input mode entered.

 C Delete the current character through the end of line and enter in?

 put mode. Equivalent to c$.

 S Equivalent to cc.

 [count]s Replace characters under the cursor in input mode.

 D Delete the current character through the end of line. Equivalent

 to d$.

 [count]dmotion

 d[count]motion

 Delete current character through the character that motion would

 move to. If motion is d , the entire line will be deleted.

 i Enter input mode and insert text before the current character.

 I Insert text before the beginning of the line. Equivalent to 0i.

 [count]P Place the previous text modification before the cursor.

 [count]p Place the previous text modification after the cursor.

 R Enter input mode and replace characters on the screen with charac?

 ters you type overlay fashion.

 [count]rc Replace the count character(s) starting at the current cursor po?

 sition with c, and advance the cursor.

 [count]x Delete current character.

 [count]X Delete preceding character.

 [count]. Repeat the previous text modification command. Page 54/82

 [count]? Invert the case of the count character(s) starting at the current

 cursor position and advance the cursor.

 [count]_ Causes the count word of the previous command to be appended and

 input mode entered. The last word is used if count is omitted.

 * Causes an * to be appended to the current word and file name gen?

 eration attempted. If no match is found, it rings the bell. Oth?

 erwise, the word is replaced by the matching pattern and input

 mode is entered.

 \ Command or file name completion as described above.

 Other Edit Commands

 Miscellaneous commands.

 [count]ymotion

 y[count]motion

 Yank current character through character that motion would move

 the cursor to and puts them into the delete buffer. The text and

 cursor are unchanged.

 yy Yanks the entire line.

 Y Yanks from current position to end of line. Equivalent to y$.

 u Undo the last text modifying command.

 U Undo all the text modifying commands performed on the line.

 [count]v Returns the command hist -e ${VISUAL:-${EDITOR:-vi}} count in the

 input buffer. If count is omitted, then the current line is used.

 ^L Line feed and print current line. Has effect only in control

 mode.

 ^J (New line) Execute the current line, regardless of mode.

 ^M (Return) Execute the current line, regardless of mode.

 # If the first character of the command is a #, then this command

 deletes this # and each # that follows a newline. Otherwise,

 sends the line after inserting a # in front of each line in the

 command. Useful for causing the current line to be inserted in

 the history as a comment and uncommenting previously commented

 commands in the history file.

 [count]= If count is not specified, it generates the list of matching com? Page 55/82

 mands or file names as described above. Otherwise, the word under

 the cursor is replaced by the count item from the most recently

 generated command or file list. If the cursor is not on a word,

 it is inserted instead.

 @letter Your alias list is searched for an alias by the name _letter and

 if an alias of this name is defined, its value will be inserted on

 the input queue for processing.

 ^V Display version of the shell.

 Programmable Completion.

 By default, hitting the tab key causes the current word to be matched against files

 starting with the characters you typed and adding as many characters that provide a

 unique match. If the matching prefix is not unique hitting tab again will output a

 numbered list with the choices and entering number tab will replace the current

 word with that selection.

 Programmable completion allows you to control how words are expanded when you enter

 the tab key for one or more specified commands. The complete built-in command al?

 lows you to specify how to complete the current word of the specified command.

 Built-in Commands.

 The following simple-commands are executed in the shell process. Input/Output re?

 direction is permitted. Unless otherwise indicated, the output is written on file

 descriptor 1 and the exit status, when there is no syntax error, is zero. Except

 for :, true, false, echo, newgrp, and login, all built-in commands accept -- to in?

 dicate end of options. They also interpret the option --man as a request to dis?

 play the man page onto standard error and -? as a help request which prints a us?

 age message on standard error. Commands that are preceded by one or two ? symbols

 are special built-in commands and are treated specially in the following ways:

 1. Variable assignment lists preceding the command remain in effect when the

 command completes.

 2. I/O redirections are processed after variable assignments.

 3. Errors cause a script that contains them to abort.

 4. They are not valid function names.

 5. Words following a command preceded by ?? that are in the format of a vari?

 able assignment are expanded with the same rules as a variable assignment. Page 56/82

 This means that tilde substitution is performed after the = sign and field

 splitting and file name generation are not performed. These are called dec?

 laration built-ins.

 ? : [arg ...]

 The command only expands parameters.

 ? . name [arg ...]

 If name is a function defined with the function name reserved word syntax,

 the function is executed in the current environment (as if it had been de?

 fined with the name() syntax.) Otherwise if name refers to a file, the file

 is read in its entirety and the commands are executed in the current shell

 environment. The search path specified by PATH is used to find the direc?

 tory containing the file. If any arguments arg are given, they become the

 positional parameters while processing the . command and the original posi?

 tional parameters are restored upon completion. Otherwise the positional

 parameters are unchanged. The exit status is the exit status of the last

 command executed.

 ?? alias [-ptx] [name[=value]] ...

 alias with no arguments prints the list of aliases in the form name=value on

 standard output. The -p option causes the word alias to be inserted before

 each one. When one or more arguments are given, an alias is defined for

 each name whose value is given. A trailing space in value causes the next

 word to be checked for alias substitution. The obsolete -t option is used

 to set and list tracked aliases. The value of a tracked alias is the full

 pathname corresponding to the given name. The value becomes undefined when

 the value of PATH is reset but the alias remains tracked. Without the -t

 option, for each name in the argument list for which no value is given, the

 name and value of the alias is printed. The obsolete -x option has no ef?

 fect. The exit status is non-zero if a name is given, but no value, and no

 alias has been defined for the name.

 bg [job...]

 This command is only on systems that support job control. Puts each speci?

 fied job into the background. The current job is put in the background if

 job is not specified. See Jobs for a description of the format of job. Page 57/82

 ? break [n]

 Exit from the enclosing for, while, until, or select loop, if any. If n is

 specified, then break n levels.

 builtin [-dsp] [-f file] [name ...]

