<R

University

FPDF Library

PDF ggneramr

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'ksh2020.1'
$ man ksh2020.1
KSH(1) General Commands Manual KSH(1)
NAME
ksh2020, rksh2020 - KornShell, a standard/restricted command and programming lan?
guage
NOTE
Currently, rksh and pfksh are not available on macOS / Darwin.
SYNOPSIS
ksh [?abcefhiknoprstuvxBCDP][-R file][?0 option] ...[-][arg ...]
DESCRIPTION
Ksh is a command and programming language that executes commands read from a termi?
nal or a file. Rksh is a restricted version of the command interpreter ksh; See
Invocation below for the meaning of arguments to the shell.
Definitions.
A metacharacter is one of the following characters:
;& () ? < > new-line space tab
A blank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as compo?
nents of variable names. A vname is a sequence of one or more identifiers sepa?
rated by a . and optionally preceded by a .. Vnhames are used as function and vari?
able names. A word is a sequence of characters from the character set defined by
the current locale, excluding non-quoted metacharacters.

. . Page 1/82
A command is a sequence of characters in the syntax of the shell language. The

shell reads each command and carries out the desired action either directly or by
invoking separate utilities. A built-in command is a command that is carried out
by the shell itself without creating a separate process. Some commands are built-
in purely for convenience and are not documented here. Built-ins that cause side
effects in the shell environment and built-ins that are found before performing a
path search (see Execution below) are documented here. For historical reasons,
some of these built-ins behave differently than other built-ins and are called spe?
cial built-ins.

Commands.
A simple-command is a list of variable assignments (see Variable Assignments below)
or a sequence of blank separated words which may be preceded by a list of variable
assignments (see Environment below). The first word specifies the name of the com?
mand to be executed. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as argument O (see
exec(2)). The value of a simple-command is its exit status; 0-255 if it terminates
normally; 256+signum if it terminates abnormally (the name of the signal corre?
sponding to the exit status can be obtained via the -l option of the kill built-in
utility).
A pipeline is a sequence of one or more commands separated by ?. The standard out?
put of each command but the last is connected by a pipe(2) to the standard input of
the next command. Each command, except possibly the last, is run as a separate
process; the shell waits for the last command to terminate. The exit status of a
pipeline is the exit status of the last command unless the pipefail option is en?
abled. Each pipeline can be preceded by the reserved word ! which causes the exit
status of the pipeline to become 0 if the exit status of the last command is non-
zero, and 1 if the exit status of the last command is 0.
A list is a sequence of one or more pipelines separated by ;, &, ?&, &&, or ??, and
optionally terminated by ;, &, or ?&. Of these five symbols, ;, &, and ?& have
equal precedence, which is lower than that of && and ??. The symbols && and ??
also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding
pipeline (i.e., the shell does not wait for that pipeline to finish). The symbol

?& causes asynchronous execution of the preceding pipeline with a two-way pipe es? Page 2/82

tablished to the parent shell; the standard input and output of the spawned pipe?
line can be written to and read from by the parent shell by applying the redirect?
ion operators <& and >& with arg p to commands and by using -p option of the built-
in commands read and print described later. The symbol && (??) causes the list
following it to be executed only if the preceding pipeline returns a zero (non-
zero) value. One or more new-lines may appear in a list instead of a semicolon, to
delimit a command. The firstitem of the first pipeline of a list that is a sim?
ple command not beginning with a redirection, and not occurring within a while, un?
til, or if list, can be preceded by a semicolon. This semicolon is ignored unless
the showme option is enabled as described with the set built-in below.
A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple-command executed
in the command.
for vname [in word ...] ;do list ;done
Each time a for command is executed, vname is set to the next word taken
from the in word list. If in word ... is omitted, then the for command ex?
ecutes the do list once for each positional parameter that is set starting
from 1 (see Parameter Expansion below). Execution ends when there are no
more words in the list.
for (([exprl] ; [expr2] ; [expr3])) ;do list ;done
The arithmetic expression exprl is evaluated first (see Arithmetic evalua?
tion below). The arithmetic expression expr2 is repeatedly evaluated until
it evaluates to zero and when non-zero, list is executed and the arithmetic
expression expr3 evaluated. If any expression is omitted, then it behaves
as if it evaluated to 1.
select vname [in word ...] ;do list ;done
A select command prints on standard error (file descriptor 2) the set of
words, each preceded by a number. If in word ... is omitted, then the po?
sitional parameters starting from 1 are used instead (see Parameter Expan?
sion below). The PS3 prompt is printed and a line is read from the standard
input. If this line consists of the number of one of the listed words, then
the value of the variable vname is set to the word corresponding to this

number. If this line is empty, the selection list is printed again. Other? Page 3/82

wise the value of the variable vname is set to null. The contents of the
line read from standard input is saved in the variable REPLY. The list is
executed for each selection until a break or end-of-file is encountered. If
the REPLY variable is set to null by the execution of list, then the selec?
tion list is printed before displaying the PS3 prompt for the next selec?
tion.
case word in [[(Jpattern [? pattern] ...) list;;] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file-
name generation (see File Name Generation below). The ;; operator causes
execution of case to terminate. If ;& is used in place of ;; the next sub?
sequent list, if any, is executed.
if list ;then list [;elif list ;then list] ... [;else list] ;fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing each successive elif list, the else list is executed.
If the if list has non-zero exit status and there is no else list, then the
if command returns a zero exit status.
while list ;do list ;done
until list ;do list ;done
A while command repeatedly executes the while list and, if the exit status
of the last command in the list is zero, executes the do list; otherwise the
loop terminates. If no commands in the do list are executed, then the while
command returns a zero exit status; until may be used in place of while to
negate the loop termination test.
((expression))
The expression is evaluated using the rules for arithmetic evaluation de?
scribed below. If the value of the arithmetic expression is non-zero, the
exit status is 0, otherwise the exit status is 1.
(list)
Execute list in a separate environment. Note, that if two adjacent open

parentheses are needed for nesting, a space must be inserted to avoid evalu? Page 4/82

ation as an arithmetic command as described above.

{list;}
list is simply executed. Note that unlike the metacharacters (and), { and
} are reserved words and must occur at the beginning of a line or after a ;
in order to be recognized.

[[expression]
Evaluates expression and returns a zero exit status when expression is true.
See Conditional Expressions below, for a description of expression.

function varname { list ;}

varname () { list ;}
Define a function which is referenced by varname. A function whose varname
contains a . is called a discipline function and the portion of the varname
preceding the last . must refer to an existing variable. The body of the
function is the list of commands between { and }. A function defined with
the function varname syntax can also be used as an argument to the . spe?
cial built-in command to get the equivalent behavior as if the varname()
syntax were used to define it. (See Functions below.)

namespace varname { list ;}
Defines or uses the name space identifier and runs the commands in list in
this name space. (See Name Spaces below.)

& [name[arg...]]
Causes subsequent list commands terminated by & to be placed in the back?
ground job pool name. If name is omitted a default unnamed pool is used.
Commands in a named background pool may be executed remotely.

time [pipeline]
If pipeline is omitted the user and system time for the current shell and
completed child processes is printed on standard error. Otherwise, pipeline
is executed and the elapsed time as well as the user and system time are
printed on standard error. The TIMEFORMAT variable may be setto a format
string that specifies how the timing information should be displayed. See
Shell Variables below for a description of the TIMEFORMAT variable.

The following reserved words are recognized as reserved only when they are the

first word of a command and are not quoted: Page 5/82

if then else elif fi case esac for while until do done { } function select time [[
if
Variable Assignments.
One or more variable assignments can start a simple command or can be arguments to
the typeset, enum, export, or readonly special built-in commands as well as to
other declaration commands created as types. The syntax for an assignment is of
the form:
varname=word
varname[word]=word
No space is permitted between varname and the = or between = and word.
varname=(assign_list)
No space is permitted between varname and the =. The variable varname is
unset before the assignment. An assign_list can be one of the following:
word ...
Indexed array assignment.
[word]=word ...
Associative array assignment. If preceded by typeset -a this
will create an indexed array instead.
assignment ...
Compound variable assignment. This creates a compound vari?
able varname with sub-variables of the form varname.name,
where name is the name portion of assignment. The value of
varname will contain all the assignment elements. Additional
assignments made to sub-variables of varname will also be
displayed as part of the value of varname. If no assignments
are specified, varname will be a compound variable allowing
subsequence child elements to be defined.
typeset [options] assignment ...
Nested variable assignment. Multiple assignments can be
specified by separating each of them with a ;. The previous
value is unset before the assignment. Other declaration com?
mands such as readonly, enum, and other declaration commands

can be used in place of typeset. Page 6/82

. filename
Include the assignment commands contained in filename.
In addition, a += can be used in place of the = to signify adding to or appending
to the previous value. When += is applied to an arithmetic type, word is evaluated
as an arithmetic expression and added to the current value. When applied to a
string variable, the value defined by word is appended to the value. For compound
assignments, the previous value is not unset and the new values are appended to the
current ones provided that the types are compatible.
The right hand side of a variable assignment undergoes all the expansion listed be?
low except word splitting, brace expansion, and file name generation. When the
left hand side is an assignment is a compound variable and the right hand is the
name of a compound variable, the compound variable on the right will be copied or
appended to the compound variable on the left.
Comments.
A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.
Aliasing.
The first word of each command is replaced by the text of an alias if an alias for
this word has been defined. An alias name consists of any number of characters ex?
cluding metacharacters, quoting characters, file expansion characters, parameter
expansion and command substitution characters, the characters / and =. The re?
placement string can contain any valid shell script including the metacharacters
listed above. The first word of each command in the replaced text, other than any
that are in the process of being replaced, will be tested for aliases. If the last
character of the alias value is a blank then the word following the alias will also
be checked for alias substitution. Aliases can be used to redefine built-in com?
mands but cannot be used to redefine the reserved words listed above. Aliases can
be created and listed with the alias command and can be removed with the unalias
command.
Aliasing is performed when scripts are read, not while they are executed. There?
fore, for an alias to take effect, the alias definition command has to be executed
before the command which references the alias is read.

The following aliases are compiled into the shell but can be unset or redefined: Page 7/82

autoload="?typeset -fu?

bool=?_Bool?

command=?command ?

compound=2typeset -C?

fc=hist

float="?typeset -IE?

functions=?typeset -f?

hash="7alias -t --?

history="7hist -I?

integer=2typeset -li?

nameref=?typeset -n?

nohup=?nohup ?

r=?hist -s?

redirect=?command exec?

source=?command .?

stop=2kill -s STOP?

suspend=2kill -s STOP "$$"?

type=?whence -v?

Tilde Substitution.

After alias substitution is performed, each word is checked to see if it begins
with an unquoted ?. For tilde substitution, word also refers to the word portion
of parameter expansion (see Parameter Expansion below). If it does, then the word
up to a/is checked to see if it matches a user name in the password database (See
getpwname(3).) If a match is found, the ? and the matched login name are replaced
by the login directory of the matched user. If no match is found, the original
text is left unchanged. A ? by itself, or in front of a /, is replaced by $HOME.
A ? followed by a + or - is replaced by the value of $PWD and $OLDPWD respectively.
A ? followed by {fd} where fd is a file descriptor number or the name of a variable
whose value is a file descriptor, is replaced by a string that is the equivalent to
the path name of the file or directory corresponding to this file descriptor.
In addition, when expanding a variable assignment, tilde substitution is attempted
when the value of the assignment begins with a ?, and when a ? appears after a :.

The : also terminates a ? login name. Page 8/82

Command Substitution.
The standard output from a command list enclosed in parentheses preceded by a dol?
lar sign ($(list)), or in a brace group preceded by a dollar sign (${ list;}),
or in a pair of grave accents (') may be used as part or all of a word; trailing
new-lines are removed. In the second case, the { and } are treated as a reserved
words so that { must be followed by a blank and } must appear at the beginning of
the line or follow a ;. In the third (obsolete) form, the string between the
guotes is processed for special quoting characters before the command is executed
(see Quoting below). The command substitution $(cat file) can be replaced by the
equivalent but faster $(<file). The command substitution $(n<#) will expand to the
current byte offset for file descriptor n. Except for the second form, the command
list is run in a subshell so that no side effects are possible. For the second
form, the final } will be recognized as a reserved word after any token.

Arithmetic Substitution.
An arithmetic expression enclosed in double parentheses preceded by a dollar sign (
$(()) is replaced by the value of the arithmetic expression within the double
parentheses.

Process Substitution.
Each command argument of the form <(list) or >(list) will run process list asyn?
chronously connected to some file in /dev/fd if this directory exists, or else a
fifo a temporary directory. The name of this file will become the argument to the
command. If the form with > is selected then writing on this file will provide in?
put for list. If < is used, then the file passed as an argument will contain the
output of the list process. For example,

paste <(cut -f1 filel) <(cut -f3 file2) | tee >(processl) >(process?2)

cuts fields 1 and 3 from the files filel and file2 respectively, pastes the results
together, and sends it to the processes processl and process2, as well as putting
it onto the standard output. Note that the file, which is passed as an argument to
the command, is a UNIX pipe(2) so programs that expect to Iseek(2) on the file will
not work.
Process substitution of the form <(list) can also be used with the < redirection
operator which causes the output of list to be standard input or the input for

whatever file descriptor is specified. Page 9/82

Parameter Expansion.

A parameter is a variable, one or more digits, or any of the characters *, @, #, ?,
-, $,and!. Avariable is denoted by a vname. To create a variable whose vname
contains a ., a variable whose vname consists of everything before the last . must
already exist. A variable has a value and zero or more attributes. Variables can
be assigned values and attributes by using the typeset special built-in command.
The attributes supported by the shell are described later with the typeset special
built-in command. Exported variables pass values and attributes to the environ?
ment.
The shell supports both indexed and associative arrays. An element of an array
variable is referenced by a subscript. A subscript for an indexed array is denoted
by an arithmetic expression (see Arithmetic evaluation below) between a [and a].
To assign values to an indexed array, use vname=(value ...) or set -A vname value
... . The value of all non-negative subscripts must be in the range of 0 through
4,194,303. A negative subscript is treated as an offset from the maximum current
index +1 so that -1 refers to the last element. Indexed arrays can be declared
with the -a option to typeset. Indexed arrays need not be declared. Any reference
to a variable with a valid subscript is legal and an array will be created if nec?
essary.
An associative array is created with the -A option to typeset. A subscript for an
associative array is denoted by a string enclosed between [and].
Referencing any array without a subscript is equivalent to referencing the array
with subscript 0.
The value of a variable may be assigned by writing:

vhame=value [vname=value] ...
or

vhame[subscript]=value [vname[subscript]=value] ...
Note that no space is allowed before or after the =.
Attributes assigned by the typeset special built-in command apply to all elements
of the array. An array element can be a simple variable, a compound variable or an
array variable. An element of an indexed array can be either an indexed array or
an associative array. An element of an associative array can also be either. To

refer to an array element that is part of an array element, concatenate the sub? Page 10/82

script in brackets. For example, to refer to the foobar element of an associative
array that is defined as the third element of the indexed array, use
${vname[3][foobar]}
A nameref is a variable that is a reference to another variable. A nameref is cre?
ated with the -n attribute of typeset. The value of the variable at the time of
the typeset command becomes the variable that will be referenced whenever the
nameref variable is used. The name of a nameref cannot contain a .. When a vari?
able or function name contains a ., and the portion of the name up to the first .
matches the name of a nameref, the variable referred to is obtained by replacing
the nameref portion with the name of the variable referenced by the nameref. If a
nameref is used as the index of a for loop, a name reference is established for
each item in the list. A nameref provides a convenient way to refer to the vari?
able inside a function whose name is passed as an argument to a function. For ex?
ample, if the name of a variable is passed as the first argument to a function, the
command

typeset -n var=$1
inside the function causes references and assignments to var to be references and
assignments to the variable whose name has been passed to the function.
If any of the floating point attributes, -E, -F, or -X, or the integer attribute,
-i, is set for vname, then the value is subject to arithmetic evaluation as de?

scribed below.

Positional parameters, parameters denoted by a number, may be assigned values with

the set special built-in command. Parameter $0 is set from argument zero when the
shell is invoked.
The character $ is used to introduce substitutable parameters.
${parameter}
The shell reads all the characters from ${ to the matching } as part of the
same word even if it contains braces or metacharacters. The value, if any,
of the parameter is substituted. The braces are required when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as
part of its name, when the variable name contains a .. The braces are also
required when a variable is subscripted unless it is part of an Arithmetic

Expression or a Conditional Expression. If parameter is one or more digits

Page 11/82

then it is a positional parameter. A positional parameter of more than one
digit must be enclosed in braces. If parameter is * or @, then all the po?
sitional parameters, starting with $1, are substituted (separated by a field
separator character). If an array vname with last subscript * @, or for in?
dex arrays of the form subl .. sub2. is used, then the value for each of
the elements between subl and sub?2 inclusive (or all elements for * and @)
is substituted, separated by the first character of the value of IFS.

${#parameter}
If parameter is * or @, the number of positional parameters is substituted.
Otherwise, the length of the value of the parameter is substituted.

${#vname[*]}

${#vname[@]}
The number of elements in the array vname is substituted.

${@vname}
Expands to the type name (See Type Variables below) or attributes of the
variable referred to by vname.

${Sparameter}
If $parameter expands to the name of a variable, this expands to the value
of that variable. Otherwise, it expands to the empty string. It is unde?
fined for special parameters.

${lvname}
Expands to the name of the variable referred to by vname. This will be
vhame except when vname is a name reference.

${lvname[subscript]}
Expands to name of the subscript unless subscript is *, @. or of the form
subl .. sub2. When subscript is *, the list of array subscripts for vname
is generated. For a variable that is not an array, the value is 0 if the
variable is set. Otherwise it is null. When subscript is @, same as above,
except that when used in double quotes, each array subscript yields a sepa?
rate argument. When subscript is of the form subl .. sub2 it expands to
the list of subscripts between subl and sub2 inclusive using the same quot?
ing rules as @.