 If name is not specified, and no -f option is specified, the built-ins are

 printed on standard output. The -s option prints only the special built-

 ins. Otherwise, each name represents the pathname whose basename is the

 name of the built-in. The entry point function name is determined by

 prepending b_ to the built-in name. A built-in specified by a pathname will

 only be executed when that pathname would be found during the path search.

 Built-ins found in libraries loaded via the .paths file will be associate

 with the pathname of the directory containing the .paths file.

 The ISO C/C++ prototype is b_mycommand(int argc, char *argv[], void *con?

 text) for the builtin command mycommand where argv is array an of argc ele?

 ments and context is an optional pointer to a Shell_t structure as described

 in <ast/shell.h>.

 Special built-ins cannot be bound to a pathname or deleted. The -d option

 deletes each of the given built-ins. On systems that support dynamic load?

 ing, the -f option names a shared library containing the code for built-ins.

 The shared library prefix and/or suffix, which depend on the system, can be

 omitted. Once a library is loaded, its symbols become available for subse?

 quent invocations of builtin. Multiple libraries can be specified with sep?

 arate invocations of the builtin command. Libraries are searched in the re?

 verse order in which they are specified. When a library is loaded, it looks

 for a function in the library whose name is lib_init() and invokes this

 function with an argument of 0.

 The -p causes the output to be in a form of builtin commands that can be

 used as input to the shell to recreate the current set of builtins.

 cd [-LP] [arg]

 cd [-LP] old new

 This command can be in either of two forms. In the first form it changes

 the current directory to arg. If arg is - the directory is changed to the

 previous directory. The shell variable HOME is the default arg. The vari? Page 58/82

 able PWD is set to the current directory. The shell variable CDPATH defines

 the search path for the directory containing arg. Alternative directory

 names are separated by a colon (:). The default path is <null> (specifying

 the current directory). Note that the current directory is specified by a

 null path name, which can appear immediately after the equal sign or between

 the colon delimiters anywhere else in the path list. If arg begins with a /

 then the search path is not used. Otherwise, each directory in the path is

 searched for arg.

 The second form of cd substitutes the string new for the string old in the

 current directory name, PWD, and tries to change to this new directory.

 By default, symbolic link names are treated literally when finding the di?

 rectory name. This is equivalent to the -L option. The -P option causes

 symbolic links to be resolved when determining the directory. The last in?

 stance of -L or -P on the command line determines which method is used.

 The cd command may not be executed by rksh.

 command [-pvxV] name [arg ...]

 Without the -v or -V options, command executes name with the arguments given

 by arg. The -p option causes a default path to be searched rather than the

 one defined by the value of PATH. Functions will not be searched for when

 finding name. In addition, if name refers to a special built-in, none of

 the special properties associated with the leading daggers will be honored.

 (For example, the predefined alias redirect=?command exec? prevents a script

 from terminating when an invalid redirection is given.) With the -x option,

 if command execution would result in a failure because there are too many

 arguments, errno E2BIG, the shell will invoke command name multiple times

 with a subset of the arguments on each invocation. Arguments that occur

 prior to the first word that expands to multiple arguments and after the

 last word that expands to multiple arguments will be passed on each invoca?

 tion. The exit status will be the maximum invocation exit status. With the

 -v option, command is equivalent to the built-in whence command described

 below. The -V option causes command to act like whence -v.

 ? continue [n]

 Resume the next iteration of the enclosing for, while, until, or select Page 59/82

 loop. If n is specified, then resume at the n-th enclosing loop.

 disown [job...]

 Causes the shell not to send a HUP signal to each given job, or all active

 jobs if job is omitted, when a login shell terminates.

 echo [-n -e] [arg ...]

 echo builtin prints all of its arguments separated by space and terminated

 by new-line. -n will skip putting a newline character at the end of output.

 If -e is set, it will enable interpreting escape sequences.

 ?? enum [-i] type[=(value ...)]

 Creates a declaration command named type that is an integer type that allows

 one of the specified values as enumeration names. If =(value ...) is omit?

 ted, then type must be an indexed array variable with at least two elements

 and the values are taken from this array variable. If -i is specified the

 values are case insensitive.

 When an enumeration variable is used in arithmetic expression, its value is

 the index into the array that defined it starting from index 0. Enumeration

 strings can be used in an arithmetic expression when comparing against an

 enumeration variable. Also, each non-subscripted enumeration variable fol?

 lowed by .name where name is one of the enumeration names expands to the in?

 dex corresponding to name.

 The enum _Bool is created with values true and false. The predefined alias

 bool is defined as _Bool.

 ? eval [arg ...]

 The arguments are read as input to the shell and the resulting command(s)

 executed.

 ? exec [-c] [-a name] [arg ...]

 If arg is given, the command specified by the arguments is executed in place

 of this shell without creating a new process. The -c option causes the en?

 vironment to be cleared before applying variable assignments associated with

 the exec invocation. The -a option causes name rather than the first arg,

 to become argv[0] for the new process. Input/output arguments may appear

 and affect the current process. If arg is not given, the effect of this

 command is to modify file descriptors as prescribed by the input/output re? Page 60/82

 direction list. In this case, any file descriptor numbers greater than 2

 that are opened with this mechanism are closed when invoking another pro?

 gram.

 ? exit [n]

 Causes the shell to exit with the exit status specified by n. The value

 will be the least significant 8 bits of the specified status. If n is omit?

 ted, then the exit status is that of the last command executed. An end-of-

 file will also cause the shell to exit except for a shell which has the ig?

 noreeof option (see set below) turned on.

 ?? export [-p] [name[=value]] ...