${!prefix*}

Page 12/82

Expands to the names of the variables whose names begin with prefix.
${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise
substitute word.
${parameter:=word}
If parameter is not set or is null then set it to word; the value of the pa?
rameter is then substituted. Positional parameters may not be assigned to
in this way.
${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise,
print word and exit from the shell (if not interactive). If word is omitted
then a standard message is printed.
${parameter:+word}
If parameter is set and is non-null then substitute word; otherwise substi?
tute nothing.
In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or
is null:
print ${d:-$(pwd)}
If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.
${parameter:offset:length}
${parameter:offset}

Expands to the portion of the value of parameter starting at the character

(counting from 0) determined by expanding offset as an arithmetic expression

and consisting of the number of characters determined by the arithmetic ex?

pression defined by length. In the second form, the remainder of the value
is used. If A negative offset counts backwards from the end of parameter.
Note that one or more blanks is required in front of a minus sign to prevent
the shell from interpreting the operator as :-. If parameter is * or @, or

is an array name indexed by * or @, then offset and length refer to the ar?
ray index and number of elements respectively. A negative offset is taken

relative to one greater than the highest subscript for indexed arrays. The

Page 13/82

order for associate arrays is unspecified.

${parameter#pattern}

${parameter##pattern}
If the shell pattern matches the beginning of the value of parameter, then
the value of this expansion is the value of the parameter with the matched
portion deleted; otherwise the value of this parameter is substituted. In
the first form the smallest matching pattern is deleted and in the second
form the largest matching pattern is deleted. When parameter is @, *, or an
array variable with subscript @ or *, the substring operation is applied to
each element in turn.

${parameterYpattern}

${parameter%opattern}
If the shell pattern matches the end of the value of parameter, then the
value of this expansion is the value of the parameter with the matched part
deleted; otherwise substitute the value of parameter. In the first form the
smallest matching pattern is deleted and in the second form the largest
matching pattern is deleted. When parameter is @, *, or an array variable
with subscript @ or *, the substring operation is applied to each element in
turn.

${parameter/pattern/string}

${parameter//pattern/string}

${parameter/#pattern/string}

${parameter/%pattern/string}
Expands parameter and replaces the longest match of pattern with the given
string. Each occurrence of \n in string is replaced by the portion of pa?
rameter that matches the n-th sub-pattern. In the first form, only the
first occurrence of pattern is replaced. In the second form, each match for
pattern is replaced by the given string. The third form restricts the pat?
tern match to the beginning of the string while the fourth form restricts
the pattern match to the end of the string. When string is null, the pat?
tern will be deleted and the / in front of string may be omitted. When pa?
rameter is @, *, or an array variable with subscript @ or *, the substitu?

tion operation is applied to each element in turn. In this case, the string Page 14/82

portion of word will be re-evaluated for each element.

${parameterpattern}

${parameterpattern}

${parameter,pattern}

${parameter,,pattern}

Case modification. This expansion modifies the case of alphabetic charac?

ters in parameter. The pattern is expanded to produce a pattern just as

in pathname expansion. The ” operator converts lowercase characters match?

ing pattern to uppercase. The , operator converts matching uppercase char?

acters to lowercase. The ™ and ,, expansions convert all matched char?

acter in the expanded value. The " and, expansions match and convert

only the first character in the expanded value. If patternis omitted it

is treated like a ?, which matches every character. If parameteris @ or *,

or an array subscripted by @ or *, the case modification operation is ap?

plied to each element.

The following parameters are automatically set by the shell:

#

The number of positional parameters in decimal.

Options supplied to the shell on invocation or by the set command.
The decimal value returned by the last executed command.

The process number of this shell.

Initially, the value of _is an absolute pathname of the shell or

script being executed as passed in the environment. Subsequently it
is assigned the last argument of the previous command. This parame?
ter is not set for commands which are asynchronous. This parameter
is also used to hold the name of the matching MAIL file when checking
for mail. While defining a compound variable or a type, _ is ini?
tialized as a reference to the compound variable or type. When a
discipline function is invoked, _ is initialized as a reference to

the variable associated with the call to this function. Finally when

__is used as the name of the first variable of a type definition, the

new type is derived from the type of the first variable (See Type
Variables below.).

The process id or the pool name and job number of the last background

Page 15/82

command invoked or the most recent job put in the background with the
bg built-in command. Background jobs started in a named pool will be
in the form pool.number where pool is the pool name and number is the
job number within that pool.
.sh.command
When processing a DEBUG trap, this variable contains the current com?
mand line that is about to run.
.sh.edchar
This variable contains the value of the keyboard character (or se?
guence of characters if the first character is an ESC, ascii 033)
that has been entered when processing a KEYBD trap (see Key Bindings
below). If the value is changed as part of the trap action, then the
new value replaces the key (or key sequence) that caused the trap.
.sh.edcol
The character position of the cursor at the time of the most recent
KEYBD trap.
.sh.edmode
The value is set to ESC when processing a KEYBD trap while in vi in?
sert mode. (See Vi Editing Mode below.) Otherwise, .sh.edmode is
null when processing a KEYBD trap.
.sh.edtext
The characters in the input buffer at the time of the most recent
KEYBD trap. The value is null when not processing a KEYBD trap.
.sh.file
The pathname of the file than contains the current command.
.sh.fun
The name of the current function that is being executed.
.sh.level
Set to the current function depth. This can be changed inside a DE?
BUG trap and will set the context to the specified level.
.sh.lineno
Set during a DEBUG trap to the line number for the caller of each

function.

Page 16/82

.sh.match
An indexed array which stores the most recent match and sub-pattern
matches after conditional pattern matches that match and after vari?
ables expansions using the operators #, %, or /. The 0-th element
stores the complete match and the i-th. element stores the i-th sub?
match. For // the array is two dimensional with the first subscript
indicating the most recent match and sub-pattern match and the second
script indicating which match with O representing the first match.
The .sh.match variable becomes unset when the variable that has ex?
panded is assigned a new value.

.sh.math
Used for defining arithmetic functions (see Arithmetic evaluation be?
low). and stores the list of user defined arithmetic functions.

.sh.name
Set to the name of the variable at the time that a discipline func?
tion is invoked.

.sh.op_asthin
The directory where several shell built-in commands are bound to.
The default is /opt/ast/bin. When the value is /bin, then builtins
will be bound to /bin or /usr/bin depending on where the executable
is found. This variable can be set by including it in the SH_OPTIONS
variable.

.sh.pgrp
The current process group of this shell.

.sh.pwdfd
The file descriptor number for the present working directory.

.sh.sig
Set when executing a trap to the information contained in the sig?
info_t structure (See siginfo(2) for a description of this struc?
ture.)

.sh.subscript
Set to the name subscript of the variable at the time that a disci?

pline function is invoked. Page 17/82

.sh.subshell
The current depth for subshells and command substitution.

.sh.value
Set to the value of the variable at the time that the set or append
discipline function is invoked. When a user defined arithmetic func?
tion is invoked, the value of .sh.value is saved and .sh.value is set
to long double precision floating point. .sh.value is restored when
the function returns.

.sh.version
Set to a value that identifies the version of this shell.

KSH_VERSION
A name reference to .sh.version.

LINENO The current line number within the script or function being executed.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last option argument processed by the getopts built-
in command.

OPTIND The index of the last option argument processed by the getopts built-
in command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM Each time this variable is referenced, a random integer, uniformly
distributed between 0 and 32767, is generated. The sequence of ran?
dom numbers can be initialized by assigning a numeric value to RAN?
DOM.

REPLY This variable is set by the select statement and by the read built-in
command when no arguments are supplied.

SECONDS
Each time this variable is referenced, the number of seconds since
shell invocation is returned. If this variable is assigned a value,
then the value returned upon reference will be the value that was as?
signed plus the number of seconds since the assignment.

SHLVL An integer variable the is incremented each time the shell is invoked

and is exported. If SHLVL is not in the environment when the shell

Page 18/82

is invoked, it is set to 1.
The following variables are used by the shell:

CDPATH The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select lists.

EDITOR If the VISUAL variable is not set, the value of this variable will be
checked for the patterns as described with VISUAL below and the cor?
responding editing option (see Special Command set below) will be
turned on.

ENV If this variable is set, then parameter expansion, command substitu?
tion, and arithmetic substitution are performed on the value to gen?
erate the pathname of the script that will be executed when the shell
is invoked interactively (see Invocation below). This file is typi?
cally used for alias and function definitions. The default value is
$HOME/ kshrc. On systems that support a system wide /etc/ksh.kshrc
initialization file, if the filename generated by the expansion of
ENV begins with /./ or ././ the system wide initialization file will
not be executed.

FCEDIT Obsolete name for the default editor name for the hist command.
FCEDIT is not used when HISTEDIT is set.

FIGNORE
A pattern that defines the set of filenames that will be ignored when
performing filename matching.

FPATH The search path for function definitions. The directories in this
path are searched for a file with the same name as the function or
command when a function with the -u attribute is referenced and when
a command is not found. If an executable file with the name of that
command is found, then it is read and executed in the current envi?
ronment. Unlike PATH, the current directory must be represented ex?
plicitly by . rather than by adjacent : characters or a beginning or
ending :.

HISTCMD Page 19/82

Number of the current command in the history file.

HISTEDIT
Name for the default editor name for the hist command.

HISTFILE
If this variable is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command his?
tory (see Command Re-entry below).

HISTSIZE
If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will be
greater than or equal to this number. The default is 512.

HOME The default argument (home directory) for the cd command.

IFS Internal field separators, normally space, tab, and new-line that are
used to separate the results of command substitution or parameter ex?
pansion and to separate fields with the built-in command read. The
first character of the IFS variable is used to separate arguments for
the "$*" substitution (see Quoting below). Each single occurrence of
an IFS character in the string to be split, that is not in the iss?
pace character class, and any adjacent characters in IFS that are in
the isspace character class, delimit a field. One or more characters
in IFS that belong to the isspace character class, delimit a field.

In addition, if the same isspace character appears consecutively in?
side IFS, this character is treated as if it were not in the isspace
class, so that if IFS consists of two tab characters, then two adja?

cent tab characters delimit a null field.

JOBMAX This variable defines the maximum number running background jobs that

can run at atime. When this limit is reached, the shell will wait
for a job to complete before staring a new job.
LANG This variable determines the locale category for any category not

specifically selected with a variable starting with LC__ or LANG.

LC_ALL This variable overrides the value of the LANG variable and any other

LC_ variable.

LC_COLLATE

Page 20/82

This variable determines the locale category for character collation
information.

LC_CTYPE
This variable determines the locale category for character handling
functions. It determines the character classes for pattern matching
(see File Name Generation below).

LC_NUMERIC
This variable determines the locale category for the decimal point
character.

LINES |If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL If this variable is set to the name of a malil file and the MAILPATH
variable is not set, then the shell informs the user of arrival of
mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check
for changes in the modification time of any of the files specified by
the MAILPATH or MAIL variables. The default value is 600 seconds.
When the time has elapsed the shell will check before issuing the
next prompt.

MAILPATH
A colon (:) separated list of file names. If this variable is set,
then the shell informs the user of any modifications to the specified
files that have occurred within the last MAILCHECK seconds. Each
file name can be followed by a ? and a message that will be printed.
The message will undergo parameter expansion, command substitution,
and arithmetic substitution with the variable $_ defined as the name
of the file that has changed. The default message is you have mail
in$_.

PATH The search path for commands (see Execution below). The user may not
change PATH if executing under rksh (except in .profile).

PS1 The value of this variable is expanded for parameter expansion, com?

Page 21/82

mand substitution, and arithmetic substitution to define the primary
prompt string which by defaultis ©"$ ". The character ! in the
primary prompt string is replaced by the command number (see Command
Re-entry below). Two successive occurrences of ! will produce a
single ! when the prompt string is printed.

PS2 Secondary prompt string, by default "> ".

PS3 Selection prompt string used within a select loop, by default " #?

PS4 The value of this variable is expanded for parameter evaluation, com?
mand substitution, and arithmetic substitution and precedes each line
of an execution trace. By default, PS4 is "+ ". In addition when
PS4 is unset, the execution trace prompt is also ~ '+ ".

SH_OPTIONS
The value consists of blank separated name=value words. For each
name that is the name of a known option the variable .sh.opt_name is
assigned value. Currently the only valid option name is astbin.

SHELL The pathname of the shell is kept in the environment. At invocation,
if the basename of this variable is rsh, rksh, or krsh, then the
shell becomes restricted.

TIMEFORMAT
The value of this parameter is used as a format string specifying how
the timing information for pipelines prefixed with the time reserved
word should be displayed. The % character introduces a format se?
guence that is expanded to a time value or other information. The
format sequences and their meanings are as follows.
%% A literal %.
%[p][lJR The elapsed time in seconds.
%[p][llU The number of CPU seconds spent in user mode.
%[p][l]S The number of CPU seconds spent in system mode.
%[p][l]C The total number of CPU seconds; i.e., the sum of the time

spent in user plus system mode.

%P The CPU percentage (i.e., CPU utilization), computed as C /

R. Page 22/82

The brackets denote optional portions. The optional p is a digit
specifying the precision, the number of fractional digits after a
decimal point. A value of O causes no decimal point or fraction to
be output. At most three places after the decimal point can be dis?
played; values of p greater than 3 are treated as 3. If p is not
specified, the value 3 is used.

The optional | specifies a longer format, including hours if greater
than zero, minutes, and seconds of the form HHhMMmSS.FFs. The value
of p determines whether or not the fraction is included.

All other characters are output without change and a trailing newline
is added. If unset, the default value,
$'\nreal\t%2IR\nusent%2lU\nsys%?2IS', is used. If the value is null,
no timing information is displayed.

TMOUT If setto a value greater than zero, TMOUT will be the default time?
out value for the read built-in command. The select compound command
terminates after TMOUT seconds when input is from a terminal. Other?
wise, the shell will terminate if a line is not entered within the
prescribed number of seconds while reading from a terminal. (Note
that the shell can be compiled with a maximum bound for this value
which cannot be exceeded.)

VISUAL If the value of this variable matches the pattern *[VV][li]*, then
the vi option (see Special Command set below) is turned on. If the
value matches the pattern *gmacs* , the gmacs option is turned on.

If the value matches the pattern *macs*, then the emacs option will

be turned on. The value of VISUAL overrides the value of EDITOR.
The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK, FCEDIT,
TMOUT and IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell
(although HOME is set by login(1)). On some systems MAIL and SHELL are also set by
login(1).

Field Splitting.

After parameter expansion and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS) and split into

distinct fields where such characters are found. Explicit null fields ("™ or ??) Page 23/82

are retained. Implicit null fields (those resulting from parameters that have no
values or command substitutions with no output) are removed.
If the braceexpand (-B) option is set then each of the fields resulting from IFS
are checked to see if they contain one or more of the brace patterns {*,*},
{11..12} , {n1..n2} , {n1..n2% fmt} , {n1..n2 ..n3}, or {n1..n2 ..n3%fmt} , where
* represents any character, 11,12 are letters and n1,n2,n3 are signed numbers and
fmt is a format specified as used by printf. In each case, fields are created by
prepending the characters before the { and appending the characters after the } to
each of the strings generated by the characters between the { and }. The resulting
fields are checked to see if they have any brace patterns.
In the first form, a field is created for each string between { and ,, between ,
and ,, and between , and }. The string represented by * can contain embedded
matching { and } without quoting. Otherwise, each { and } with * must be quoted.
In the seconds form, I1 and I2 must both be either upper case or both be lower case
characters in the C locale. In this case a field is created for each character
from 11 thru 12.
In the remaining forms, a field is created for each number starting at n1 and con?
tinuing until it reaches n2 incrementing nl by n3. The cases where n3 is not spec?
ified behave as if n3 where 1 if n1<=n2 and -1 otherwise. If forms which specify
%fmt any format flags, widths and precisions can be specified and fmt can end in
any of the specifiers cdiouxX. For example, {a,z{1..5..3%02d}{b..c}x expands to
the 8 fields, a0lbx, aOlcx, a04bx, a04cx, z01bx, z01cx, z04bx and z4cx.

File Name Generation.
Following splitting, each field is scanned for the characters *, ?, (, and [unless
the -f option has been set. If one of these characters appears, then the word is
regarded as a pattern. Each file name component that contains any pattern charac?
ter is replaced with a lexicographically sorted set of names that matches the pat?
tern from that directory. If no file name is found that matches the pattern, then
that component of the filename is left unchanged unless the pattern is prefixed
with ?(N) in which case it is removed as described below. If FIGNORE is set, then
each file name component that matches the pattern defined by the value of FIGNORE
is ignored when generating the matching filenames. The names . and .. are also

ignored. If FIGNORE is not set, the character . at the start of each file name Page 24/82

component will be ignored unless the first character of the pattern corresponding

to this component is the character . itself. Note, that for other uses of pattern

matching the / and . are not treated specially.

*

[.]

A pattern-list is a list of one or more patterns separated from each other with a &
or ?. A & signifies that all patterns must be matched whereas ? requires that only

one pattern be matched. Composite patterns can be formed with one or more of the

Matches any string, including the null string. When used for file?
name expansion, if the globstar option is on, an isolated pattern of
two adjacent *'s will match all files and zero or more directories
and subdirectories. If followed by a/then only directories and
subdirectories will match.

Matches any single character.

Matches any one of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair, in?
clusive. If the first character following the opening [isa! or*

then any character not enclosed is matched. A - can be included in
the character set by putting it as the first or last character.

Within [and], character classes can be specified with the syntax
[:class:] where class is one of the following classes defined in the
ANSI-C standard: (Note that word is equivalent to alnum plus the
character _.)

alnum alpha blank cntrl digit graph lower print punct space upper
word xdigit

Within [and], an equivalence class can be specified with the syntax
[=c=] which matches all characters with the same primary collation
weight (as defined by the current locale) as the character ¢. Within

[and], [.symbol.] matches the collating symbol symbol.

following sub-patterns:

?(pattern-list)

Optionally matches any one of the given patterns.

*(pattern-list)

Matches zero or more occurrences of the given patterns.