 If name is not given, the names and values of each variable with the export

 attribute are printed with the values quoted in a manner that allows them to

 be re-input. The export command is the same as typeset -x except that if

 you use export within a function, no local variable is created. The -p op?

 tion causes the word export to be inserted before each one. Otherwise, the

 given names are marked for automatic export to the environment of subse?

 quently-executed commands.

 false Does nothing, and exits 1. Used with until for infinite loops.

 fg [job...]

 This command is only on systems that support job control. Each job speci?

 fied is brought to the foreground and waited for in the specified order.

 Otherwise, the current job is brought into the foreground. See Jobs for a

 description of the format of job.

 getopts [-a name] optstring vname [arg ...]

 Checks arg for legal options. If arg is omitted, the positional parameters

 are used. An option argument begins with a + or a -. An option not begin?

 ning with + or - or the argument -- ends the options. Options beginning

 with + are only recognized when optstring begins with a +. optstring con?

 tains the letters that getopts recognizes. If a letter is followed by a :,

 that option is expected to have an argument. The options can be separated

 from the argument by blanks. The option -? causes getopts to generate a

 usage message on standard error. The -a argument can be used to specify the

 name to use for the usage message, which defaults to $0. Page 61/82

 getopts places the next option letter it finds inside variable vname each

 time it is invoked. The option letter will be prepended with a + when arg

 begins with a +. The index of the next arg is stored in OPTIND. The option

 argument, if any, gets stored in OPTARG.

 A leading : in optstring causes getopts to store the letter of an invalid

 option in OPTARG, and to set vname to ? for an unknown option and to : when

 a required option argument is missing. Otherwise, getopts prints an error

 message. The exit status is non-zero when there are no more options.

 There is no way to specify any of the options :, +, -, ?, [, and]. The op?

 tion # can only be specified as the first option.

 hist [-e ename] [-nlr] [first [last]]

 hist -s [old=new] [command]

 In the first form, a range of commands from first to last is selected from

 the last HISTSIZE commands that were typed at the terminal. The arguments

 first and last may be specified as a number or as a string. A string is

 used to locate the most recent command starting with the given string. A

 negative number is used as an offset to the current command number. If the

 -l option is selected, the commands are listed on standard output. Other?

 wise, the editor program ename is invoked on a file containing these key?

 board commands. If ename is not supplied, then the value of the variable

 HISTEDIT is used. If HISTEDIT is not set, then FCEDIT (default /bin/ed) is

 used as the editor. When editing is complete, the edited command(s) is exe?

 cuted if the changes have been saved. If last is not specified, then it

 will be set to first. If first is not specified, the default is the previ?

 ous command for editing and -16 for listing. The option -r reverses the or?

 der of the commands and the option -n suppresses command numbers when list?

 ing. In the second form, command is interpreted as first described above

 and defaults to the last command executed. The resulting command is exe?

 cuted after the optional substitution old=new is performed.

 jobs [-lnp] [job ...]

 Lists information about each given job; or all active jobs if job is omit?

 ted. The -l option lists process ids in addition to the normal information.

 The -n option only displays jobs that have stopped or exited since last no? Page 62/82

 tified. The -p option causes only the process group to be listed. See Jobs

 for a description of the format of job.

 kill [-s signame] [-q n] job ...

 kill [-n signum] [-q n] job ...

 kill -Ll [sig ...]

 Sends either the TERM (terminate) signal or the specified signal to the

 specified jobs or processes. Signals are either given by number with the -n

 option or by name with the -s option (as given in <signal.h>, stripped of

 the prefix ``SIG'' with the exception that SIGCLD is named CHLD). For back?

 ward compatibility, the n and s can be omitted and the number or name placed

 immediately after the -. If the signal being sent is TERM (terminate) or

 HUP (hangup), then the job or process will be sent a CONT (continue) signal

 if it is stopped. The argument job can be the process id of a process that

 is not a member of one of the active jobs. See Jobs for a description of

 the format of job. In the third form, kill -l, or kill -L, if sig is not

 specified, the signal names are listed. The -l option list only the signal

 names. -L options lists each signal name and corresponding number. Other?

 wise, for each sig that is a name, the corresponding signal number is

 listed. For each sig that is a number, the signal name corresponding to the

 least significant 8 bits of sig is listed.

 On systems that support sigqueue(2) the -q option can be used to send a

 queued signal with message number n. Each specified job must be a positive

 number. On systems that do not support sigqueue(2), a signal is sent with?

 out the message number n and the signal will not be queued. If the signal

 cannot be queued because of a return of EAGAIN, the exit status will be 2.

 let arg ...

 Each arg is a separate arithmetic expression to be evaluated. let only rec?

 ognizes octal constants starting with 0 when the set option letoctal is on.

 See Arithmetic Evaluation above, for a description of arithmetic expression

 evaluation.

 The exit status is 0 if the value of the last expression is non-zero, and 1

 otherwise.

 ? newgrp [arg ...] Page 63/82

 Equivalent to exec /bin/newgrp arg

 print [-CRenprsv] [-u unit] [-f format] [arg ...]

 With no options or with option - or --, each arg is printed on standard out?

 put. The -f option causes the arguments to be printed as described by

 printf. In this case, any e, n, r, R options are ignored. Otherwise, un?

 less the -C, -R, -r, or -v are specified, the following escape conventions

 will be applied:

 \a The alert character (ascii 07).

 \b The backspace character (ascii 010).

 \c Causes print to end without processing more arguments and not adding

 a new-line.

 \f The formfeed character (ascii 014).

 \n The new-line character (ascii 012).

 \r The carriage return character (ascii 015).

 \t The tab character (ascii 011).

 \v The vertical tab character (ascii 013).

 \E The escape character (ascii 033).

 \\ The backslash character \.

 \0x The character defined by the 1, 2, or 3-digit octal string given by

 x.

 The -R option will print all subsequent arguments and options other than -n.