+(pattern-list)

Page 25/82

Matches one or more occurrences of the given patterns.
{n}(pattern-list)
Matches n occurrences of the given patterns.
{m,n}(pattern-list)
Matches from m to n occurrences of the given patterns. If m is omit?
ted, O will be used. If nis omitted at least m occurrences will be
matched.
@ (pattern-list)
Matches exactly one of the given patterns.
I(pattern-list)
Matches anything except one of the given patterns.
By default, each pattern, or sub-pattern will match the longest string possible
consistent with generating the longest overall match. If more than one match is
possible, the one starting closest to the beginning of the string will be chosen.
However, for each of the above compound patterns a - can be inserted in front of
the (to cause the shortest match to the specified pattern-list to be used.
When pattern-list is contained within parentheses, the backslash character \ is
treated specially even when inside a character class. All ANSI-C character es?
capes are recognized and match the specified character. In addition the following
escape sequences are recognized:
\d Matches any character in the digit class.
\D Matches any character not in the digit class.
\s Matches any character in the space class.
\S Matches any character not in the space class.
\w Matches any character in the word class.
\W Matches any character not in the word class.
A pattern of the form %(pattern-pair(s)) is a sub-pattern that can be used to match
nested character expressions. Each pattern-pair is a two character sequence which
cannot contain & or ?. The first pattern-pair specifies the starting and ending
characters for the match. Each subsequent pattern-pair represents the beginning
and ending characters of a nested group that will be skipped over when counting
starting and ending character matches. The behavior is unspecified when the first

character of a pattern-pair is alpha-numeric except for the following: Page 26/82

D Causes the ending character to terminate the search for this pattern
without finding a match.

E Causes the ending character to be interpreted as an escape character.

L Causes the ending character to be interpreted as a quote character
causing all characters to be ignored when looking for a match.

Q Causes the ending character to be interpreted as a quote character
causing all characters other than any escape character to be ignored
when looking for a match.

Thus, %({}Q"E\), matches characters starting at { until the matching } is found not
counting any { or } that is inside a double quoted string or preceded by the escape
character \. Without the {} this pattern matches any C language string.

Each sub-pattern in a composite pattern is numbered, starting at 1, by the location
of the (' within the pattern. The sequence \n, where nis a single digit and \n
comes after the n-th. sub-pattern, matches the same string as the sub-pattern it?
self.

Finally a pattern can contain sub-patterns of the form ?(options:pattern-list),
where either options or :pattern-list can be omitted. Unlike the other compound
patterns, these sub-patterns are not counted in the numbered sub-patterns. :pat?
tern-list must be omitted for options F, G, N, and V below. If options is
present, it can consist of one or more of the following:

+ Enable the following options. This is the default.

- Disable the following options.

E The remainder of the pattern uses extended regular expression syntax
like the egrep(1) command.

F The remainder of the pattern uses fgrep(1) expression syntax.

G The remainder of the pattern uses basic regular expression syntax
like the grep(1) command.

K The remainder of the pattern uses shell pattern syntax. This is the
default.

N This is ignored. However, when it is the first letter and is used
with file name generation, and no matches occur, the file pattern ex?
pands to the empty string.

X The remainder of the pattern uses augmented regular expression syntax

Page 27/82

like the xgrep(1) command.
P The remainder of the pattern uses perl(1) regular expression syntax.
Not all perl regular expression syntax is currently implemented.

V The remainder of the pattern uses System V regular expression syntax.

i Treat the match as case insensitive.

g File the longest match (greedy). This is the default.

| Left anchor the pattern. This is the default for K style patterns.

r Right anchor the pattern. This is the default for K style patterns.
If both options and :pattern-list are specified, then the options apply only to
pattern-list. Otherwise, these options remain in effect until they are disabled by
a subsequent ?(...) or at the end of the sub-pattern containing ?(...).

Quoting.

Each of the metacharacters listed earlier (see Definitions above) has a special
meaning to the shell and causes termination of a word unless quoted. A character
may be quoted (i.e., made to stand for itself) by preceding it with a\. The pair
\new-line is removed. All characters enclosed between a pair of single quote marks
(??) that is not preceded by a $ are quoted. A single quote cannot appear within
the single quotes. A single quoted string preceded by an unquoted $ is processed
as an ANSI-C string except for the following:
\0 Causes the remainder of the string to be ignored.
\E Equivalent to the escape character (ascii 033),
\e Equivalent to the escape character (ascii 033),
\cx Expands to the character control-x.
\C[.name.]

Expands to the collating element name.

Inside double quote marks ("), parameter and command substitution occur and \
quotes the characters \, ', ", and $. A $ in front of a double quoted string will

be ignored in the "C" or "POSIX" locale, and may cause the string to be replaced by
a locale specific string otherwise. The meaning of $* and $@ is identical when not
quoted or when used as a variable assignment value or as a file name. However,
when used as a command argument, "$*" is equivalent to "$1d$2d...", where d is the

first character of the IFS variable, whereas "$@" is equivalent to "$1" "$2"

Inside grave quote marks (), \ quotes the characters \, *, and $. If the grave Page 28/82

guotes occur within double quotes, then \ also quotes the character ".
The special meaning of reserved words or aliases can be removed by quoting any
character of the reserved word. The recognition of function names or built-in com?
mand names listed below cannot be altered by quoting them.

Arithmetic Evaluation.
The shell performs arithmetic evaluation for arithmetic substitution, to evaluate
an arithmetic command, to evaluate an indexed array subscript, and to evaluate ar?
guments to the built-in commands shift and let. Evaluations are performed using
double precision floating point arithmetic or long double precision floating point
for systems that provide this data type. Floating point constants follow the ANSI-
C programming language floating point conventions. The floating point constants
Nan and Inf can be use to represent "not a number" and infinity respectively. In?
teger constants follow the ANSI-C programming language integer constant conventions
although only single byte character constants are recognized and character casts
are not recognized. In addition constants can be of the form [base#]n where base
is a decimal number between two and sixty-four representing the arithmetic base and
n is a number in that base. The digits above 9 are represented by the lower case
letters, the upper case letters, @, and _ respectively. For bases less than or
equal to 36, upper and lower case characters can be used interchangeably.
An arithmetic expression uses the same syntax, precedence, and associativity of ex?
pression as the C language. All the C language operators that apply to floating
point quantities can be used. In addition, the operator ** can be used for expo?
nentiation. It has higher precedence than multiplication and is left associative.
In addition, when the value of an arithmetic variable or sub-expression can be rep?
resented as a long integer, all C language integer arithmetic operations can be
performed. Variables can be referenced by name within an arithmetic expression
without using the parameter expansion syntax. When a variable is referenced, its
value is evaluated as an arithmetic expression.
Any of the following math library functions that are in the C math library can be
used within an arithmetic expression:
abs acos acosh asin asinh atan atan2 atanh cbrt ceil copysign cos cosh erf erfc exp
exp2 expm1 fabs fdim finite floor fma fmax fmin fmod hypot ilogb int isfinite sinf

isnan isnormal issubnormal issubordered iszero jO j1 jn lgamma log log10 log2 logb Page 29/82

nearbyint pow remainder rint round scanb signbit sin sinh sgrt tan tanh tgamma
trunc yO y1 yn In addition, arithmetic functions can be defined as shell functions
with a variant of the function name syntax,
function .sh.math.name ident ... { list ;}

where name is the function name used in the arithmetic expression. If the

calling argument corresponding to ident is the name of an array variable,

then ident is a name reference to this array. Otherwise, ident is a refer?

ence to long double precision floating point variable containing the value

from the caller. The value of .sh.value when the function returns is the

value of this function. User defined functions can take up to 3 arguments

and override C math library functions.
An internal representation of a variable as a double precision floating point can
be specified with the -E [n], -F [n], or -X [n] option of the typeset special
built-in command. The -E option causes the expansion of the value to be repre?
sented using scientific notation when it is expanded. The optional option argument
n defines the number of significant figures. The -F option causes the expansion to
be represented as a floating decimal number when it is expanded. The -X option
cause the expansion to be represented using the %a format defined by ISO C-99. The
optional option argument n defines the number of places after the decimal (or
radix) point in this case.
An internal integer representation of a variable can be specified with the -i [n]
option of the typeset special built-in command. The optional option argument n
specifies an arithmetic base to be used when expanding the variable. If you do not
specify an arithmetic base, base 10 will be used.
Arithmetic evaluation is performed on the value of each assignment to a variable
with the -E, -F, -X, or -i attribute. Assigning a floating point number to a vari?
able whose type is an integer causes the fractional part to be truncated.
Inside an arithmetic expression, all integer and floating point variables can be
following by .MIN, .MAX, or .DIG to give the maximum value, minimum value, or num?
ber of significant digits for variables of that type.
Floating point variables can be also followed by .INT_MAX or .INT_MIN to give the
largest or smallest integers represented by that type.

Floating point variables can also be followed by .EPSILON to give the distance to

Page 30/82

the next floating point number of that type. Floating point variables can be fol?
lowed by MAX_10_EXP to give the maximum base 10 exponent that can be represented by
that type.
Inside an arithmetic expression, the following constants are recongnized and are of
type typeset-IE.
NaN Not a number. Itis case insensitive.

Inf Infinity. It is case insensitive.

E
PI
1 Pl 1.0/PIL
2 Pl 2.0/PI.
PL2 PI2.0
Pl_4 Pl/4.0.

SQRTPI sqrt(Pl).
SQRT2 sqrt(2.0).
SQRT1_2
sqrt(1./2.)
LOGE log(E)
LOG10E log10(E)
LN2 log(2.0)
LOGZ2E log2(E)
Array Sorting.
The -s option of the set built-in command can be used to sort its arguments or to
sort indexed arrays, indexed arrays of compound variables, and indexed arrays of
types (see "Type Variables" section below). By default the sort order is defined
by the current locale. For compound variables and for types, the -K option for set
can be followed by a comma separated list of sub-fields to sort on. Each field can
be followed by a : and the letter n for numerical sorting and/or r for reverse
sorting. For an plain indexed array the -K option can be followed by :n and :r
for numerical or reverse sorting.
Prompting.
When used interactively, the shell prompts with the value of PS1 after expanding it

for parameter expansion, command substitution, and arithmetic substitution, before Page 31/82

reading a command. In addition, each single ! in the prompt is replaced by the
command number. A !l is required to place ! in the prompt. If at any time a
new-line is typed and further input is needed to complete a command, then the sec?
ondary prompt (i.e., the value of PS2) is issued.
Conditional Expressions.
A conditional expression is used with the [[compound command to test attributes of
files and to compare strings. Field splitting and file name generation are not
performed on the words between [[and]]. Each expression can be constructed from
one or more of the following unary or binary expressions:
string True, if string is not null.
-afile
Same as -e below. This is obsolete.
-b file
True, if file exists and is a block special file.
-c file
True, if file exists and is a character special file.
-d file
True, if file exists and is a directory.
-e file
True, if file exists.
-f file
True, if file exists and is an ordinary file.
-g file
True, if file exists and it has its setgid bit set.
-k file
True, if file exists and it has its sticky bit set.
-n string
True, if length of string is non-zero.
-0 ?option
True, if option named option is a valid option name.
-0 option
True, if option named option is on.

-p file

Page 32/82

True, if file exists and is a fifo special file or a pipe.
-r file

True, if file exists and is readable by current process.
-s file

True, if file exists and has size greater than zero.

-t fildes

True, if file descriptor number fildes is open and associated with a termi?

nal device.
-u file
True, if file exists and it has its setuid bit set.
-V name
True, if variable name is a valid variable name and is set.
-w file
True, if file exists and is writable by current process.
-x file
True, if file exists and is executable by current process. If file exists
and is a directory, then true if the current process has permission to
search in the directory.
-z string
True, if length of string is zero.
-L file
True, if file exists and is a symbolic link.
-h file
True, if file exists and is a symbolic link.
-N file
True, if file exists and the modification time is greater than the last ac?
cess time.
-O file
True, if file exists and is owned by the effective user id of this process.
-G file
True, if file exists and its group matches the effective group id of this
process.

-R name

Page 33/82

True if variable name is a name reference.
-S file
True, if file exists and is a socket.
filel -nt file2
True, if filel exists and file2 does not, or filel is newer than file2.
filel -ot file2
True, if file2 exists and filel does not, or filel is older than file2.
filel -ef file2
True, if filel and file2 exist and refer to the same file.
string == pattern
True, if string matches pattern. Any part of pattern can be quoted to cause
it to be matched as a string. With a successful match to a pattern, the
.sh.match array variable will contain the match and sub-pattern matches.
string = pattern
Same as == above, but is obsolete.
string != pattern

True, if string does not match pattern. When the string matches the pattern

the .sh.match array variable will contain the match and sub-pattern matches.

string =? ere
True if string matches the pattern ?(E)ere where ere is an extended regular
expression.
stringl < string2
True, if stringl comes before string2 based on the current locale.
stringl > string2
True, if stringl comes after string2 based on the current locale.
The following obsolete arithmetic comparisons are also permitted:
expl -eq exp2
True, if expl is equal to exp2.
expl -ne exp2
True, if expl is not equal to exp2.
expl -It exp2
True, if expl is less than exp2.

expl -gt exp2

Page 34/82

True, if expl is greater than exp2.
expl -le exp2

True, if expl is less than or equal to exp2.
expl -ge exp2

True, if expl is greater than or equal to exp2.
In each of the above expressions, if file is of the form /dev/fd/n, where n is an
integer, then the test is applied to the open file whose descriptor number is n.
A compound expression can be constructed from these primitives by using any of the
following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
I expression

True if expression is false.
expressionl && expression2

True, if expressionl and expression2 are both true.
expressionl ?? expression2

True, if either expressionl or expression2 is true.

Input/Output.

Before a command is executed, its input and output may be redirected using a spe?
cial notation interpreted by the shell. The following may appear anywhere in a
simple-command or may precede or follow a command and are not passed on to the in?
voked command. Command substitution, parameter expansion, and arithmetic substitu?
tion occur before word or digit is used except as noted below. File name genera?
tion occurs only if the shell is interactive and the pattern matches a single file.
Field splitting is not performed.
In each of the following redirections, if file is of the form /dev/sctp/host/port,
/dev/tcp/host/port, or /dev/udp/host/port, where hostis a hostname or host ad?
dress, and port is a service given by name or an integer port number, then the re?
direction attempts to make a tcp, sctp or udp connection to the corresponding
socket.
No intervening space is allowed between the characters of redirection operators.
<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file

Page 35/82

>|word

>:word

>>word

<>word

<>;word

does not exist then it is created. If the file exists, and the no?
clobber option is on, this causes an error; otherwise, it is trun?
cated to zero length.
Same as >, except that it overrides the noclobber option.
Write output to a temporary file. If the command completes success?
fully rename it to word, otherwise, delete the temporary file.
>:word cannot be used with the exec(2). built-in.
Use file word as standard output. If the file exists, then output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.

Open file word for reading and writing as standard input.

The same as <>word except that if the command completes successfully,

word is truncated to the offset at command completion. <>;word can?

not be used with the exec(2). built-in.

<<[-]Jword The shell inputis read up to a line that is the same as word after

<<<word

<&digit

any quoting has been removed, or to an end-of-file. No parameter
substitution, command substitution, arithmetic substitution or file
name generation is performed on word. The resulting document, called
a here-document, becomes the standard input. If any character of
word is quoted, then no interpretation is placed upon the characters

of the document; otherwise, parameter expansion, command substitu?
tion, and arithmetic substitution occur, \new-line is ignored, and \

must be used to quote the characters\, $, *. If - is appended to

<<, then all leading tabs are stripped from word and from the docu?
ment. If # is appended to <<, then leading spaces and tabs will be
stripped off the first line of the document and up to an equivalent
indentation will be stripped from the remaining lines and from word.

A tab stop is assumed to occur at every 8 columns for the purposes of

determining the indentation.

A short form of here document in which word becomes the contents of

the here-document after any parameter expansion, command substitu?
tion, and arithmetic substitution occur.

The standard input is duplicated from file descriptor digit (see

Page 36/82

dup(2)). Similarly for the standard output using >&digit.
<&digit- The file descriptor given by digit is moved to standard input. Simi?

larly for the standard output using >&digit-.

<&- The standard input is closed. Similarly for the standard output us?
ing >&-.

<&p The input from the co-process is moved to standard input.

>&p The output to the co-process is moved to standard output.

<#((expr)) Evaluate arithmetic expression expr and position file descriptor O to
the resulting value bytes from the start of the file. The variables
CUR and EOF evaluate to the current offset and end-of-file offset re?
spectively when evaluating expr.
>#((offset)) The same as <# except applies to file descriptor 1.
<#pattern = Seeks forward to the beginning of the next line containing pattern.
<##pattern The same as <# except that the portion of the file that is skipped is
copied to standard output.
If one of the above is preceded by a digit, with no intervening space, then the
file descriptor number referred to is that specified by the digit (instead of the
default O or 1). If one of the above, other than >&- and the ># and <# forms, is
preceded by {varname} with no intervening space, then a file descriptor number > 10
will be selected by the shell and stored in the variable varname. If >&- or the
any of the ># and <# forms is preceded by {varname} the value of varname defines
the file descriptor to close or position. For example:
. 2>&1
means file descriptor 2 is to be opened for writing as a duplicate of file descrip?
tor 1 and
exec {n}<file
means open file named file for reading and store the file descriptor number in
variable n.
The order in which redirections are specified is significant. The shell evaluates
each redirection in terms of the (file descriptor, file) association at the time of
evaluation. For example:
... 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file de?

Page 37/82

scriptor 2 with the file associated with file descriptor 1 (i.e. fname). If the
order of redirections were reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be
associated with file fname.
If a command is followed by & and job control is not active, then the default stan?
dard input for the command is the empty file /dev/null. Otherwise, the environment
for the execution of a command contains the file descriptors of the invoking shell
as modified by input/output specifications.
Environment.

The environment (see environ(7)) is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The names must be
identifiers and the values are character strings. The shell interacts with the en?
vironment in several ways. On invocation, the shell scans the environment and cre?
ates a variable for each name found, giving it the corresponding value and at?
tributes and marking it export. Executed commands inherit the environment. If the
user modifies the values of these variables or creates new ones, using the export
or typeset -x commands, they become part of the environment. The environment seen
by any executed command is thus composed of any hame-value pairs originally inher?
ited by the shell, whose values may be modified by the current shell, plus any ad?
ditions which must be noted in export or typeset -x commands.
The environment for any simple-command or function may be augmented by prefixing it
with one or more variable assignments. A variable assignment argument is a word of
the form identifier=value. Thus:

TERM=450 cmd args and

(export TERM; TERM=450; cmd args)
are equivalent (as far as the above execution of cmd is concerned except for spe?
cial built-in commands listed below - those that are preceded with a dagger).
If the obsolete -k option is set, all variable assignment arguments are placed in
the environment, even if they occur after the command name. The following first
prints a=b c and then c:

echoa=bc

set -k

echo a=bc Page 38/82

This feature is intended for use with scripts written for early versions of the
shell and its use in new scripts is strongly discouraged. It is likely to disap?
pear someday.