 The -e causes the above escape conventions to be applied. This is the de?

 fault behavior. It reverses the effect of an earlier -r. The -p option

 causes the arguments to be written onto the pipe of the process spawned with

 ?& instead of standard output. The -v option treats each arg as a variable

 name and writes the value in the printf %B format. The -C option treats

 each arg as a variable name and writes the value in the printf %#B format.

 The -s option causes the arguments to be written onto the history file in?

 stead of standard output. The -u option can be used to specify a one digit

 file descriptor unit number unit on which the output will be placed. The

 default is 1. If the option -n is used, no new-line is added to the output.

 printf [-v varname] format [arg ...]

 The arguments arg are printed on standard output in accordance with the Page 64/82

 ANSI-C formatting rules associated with the format string format. If the

 number of arguments exceeds the number of format specifications, the format

 string is reused to format remaining arguments. If the -v option is speci?

 fied the output is assigned to the variable varname. The following exten?

 sions can also be used:

 %b A %b format can be used instead of %s to cause escape sequences in

 the corresponding arg to be expanded as described in print.

 %B A %B option causes each of the arguments to be treated as variable

 names and the binary value of variable will be printed. The alter?

 nate flag # causes a compound variable to be output on a single line.

 This is most useful for compound variables and variables whose attri?

 bute is -b.

 %H A %H format can be used instead of %s to cause characters in arg that

 are special in HTML and XML to be output as their entity name. The

 alternate flag # formats the output for use as a URI.

 %P A %P format can be used instead of %s to cause arg to be interpreted

 as an extended regular expression and be printed as a shell pattern.

 %R A %R format can be used instead of %s to cause arg to be interpreted

 as a shell pattern and to be printed as an extended regular expres?

 sion.

 %q A %q format can be used instead of %s to cause the resulting string

 to be quoted in a manner than can be reinput to the shell. When q is

 preceded by the alternative format specifier, #, the string is quoted

 in manner suitable as a field in a .csv format file.

 %(date-format)T

 A %(date-format)T format can be use to treat an argument as a

 date/time string and to format the date/time according to the date-

 format as defined for the date(1) command. Values specified as dig?

 its are interpreted as described in the touch(1) command.

 %Z A %Z format will output a byte whose value is 0.

 %d The precision field of the %d format can be followed by a . and the

 output base. In this case, the # flag character causes base# to be

 prepended. Page 65/82

 # The # flag, when used with the %d format without an output base, dis?

 plays the output in powers of 1000 indicated by one of the following

 suffixes: k M G T P E, and when used with the %i format displays the

 output in powers of 1024 indicated by one of the following suffixes:

 Ki Mi Gi Ti Pi Ei.

 = The = flag centers the output within the specified field width.

 L The L flag, when used with the %c or %s formats, treats precision as

 character width instead of byte count.

 , The , flag, when used with the %d or %f formats, separates groups of

 digits with the grouping delimiter (, on groups of 3 in the C lo?

 cale.)

 pwd [-LP] [-f fd]

 Outputs the value of the current working directory. The -L option is the

 default; it prints the logical name of the current directory. If the -P op?

 tion is given, all symbolic links are resolved from the name. The last in?

 stance of -L or -P on the command line determines which method is used. If

 the -f option is specified, the directory name corresponding to file de?

 scriptor fd is outputted.

 read [-AaCSprsv] [-d delim] [-n n] [-N n] [-m method] [-t timeout] [-u

 unit] [vname?prompt] [vname ...]

 The shell input mechanism. One line is read and is broken up into fields

 using the characters in IFS as separators. The escape character, \, is used

 to remove any special meaning for the next character and for line continua?

 tion. The -d option causes the read to continue to the first character of

 delim rather than new-line. The -n option causes at most n bytes to read

 rather a full line but will return when reading from a slow device as soon

 as any characters have been read. The -N option causes exactly n to be read

 unless an end-of-file has been encountered or the read times out because of

 the -t option. In raw mode, -r, the \ character is not treated specially.

 The first field is assigned to the first vname, the second field to the sec?

 ond vname, etc., with leftover fields assigned to the last vname. When

 vname has the binary attribute and -n or -N is specified, the bytes that are

 read are stored directly into the variable. If the -v is specified, then Page 66/82

 the value of the first vname will be used as a default value when reading

 from a terminal device. The -A option causes the variable vname to be unset

 and each field that is read to be stored in successive elements of the in?

 dexed array vname. -a is an alias for -A. The -m option reads a compound

 variable with the read method defined by method. Currently, only the json

 and ksh methods exist. The -C option causes the variable vname to be read

 as a compound variable. Blanks will be ignored when finding the beginning

 open parenthesis. This is equivalent to -m ksh. The -S option causes the

 line to be treated like a record in a .csv format file so that double quotes

 can be used to allow the delimiter character and the new-line character to

 appear within a field. The -p option causes the input line to be taken from

 the input pipe of a process spawned by the shell using ?&. If the -s option

 is present, the input will be saved as a command in the history file. The

 option -u can be used to specify a one digit file descriptor unit unit to

 read from. The file descriptor can be opened with the exec special built-in

 command. The default value of unit n is 0. The option -t is used to spec?

 ify a timeout in seconds when reading from a terminal or pipe. If vname is

 omitted, then REPLY is used as the default vname. An end-of-file with the

 -p option causes cleanup for this process so that another can be spawned.

 If the first argument contains a ?, the remainder of this word is used as a

 prompt on standard error when the shell is interactive. The exit status is

 0 unless an end-of-file is encountered or read has timed out.

 ?? readonly [-p] [vname[=value]] ...

 If vname is not given, the names and values of each variable with the read?

 only attribute is printed with the values quoted in a manner that allows

 them to be re-inputted. The -p option causes the word readonly to be in?

 serted before each one. Otherwise, the given vnames are marked readonly and

 these names cannot be changed by subsequent assignment. When defining a

 type, if the value of a readonly sub-variable is not defined the value is

 required when creating each instance.