Functions.
For historical reasons, there are two ways to define functions, the name() syntax
and the function name syntax, described in the Commands section above. Shell func?
tions are read in and stored internally. Alias names are resolved when the func?
tion is read. Functions are executed like commands with the arguments passed as
positional parameters. (See Execution below.)
Functions defined by the function name syntax and called by name execute in the
same process as the caller and share all files and present working directory with
the caller. Traps caught by the caller are reset to their default action inside
the function. A trap condition that is not caught or ignored by the function
causes the function to terminate and the condition to be passed on to the caller.
A trap on EXIT set inside a function is executed in the environment of the caller
after the function completes. Ordinarily, variables are shared between the calling
program and the function. However, the typeset special built-in command used
within a function defines local variables whose scope includes the current func?
tion. They can be passed to functions that they call in the variable assignment
list that precedes the call or as arguments passed as name references. Errors
within functions return control to the caller.
Functions defined with the name() syntax and functions defined with the function
name syntax that are invoked with the . special built-in are executed in the
caller's environment and share all variables and traps with the caller. Errors
within these function executions cause the script that contains them to abort.
The special built-in command return is used to return from function calls.
Function names can be listed with the -f or +f option of the typeset special built-
in command. The text of functions, when available, will also be listed with -f.
Functions can be undefined with the -f option of the unset special built-in com?
mand.
Ordinarily, functions are unset when the shell executes a shell script. Functions
that need to be defined across separate invocations of the shell should be placed

in a directory and the FPATH variable should contain the name of this directory. Page 39/82

They may also be specified in the ENV file.

Discipline Functions.
Each variable can have zero or more discipline functions associated with it. The
shell initially understands the discipline names get, set, append, and unset but
can be added when defining new types. On most systems others can be added at run
time via the C programming interface extension provided by the builtin built-in
utility. If the get discipline is defined for a variable, it is invoked whenever
the given variable is referenced. If the variable .sh.value is assigned a value
inside the discipline function, the referenced variable will evaluate to this value
instead. If the set discipline is defined for a variable, it is invoked whenever
the given variable is assigned a value. If the append discipline is defined for a
variable, it is invoked whenever a value is appended to the given variable. The
variable .sh.value is given the value of the variable before invoking the disci?
pline, and the variable will be assigned the value of .sh.value after the disci?
pline completes. If .sh.value is unset inside the discipline, then that value is
unchanged. If the unset discipline is defined for a variable, it is invoked when?
ever the given variable is unset. The variable will not be unset unless itis un?
set explicitly from within this discipline function.
The variable .sh.name contains the name of the variable for which the discipline
function is called, .sh.subscript is the subscript of the variable, and .sh.value
will contain the value being assigned inside the set discipline function. The
variable _is a reference to the variable including the subscript if any. For the
set discipline, changing .sh.value will change the value that gets assigned. Fi?
nally, the expansion ${var.name}, when name is the name of a discipline, and there
is no variable of this name, is equivalent to the command substitution ${
var.name;}.

Name Spaces.
Commands and functions that are executed as part of the list of a namespace command
that modify variables or create new ones, create a new variable whose name is the
name of the name space as given by identifier preceded by .. When a variable whose
name is name is referenced, it is first searched for using .identifier.name. Simi?
larly, a function defined by a command in the namespace list is created using the

name space name preceded by a .. Page 40/82

When the list of a namespace command contains a namespace command, the names of
variables and functions that are created consist of the variable or function name
preceded by the list of identifiers each preceded by ..
Outside of a name space, a variable or function created inside a name space can be
referenced by preceding it with the name space name.
By default, variables staring with .sh are in the sh name space.

Type Variables.
Typed variables provide a way to create data structure and objects. A type can be
defined either by a shared library, by the enum built-in command described below,
or by using the new -T option of the typeset built-in command. With the -T option
of typeset, the type name, specified as an option argument to -T, is set with a
compound variable assignment that defines the type. Function definitions can ap?
pear inside the compound variable assignment and these become discipline functions
for this type and can be invoked or redefined by each instance of the type. The
function name create is treated specially. It is invoked for each instance of the
type that is created but is not inherited and cannot be redefined for each in?
stance.
When a type is defined a special built-in command of that name is added. These
built-ins are declaration commands and follow the same expansion rules as all the
special built-in commands defined below that are preceded by ??. These commands
can subsequently be used inside further type definitions. The man page for these
commands can be generated by using the --man option or any of the other -- options
described with getopts. The -r, -a, -A, -h, and -S options of typeset are permit?
ted with each of these new built-ins.
An instance of a type is created by invoking the type name followed by one or more
instance names. Each instance of the type is initialized with a copy of the sub-
variables except for sub-variables that are defined with the -S option. Variables
defined with the -S are shared by all instances of the type. Each instance can
change the value of any sub-variable and can also define new discipline functions
of the same names as those defined by the type definition as well as any standard
discipline names. No additional sub-variables can be defined for any instance.
When defining a type, if the value of a sub-variable is not set and the -r attri?

bute is specified, it causes the sub-variable to be a required sub-variable. When? Page 41/82

ever an instance of a type is created, all required sub-variables must be speci?
fied. These sub-variables become readonly in each instance.
When unset is invoked on a sub-variable within a type, and the -r attribute has not
been specified for this field, the value is reset to the default value associative
with the type. Invoking unset on a type instance not contained within another type
deletes all sub-variables and the variable itself.
A type definition can be derived from another type definition by defining the first
sub-variable name as _ and defining its type as the base type. Any remaining defi?
nitions will be additions and modifications that apply to the new type. If the new
type name is the same as that of the base type, the type will be replaced and the
original type will no longer be accessible.
The typeset command with the -T and no option argument or operands will write all
the type definitions to standard output in a form that can be read in to create all
the types.

Jobs.
If the monitor option of the set command is turned on, an interactive shell asso?
ciates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started asyn?
chronously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had
one (top-level) process, whose process id was 1234.
This paragraph and the next require features that are not in all versions of UNIX
and may not apply. If you are running a job and wish to do something else you may
hit the key ~Z (control-Z) which sends a STOP signal to the current job. The shell
will then normally indicate that the job has been “Stopped', and print another
prompt. You can then manipulate the state of this job, putting it in the back?
ground with the bg command, or run some other commands and then eventually bring
the job back into the foreground with the foreground command fg. A ~Z takes effect
immediately and is like an interrupt in that pending output and unread input are
discarded when it is typed.
A job being run in the background will stop if it tries to read from the terminal.

Background jobs are normally allowed to produce output, but this can be disabled by Page 42/82

giving the command stty tostop. If you set this tty option, then background jobs
will stop when they try to produce output like they do when they try to read input.
A job pool is a collection of jobs started with list & associated with a name.
There are several ways to refer to jobs in the shell. A job can be referred to by
the process id of any process of the job or by one of the following:
%number
The job with the given number.
pool All the jobs in the job pool named by pool.
pool.number
The job number number in the job pool named by pool.
%string
Any job whose command line begins with string.
%7?string
Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%- Previous job. In addition, unless noted otherwise, wherever a job can be
specified, the name of a background job pool can be used to represent all
the jobs in that pool.
The shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but
only just before it prints a prompt. This is done so that it does not otherwise
disturb your work. The notify option of the set command causes the shell to print
these job change messages as soon as they occur.
When the monitor option is on, each background job that completes triggers any trap
set for CHLD.
When you try to leave the shell while jobs are running or stopped, you will be
warned that "You have stopped(running) jobs." You may use the jobs command to see
what they are. If you immediately try to exit again, the shell will not warn you a
second time, and the stopped jobs will be terminated. When a login shell receives
a HUP signal, it sends a HUP signal to each job that has not been disowned with the
disown built-in command described below.

Signals. Page 43/82

The INT and QUIT signals for an invoked command are ignored if the command is fol?
lowed by & and the monitor option is active. Otherwise, signals have the values
inherited by the shell from its parent (but see also the trap built-in command be?
low).

Execution.
Each time a command is read, the above substitutions are carried out. If the com?
mand name matches one of the Special Built-in Commands listed below, it is executed
within the current shell process. Next, the command name is checked to see if it
matches a user defined function. If it does, the positional parameters are saved
and then reset to the arguments of the function call. A function is also executed
in the current shell process. When the function completes or issues a return, the
positional parameter list is restored. For functions defined with the function
name syntax, any trap set on EXIT within the function is executed. The exit value
of a function is the value of the last command executed. If a command name is not
a special built-in command or a user defined function, but it is one of the built-
in commands listed below, it is executed in the current shell process.
The shell variables PATH followed by the variable FPATH defines the list of direc?
tories to search for the command name. Alternative directory names are separated
by a colon (:). The default path is equal to getconf PATH output. The current di?
rectory can be specified by two or more adjacent colons, or by a colon at the be?
ginning or end of the path list. If the command name contains a /, then the search
path is not used. Otherwise, each directory in the list of directories defined by
PATH and FPATH is checked in order. If the directory being searched is contained
in FPATH and contains a file whose name matches the command being searched, then
this file is loaded into the current shell environment as if it were the argument
to the . command except that only preset aliases are expanded, and a function of
the given name is executed as described above.
If this directory is not in FPATH the shell first determines whether there is a
built-in version of a command corresponding to a given pathname and if so it is in?
voked in the current process. If no built-in is found, the shell checks for a file
named .paths in this directory. If found and there is a line of the form
FPATH=path where path names an existing directory then that directory is searched

immediately after the current directory as if it were found in the FPATH variable. Page 44/82

If path does not begin with /, it is checked for relative to the directory being
searched.
The .paths file is then checked for a line of the form PLUGIN_LIB=libname [: lib?
name] Each library named by libname will be searched for as if it were an
option argument to builtin -f, and if it contains a built-in of the specified name
this will be executed instead of a command by this name. Any built-in loaded from
a library found this way will be associated with the directory containing the
.paths file so it will only execute if not found in an earlier directory.
Finally, the directory will be checked for a file of the given name. If the file
has execute permission but is not an a.out file, it is assumed to be a file con?
taining shell commands. A separate shell is spawned to read it. All non-exported
variables are removed in this case. If the shell command file doesn't have read
permission, or if the setuid and/or setgid bits are set on the file, then the shell
executes an agent whose job it is to set up the permissions and execute the shell
with the shell command file passed down as an open file. If the .paths contains a
line of the form name=value in the first or second line, then the environment vari?
able name is modified by prepending the directory specified by value to the direc?
tory list. If value is not an absolute directory, then it specifies a directory
relative to the directory that the executable was found. If the environment vari?
able name does not already exist it will be added to the environment list for the
specified command. A parenthesized command is executed in a sub-shell without re?
moving non-exported variables.