 ? return [n]

 Causes a shell function or . script to return to the invoking script with

 the exit status specified by n. The value will be the least significant 8 Page 67/82

 bits of the specified status. If n is omitted, then the return status is

 that of the last command executed. If return is invoked while not in a

 function or a . script, then it behaves the same as exit.

 ? set [?BCGabefhkmnoprstuvx] [?o [option]] ... [?A vname] [-K keylist] [

 arg ...]

 The options for this command have meaning as follows:

 -A Array assignment. If arg is specified, unset the variable vname and

 assign values sequentially from the arg list. If +A is used, the

 variable vname is not unset first.

 -B Enable brace group expansion. On by default.

 -C Prevents redirection > from truncating existing files. Files that

 are created are opened with the O_EXCL mode. Requires >? to trun?

 cate a file when turned on.

 -G Causes the pattern ** by itself to match files and zero or more di?

 rectories and sub-directories when used for file name generation.

 If followed by a / only directories and sub-directories are matched.

 -H Enable !-style history expansion similar to csh(1).

 -K When no arguments are specified, it is used along with -s to specify

 the sort fields and sort options for sorting an array. (See "Array

 Sorting" above for the description of the keylist option.)

 -a All subsequent variables that are defined are automatically ex?

 ported.

 -b Prints job completion messages as soon as a background job changes

 state rather than waiting for the next prompt.

 -e Unless contained in a ?? or && command, or the command following an

 if while or until command or in the pipeline following !, if a com?

 mand has a non-zero exit status, execute the ERR trap, if set, and

 exit. This mode is disabled while reading profiles.

 -f Disables file name generation.

 -h Each command becomes a tracked alias when first encountered.

 -k (Obsolete). All variable assignment arguments are placed in the en?

 vironment for a command, not just those that precede the command

 name. Page 68/82

 -m Background jobs will run in a separate process group and a line will

 print upon completion. The exit status of background jobs is re?

 ported in a completion message. On systems with job control, this

 option is turned on automatically for interactive shells.

 -n Read commands and check them for syntax errors, but do not execute

 them. Ignored for interactive shells.

 -o The following argument can be one of the following option names:

 allexport

 Same as -a.

 bgnice All background jobs are run at a lower priority. This is

 the default mode.

 braceexpand

 Same as -B.

 emacs Puts you in an emacs style in-line editor for command entry.

 errexit Same as -e.

 globstar

 Same as -G.

 gmacs Puts you in a gmacs style in-line editor for command entry.

 histexpand

 Same as -H.

 ignoreeof

 The shell will not exit on end-of-file. The command exit

 must be used.

 keyword Same as -k.

 letoctal

 The let command allows octal constants starting with 0.

 markdirs

 All directory names resulting from file name generation have

 a trailing / appended.

 monitor Same as -m.

 multiline

 The built-in editors will use multiple lines on the screen

 for lines that are longer than the width of the screen. Page 69/82

 This may not work for all terminals.

 noclobber

 Same as -C.

 noexec Same as -n.

 noglob Same as -f.

 nolog Do not save function definitions in the history file.

 notify Same as -b.

 nounset Same as -u.

 pipefail

 A pipeline will not complete until all components of the

 pipeline have completed, and the return value will be the

 value of the last non-zero command to fail or zero if no

 command has failed.

 privileged

 Same as -p.

 showme When enabled, simple commands or pipelines preceded by a

 semicolon (;) will be displayed as if the xtrace option were

 enabled but will not be executed. Otherwise, the leading ;

 will be ignored.

 trackall

 Same as -h.

 verbose Same as -v.

 vi Puts you in insert mode of a vi style in-line editor until

 you hit the escape character 033. This puts you in control

 mode. A return sends the line.

 viraw Each character is processed as it is typed in vi mode. This

 is now always enabled. Disabling the option at run time has

 no effect.

 xtrace Same as -x.

 If no option name is supplied, then the current option settings are

 printed.

 -p Disables processing of the $HOME/.profile file and uses the file

 /etc/suid_profile instead of the ENV file. This mode is on whenever Page 70/82

 the effective uid (gid) is not equal to the real uid (gid). Turning

 this off causes the effective uid and gid to be set to the real uid

 and gid.

 -r Enables the restricted shell. This option cannot be unset once set.

 -s Sort the positional parameters lexicographically. When used with -A

 sorts the elements of the array.

 -t (Obsolete). Exit after reading and executing one command.

 -u Treat unset parameters as an error when substituting.

 -v Print shell input lines as they are read.

 -x Print commands and their arguments as they are executed.

 -- Do not change any of the options; useful in setting $1 to a value

 beginning with -. If no arguments follow this option then the posi?

 tional parameters are unset.

 As an obsolete feature, if the first arg is - then the -x and -v options are

 turned off and the next arg is treated as the first argument. Using +

 rather than - causes these options to be turned off. These options can also

 be used upon invocation of the shell. The current set of options may be

 found in $-. Unless -A is specified, the remaining arguments are positional

 parameters and are assigned, in order, to $1 $2 If no arguments are

 given, then the names and values of all variables are printed on the stan?

 dard output.

 ? shift [n]

 The positional parameters from $n+1 ... are renamed $1 ... , default n is

 1. The parameter n can be any arithmetic expression that evaluates to a

 non-negative number less than or equal to $#.

 sleep seconds

 Suspends execution for the number of decimal seconds or fractions of a sec?

 ond given by seconds. seconds A suffix of one of smhd can be used to indi?

 cate seconds, minutes, hours, and days respectively. Seconds can also be

 specified using a date/time format.

 times Display CPU time used by the shell and all of its child processes.

 ? trap [-alp] [action] [sig] ...

 The -p option causes the trap action associated with each trap as specified Page 71/82

 by the arguments to be printed with appropriate quoting. Otherwise, action

 will be processed as if it were an argument to eval when the shell receives

 signal(s) sig.

 The -a option causes the current trap setting to be appended to action.

 Each sig can be given as a number or as the name of the signal. Trap com?

 mands are executed in order of signal number. Any attempt to set a trap on

 a signal that was ignored on entry to the current shell is ineffective. If

 action is omitted and the first sig is a number, or if action is -, then the

 trap(s) for each sig are reset to their original values. If action is the

 null string then this signal is ignored by the shell and by the commands it

 invokes.

 If sig is ERR then action will be executed whenever a command has a non-zero

 exit status.

 If sig is DEBUG then action will be executed before each command. The vari?

 able .sh.command will contain the contents of the current command line when

 action is running. If the exit status of the trap is 2 the command will not

 be executed. If the exit status of the trap is 255 and inside a function or

 a dot script, the function or dot script will return.

 If sig is 0 or EXIT and the trap statement is executed inside the body of a

 function defined with the function name syntax, then the command action is

 executed after the function completes. For a trap set outside any function

 then the command action is executed on exit from the shell.

 If sig is KEYBD, then action will be executed whenever a key is read while

 in emacs, gmacs, or vi mode. The trap command with no arguments prints a

 list of commands associated with each signal number.

 An exit or return without an argument in a trap action will preserve the

 exit status of the command that invoked the trap. action. Each sig can be

 given as a number or as the name of the signal. Trap commands are executed

 in order of signal number. Any attempt to set a trap on a signal that was

 ignored on entry to the current shell is ineffective. If action is omitted

 and the first sig is a number, or if action is -, then the trap(s) for each

 sig are reset to their original values. The -l option lists the signals and

 their numbers to standard output. Page 72/82

 true Does nothing, and exits 0. Used with while for infinite loops.

 ?? typeset [?ACHSfblmnprstux] [?EFLRXZi[n]] [+-M [mapname]] [-T [

 tname=(assign_list)]] [-h str] [-a [type]] [vname[=value]] ...

 Sets attributes and values for shell variables and functions. When invoked

 inside a function defined with the function name syntax, a new instance of

 the variable vname is created, and the variable's value and type are re?

 stored when the function completes. The following list of attributes may be

 specified:

 -A Declares vname to be an associative array. Subscripts are strings

 rather than arithmetic expressions.

 -C causes each vname to be a compound variable. value names a compound

 variable it is copied into vname. Otherwise, it unsets each vname.

 -a Declares vname to be an indexed array. If type is specified, it must

 be the name of an enumeration type created with the enum command and

 it allows enumeration constants to be used as subscripts.

 -E Declares vname to be a double precision floating point number. If n

 is non-zero, it defines the number of significant figures that are

 used when expanding vname. Otherwise, ten significant figures will

 be used.

 -F Declares vname to be a double precision floating point number. If n

 is non-zero, it defines the number of places after the decimal point

 that are used when expanding vname. Otherwise ten places after the

 decimal point will be used.

 -H This option provides UNIX to host-name file mapping on non-UNIX ma?

 chines.

 -L Left justify and remove leading blanks from value. If n is non-zero,

 it defines the width of the field, otherwise it is determined by the

 width of the value of first assignment. When the variable is as?

 signed to, it is filled on the right with blanks or truncated, if

 necessary, to fit into the field. The -R option is turned off.

 -M Use the character mapping mapping defined by wctrans(3). such as

 tolower and toupper when assigning a value to each of the specified

 operands. When mapping is specified and there are not operands, all Page 73/82

 variables that use this mapping are written to standard output. When

 mapping is omitted and there are no operands, all mapped variables

 are written to standard output.

 -R Right justify and fill with leading blanks. If n is non-zero, it de?

 fines the width of the field, otherwise it is determined by the width

 of the value of first assignment. The field is left filled with

 blanks or truncated from the end if the variable is reassigned. The

 -L option is turned off.

 -S When used within the assign_list of a type definition, it causes the

 specified sub-variable to be shared by all instances of the type.

 When used inside a function defined with the function reserved word,

 the specified variables will have function static scope. Otherwise,

 the variable is unset prior to processing the assignment list.

 -T If followed by tname, it creates a type named by tname using the com?

 pound assignment assign_list to tname. Otherwise, it writes all the

 type definitions to standard output.

 -X Declares vname to be a double precision floating point number and ex?

 pands using the %a format of ISO-C99. If n is non-zero, it defines

 the number of hex digits after the radix point that is used when ex?

 panding vname. The default is 10.

 -Z Right justify and fill with leading zeros if the first non-blank

 character is a digit and the -L option has not been set. Remove

 leading zeros if the -L option is also set. If n is non-zero, it de?

 fines the width of the field, otherwise it is determined by the width

 of the value of first assignment.

 -f The names refer to function names rather than variable names. No as?

 signments can be made and the only other valid options are -S, -t, -u

 and -x. The -S can be used with discipline functions defined in a

 type to indicate that the function is static. For a static function,

 the same method will be used by all instances of that type no matter

 which instance references it. In addition, it can only use value of

 variables from the original type definition. These discipline func?

 tions cannot be redefined in any type instance. The -t option turns Page 74/82

 on execution tracing for this function. The -u option causes this

 function to be marked undefined. The FPATH variable will be searched

 to find the function definition when the function is referenced. If

 no options other than -f is specified, then the function definition

 will be displayed on standard output. If +f is specified, then a

 line containing the function name followed by a shell comment con?

 taining the line number and path name of the file where this function

 was defined, if any, is displayed. The exit status can be used to

 determine whether the function is defined so that typeset -f

 .sh.math.name will return 0 when math function name is defined and

 non-zero otherwise.

 -b The variable can hold any number of bytes of data. The data can be

 text or binary. The value is represented by the base64 encoding of

 the data. If -Z is also specified, the size in bytes of the data in

 the buffer will be determined by the size associated with the -Z. If

 the base64 string assigned results in more data, it will be trun?

 cated. Otherwise, it will be filled with bytes whose value is zero.

 The printf format %B can be used to output the actual data in this

 buffer instead of the base64 encoding of the data.

 -h Used within type definitions to add information when generating in?

 formation about the sub-variable on the man page. It is ignored when

 used outside of a type definition. When used with -f the information

 is associated with the corresponding discipline function.

 -i Declares vname to be represented internally as integer. The right

 hand side of an assignment is evaluated as an arithmetic expression

 when assigning to an integer. If n is non-zero, it defines the out?

 put arithmetic base, otherwise the output base will be ten.

 -l Used with -i, -E or -F, to indicate long integer, or long double.

 Otherwise, all upper-case characters are converted to lower-case.

 The upper-case option, -u, is turned off. Equivalent to -M tolower .

 -m moves or renames the variable. The value is the name of a variable

 whose value will be moved to vname. The original variable will be

 unset. Cannot be used with any other options. Page 75/82

 -n Declares vname to be a reference to the variable whose name is de?

 fined by the value of variable vname. This is usually used to refer?

 ence a variable inside a function whose name has been passed as an

 argument. Cannot be used with any other options.

 -p The name, attributes and values for the given vnames are written on

 standard output in a form that can be used as shell input. If +p is

 specified, then the values are not displayed.

 -r The given vnames are marked readonly and these names cannot be

 changed by subsequent assignment.

 -s Used with -i, -E or -F, to indicate short integer, or float.

 -t Tags the variables. Tags are user definable and have no special

 meaning to the shell.

 -u When given along with -i, specifies unsigned integer. Otherwise, all

 lower-case characters are converted to upper-case. The lower-case

 option, -l, is turned off. Equivalent to -M toupper .

 -x The given vnames are marked for automatic export to the environment

 of subsequently-executed commands. Variables whose names contain a .

 cannot be exported.

 The -i attribute cannot be specified along with -R, -L, -Z, or -f.

 Using + rather than - causes these options to be turned off. If no vname

 arguments are given, a list of vnames (and optionally the values) of the

 variables is printed. (Using + rather than - keeps the values from being

 printed.) The -p option causes typeset followed by the option letters to be

 printed before each name rather than the names of the options. If any op?

 tion other than -p is given, only those variables which have all of the

 given options are printed. Otherwise, the vnames and attributes of all

 variables that have attributes are printed.

 ulimit [-HSacdfmnpstv] [limit]

 Set or display a resource limit. The available resource limits are listed

 below. Many systems do not support one or more of these limits. The limit

 for a specified resource is set when limit is specified. The value of limit

 can be a number in the unit specified below with each resource, or the value

 unlimited. The -H and -S options specify whether the hard limit or the soft Page 76/82

 limit for the given resource is set. A hard limit cannot be increased once

 it is set. A soft limit can be increased up to the value of the hard limit.

 If neither the H nor S option is specified, the limit applies to both. The

 current resource limit is printed when limit is omitted. In this case, the

 soft limit is printed unless H is specified. When more than one resource is

 specified, then the limit name and unit is printed before the value.

 -a Lists all of the current resource limits.

 -c The number of 512-byte blocks on the size of core dumps.

 -d The number of K-bytes on the size of the data area.

 -f The number of 512-byte blocks on files that can be written by the

 current process or by child processes (files of any size may be

 read).

 -m The number of K-bytes on the size of physical memory.

 -n The number of file descriptors plus 1.

 -p The number of 512-byte blocks for pipe buffering.

 -s The number of K-bytes on the size of the stack area.

 -t The number of CPU seconds to be used by each process.

 -v The number of K-bytes for virtual memory.

 If no option is given, -f is assumed.

 umask [-pS] [mask]

 The user file-creation mask is set to mask (see umask(2)). mask can either

 be an octal number or a symbolic value as described in chmod(1). If a sym?

 bolic value is given, the new umask value is the complement of the result of

 applying mask to the complement of the previous umask value. If mask is

 omitted, the current value of the mask is printed. The -S option causes the

 mode to be printed as a symbolic value. Otherwise, the mask is printed in

 octal. The -p option cause the output to be in a form that can be use for

 reinput.

 ? unalias [-a] name ...

 The aliases given by the list of names are removed from the alias list. The

 -a option causes all the aliases to be unset.

 ?unset [-fnv] vname ...

 The variables given by the list of vnames are unassigned, i.e., except for Page 77/82

 sub-variables within a type, their values and attributes are erased. For

 sub-variables of a type, the values are reset to the default value from the

 type definition. Readonly variables cannot be unset. If the -f option is

 set, then the names refer to function names. If the -v option is set, then

 the names refer to variable names. The -f option overrides -v. If -n is

 set and name is a name reference, then name will be unset rather than the

 variable that it references. The default is equivalent to -v. Unsetting

 LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes

 their special meaning even if they are subsequently assigned to.

 wait [job ...]

 Wait for the specified job and report its termination status. If job is not

 given, then all currently active child processes are waited for. The exit

 status from this command is that of the last process waited for if job is

 specified; otherwise it is zero. See Jobs for a description of the format

 of job.

 whence [-afpv] name ...

 For each name, indicate how it would be interpreted if used as a command

 name.

 The -v option produces a more verbose report. The -f option skips the

 search for functions. The -p option does a path search for name even if

 name is an alias, a function, or a reserved word. The -p option turns off

 the -v option. The -a option is similar to the -v option but causes all in?

 terpretations of the given name to be reported.

 Invocation.

 If the shell is invoked by exec(2), and the first character of argument zero ($0)

 is -, then the shell is assumed to be a login shell and commands are read from

 /etc/profile and then from $HOME/.profile, if it exists. Alternatively, the option

 -l causes the shell to a treated as a login shell. Next, for interactive shells,

 commands are read from the file named by performing parameter expansion, command

 substitution, and arithmetic substitution on the value of the environment variable

 ENV if the file exists. If the -s option is not present and arg and a file by the

 name of arg exists, then it reads and executes this script. Otherwise, if the

 first arg does not contain a /, a path search is performed on the first arg to de? Page 78/82

 termine the name of the script to execute. The script arg must have execute per?

 mission and any setuid and setgid settings will be ignored. If the script is not

 found on the path, arg is processed as if it named a built-in command or function.

 Commands are then read as described below; the following options are interpreted by

 the shell when it is invoked:

 -D A list of all double quoted strings that are preceded by a $ will be

 printed on standard output and the shell will exit. This set of strings

 will be subject to language translation when the locale is not C or POSIX.

 No commands will be executed.

 -E Reads the file named by the ENV variable or by $HOME/.kshrc if not defined

 after the profiles.

 -c If the -c option is present, then commands are read from the first arg.

 Any remaining arguments become positional parameters starting at 0.

 -s If the -s option is present or if no arguments remain, then commands are

 read from the standard input. Shell output, except for the output of the

 Special Commands listed above, is written to file descriptor 2.

 -i If the -i option is present or if the shell input and error output are at?

 tached to a terminal (as told by tcgetattr(2)), then this shell is interac?

 tive. In this case TERM is ignored (so that kill 0 does not kill an inter?

 active shell) and INTR is caught and ignored (so that wait is interrupt?

 ible). In all cases, QUIT is ignored by the shell.

 -r If the -r option is present, the shell is a restricted shell.

 -R filename

 The -R filename option is used to generate a cross reference database that

 can be used by a separate utility to find definitions and references for

 variables and commands. The filename argument specifies the generated

 database. A script file must be provided on the command line as well.

 The remaining options and arguments are described under the set command above. An

 optional - as the first argument is ignored.

 Rksh Only.

 Rksh is used to set up login names and execution environments whose capabilities

 are more controlled than those of the standard shell. The actions of rksh are

 identical to those of ksh, except that the following are disallowed: Page 79/82

 Unsetting the restricted option.

 changing directory (see cd(1)),

 setting or unsetting the value or attributes of SHELL, ENV, FPATH, or PATH,

 specifying path or command names containing /,

 redirecting output (>, >|, <>, and >>).

 adding or deleting built-in commands.

 using command -p to invoke a command.

 The restrictions above are enforced after .profile and the ENV files are inter?

 preted.

 When a command to be executed is found to be a shell procedure, rksh invokes ksh to

 execute it. Thus, it is possible to provide to the end-user shell procedures that

 have access to the full power of the standard shell, while imposing a limited menu

 of commands; this scheme assumes that the end-user does not have write and execute

 permissions in the same directory.

 The net effect of these rules is that the writer of the .profile has complete con?

 trol over user actions, by performing guaranteed setup actions and leaving the user

 in an appropriate directory (probably not the login directory).

 The system administrator often sets up a directory of commands (e.g., /usr/rbin)

 that can be safely invoked by rksh.

EXIT STATUS

 Errors detected by the shell, such as syntax errors, cause the shell to return a

 non-zero exit status. If the shell is being used non-interactively, then execution

 of the shell file is abandoned unless the error occurs inside a subshell in which

 case the subshell is abandoned. Otherwise, the shell returns the exit status of

 the last command executed (see also the exit command above). Run time errors de?

 tected by the shell are reported by printing the command or function name and the

 error condition. If the line number that the error occurred on is greater than

 one, then the line number is also printed in square brackets ([]) after the command

 or function name.

FILES

 /etc/profile

 The system wide initialization file, executed for login shells.

 $HOME/.profile Page 80/82

 The personal initialization file, executed for login shells after /etc/pro?

 file.

 $HOME/.kshrc

 Default personal initialization file, executed for interactive shells when

 ENV is not set.

 /etc/suid_profile

 Alternative initialization file, executed instead of the personal initial?

 ization file when the real and effective user or group id do not match.

 /dev/null

 NULL device

SEE ALSO

 cat(1), cd(1), chmod(1), cut(1), date(1), egrep(1), echo(1), emacs(1), env(1),

 fgrep(1), gmacs(1), grep(1), newgrp(1), stty(1), test(1), touch(1), umask(1),

 vi(1), dup(2), exec(2), fork(2), getpwnam(3), ioctl(2), lseek(2), paste(1), path?

 conf(2), pipe(2), sigsetinfo(2), sysconf(2), umask(2), ulimit(2), wait(2), wc?

 trans(3), rand(3), a.out(5), profile(5), environ(7).

 Morris I. Bolsky and David G. Korn, The New KornShell Command and Programming Lan?

 guage, Prentice Hall, 1995.

 POSIX - Part 2: Shell and Utilities, IEEE Std 1003.2-1992, ISO/IEC 9945-2, IEEE,

 1993.

CAVEATS

 If a command is executed, and then a command with the same name is installed in a

 directory in the search path before the directory where the original command was

 found, the shell will continue to exec the original command. Use the -t option of

 the alias command to correct this situation.

 Some very old shell scripts contain a ^ as a synonym for the pipe character ?.

 Using the hist built-in command within a compound command will cause the whole com?

 mand to disappear from the history file.

 The built-in command . file reads the whole file before any commands are executed.

 Therefore, alias and unalias commands in the file will not apply to any commands

 defined in the file.

 Traps are not processed while a job is waiting for a foreground process. Thus, a

 trap on CHLD won't be executed until the foreground job terminates. Page 81/82

 It is a good idea to leave a space after the comma operator in arithmetic expres?

 sions to prevent the comma from being interpreted as the decimal point character in

 certain locales.

 KSH(1)

Page 82/82