Command Re-entry.
The text of the last HISTSIZE (default 512) commands entered from a terminal device
is saved in a history file. The file $SHOME/.sh_history is used if the HISTFILE
variable is not set or if the file it names is not writable. A shell can access
the commands of all interactive shells which use the same named HISTFILE. The
built-in command hist is used to list or edit a portion of this file. The portion
of the file to be edited or listed can be selected by number or by giving the first
character or characters of the command. A single command or range of commands can
be specified. If you do not specify an editor program as an argument to hist then
the value of the variable HISTEDIT is used. If HISTEDIT is unset, the obsolete

variable FCEDIT is used. If FCEDIT is not defined, then /bin/ed is used. The Page 45/82

edited command(s) is printed and re-executed upon leaving the editor unless you
quit without writing. The -s option (and in obsolete versions, the editor name -)
is used to skip the editing phase and to re-execute the command. In this case a
substitution parameter of the form old=new can be used to modify the command before
execution. For example, with the preset alias r, which is aliased to ?hist -s?,
typing ‘r bad=good c' will re-execute the most recent command which starts with the
letter c, replacing the first occurrence of the string bad with the string good.

In-line Editing Options.
Normally, each command line entered from a terminal device is simply typed followed
by a new-line CRETURN' or "LINE FEED"). If either the emacs, gmacs, or vi option
is active, the user can edit the command line. To be in either of these edit modes
set the corresponding option. An editing option is automatically selected each
time the VISUAL or EDITOR variable is assigned a value ending in either of these
option names.
The editing features require that the user's terminal accept 'RETURN' as carriage
return without line feed and that a space (") must overwrite the current charac?
ter on the screen.
Unless the multiline option is on, the editing modes implement a concept where the
user is looking through a window at the current line. The window width is the
value of COLUMNS if it is defined, otherwise 80. If the window width is too small
to display the prompt and leave at least 8 columns to enter input, the prompt is
truncated from the left. If the line is longer than the window width minus two, a
mark is displayed at the end of the window to notify the user. As the cursor moves
and reaches the window boundaries the window will be centered about the cursor.
The mark is a > (<, *) if the line extends on the right (left, both) side(s) of the
window.
The search commands in each edit mode provide access to the history file. Only
strings are matched, not patterns, although a leading » in the string restricts the
match to begin at the first character in the line.
Each of the edit modes has an operation to list the files or commands that match a
partially entered word. When applied to the first word on the line, or the first
word after a ;, ?, &, or (, and the word does not begin with ? or contain a /, the

list of aliases, functions, and executable commands defined by the PATH variable Page 46/82

that could match the partial word is displayed. Otherwise, the list of files that
match the given word is displayed. If the partially entered word does not contain
any file expansion characters, a * is appended before generating these lists. Af?
ter displaying the generated list, the input line is redrawn. These operations are
called command name listing and file name listing, respectively. There are addi?
tional operations, referred to as command name completion and file name completion,
which compute the list of matching commands or files, but instead of printing the
list, replace the current word with a complete or partial match. For file name
completion, if the match is unique, a / is appended if the file is a directory and
a space is appended if the file is not a directory. Otherwise, the longest common
prefix for all the matching files replaces the word. For command name completion,
only the portion of the file names after the last / are used to find the longest
command prefix. If only a single name matches this prefix, then the word is re?
placed with the command name followed by a space. When using a tab for completion
that does not yield a unique match, a subsequent tab will provide a numbered list
of matching alternatives. A specific selection can be made by entering the selec?
tion number followed by a tab.

Key Bindings.
The KEYBD trap can be used to intercept keys as they are typed and change the char?
acters that are actually seen by the shell. This trap is executed after each char?
acter (or sequence of characters when the first character is ESC) is entered while
reading from a terminal. The variable .sh.edchar contains the character or charac?
ter sequence which generated the trap. Changing the value of .sh.edchar in the
trap action causes the shell to behave as if the new value were entered from the
keyboard rather than the original value.
The variable .sh.edcol is set to the input column number of the cursor at the time
of the input. The variable .sh.edmode is set to ESC when in vi insert mode (see
below) and is null otherwise. By prepending ${.sh.editmode} to a value assigned to
.sh.edchar it will cause the shell to change to control mode if it is not already
in this mode.
This trap is not invoked for characters entered as arguments to editing directives,
or while reading input for a character search.

Emacs Editing Mode. Page 47/82

This mode is entered by enabling either the emacs or gmacs option. The only dif?

ference between these two modes is the way they handle "T. To edit, the user moves

the cursor to the point needing correction and then inserts or deletes characters

or words as needed. All the editing commands are control characters or escape se?

guences. The notation for control characters is caret () followed by the charac?

ter. For example, *F is the notation for control F. This is entered by depressing

“f* while holding down the "CTRL' (control) key. The "SHIFT" key is not depressed.

(The notation ~? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f

(pronounced Meta f) is entered by depressing ESC (ascii 033) followed by “f'. (M-F

would be the notation for ESC followed by "SHIFT' (capital) "F'.)

All edit commands operate from any place on the line (not just at the beginning).

Neither the "'RETURN' nor the "LINE FEED' key is entered after edit commands except

when noted.

F Move cursor forward (right) one character.

M-[C Move cursor forward (right) one character.

M-f Move cursor forward one word. (The emacs editor's idea of a word is a
string of characters consisting of only letters, digits and underscores.)

B Move cursor backward (left) one character.

M-[D Move cursor backward (left) one character.

M-b Move cursor backward one word.

A Move cursor to start of line.

M-[H Move cursor to start of line.

= Move cursor to end of line.

M-[Y Move cursor to end of line.

Alchar Move cursor forward to character char on current line.

M-~char Move cursor backward to character char on current line.

AXAX Interchange the cursor and mark.

erase (User defined erase character as defined by the stty(1) command, usually
"H or #.) Delete previous character.

Inext (User defined literal next character as defined by the stty(1) command,

or NV if not defined.) Removes the next character's editing features (if

any).

Page 48/82

"D Delete current character.

M-d Delete current word.

M-"H (Meta-backspace) Delete previous word.

M-h Delete previous word.

M-~? (Meta-DEL) Delete previous word (if your interrupt character is ~? (DEL,
the default) then this command will not work).

T Transpose current character with previous character and advance the cur?
sor in emacs mode. Transpose two previous characters in gmacs mode.

~C Capitalize current character.

M-c Capitalize current word.

M-I Change the current word to lower case.

K Delete from the cursor to the end of the line. If preceded by a numeri?
cal parameter whose value is less than the current cursor position, then
delete from given position up to the cursor. If preceded by a numerical
parameter whose value is greater than the current cursor position, then
delete from cursor up to given cursor position.

AW Kill from the cursor to the mark.

M-p Push the region from the cursor to the mark on the stack.

kill (User defined kill character as defined by the stty command, usually *G
or @.) Kill the entire current line. If two kill characters are entered
in succession, all kill characters from then on cause a line feed (useful
when using paper terminals).

Y Restore last item removed from line. (Yank item back to the line.)

AL Line feed and print current line.

M-~L Clear the screen.

@ (Null character) Set mark.

M-space (Meta space) Set mark.

N (New line) Execute the current line.

M (Return) Execute the current line.

eof End-of-file character, normally "D, is processed as an End-of-file only
if the current line is null.

P Fetch previous command. Each time *P is entered the previous command

back in time is accessed. Moves back one line when not on the first line

Page 49/82

of a multi-line command.

M-[A If the cursor is at the end of the line, it is equivalent to "R with
string set to the contents of the current line. Otherwise, it is equiva?
lent to ~P.

M-< Fetch the least recent (oldest) history line.

M-> Fetch the most recent (youngest) history line.

N Fetch next command line. Each time "N is entered the next command line
forward in time is accessed.

M-[B Equivalent to *N.

ARstring Reverse search history for a previous command line containing string. If
a parameter of zero is given, the search is forward. String is termi?
nated by a 'RETURN' or 'NEW LINE'. If string is preceded by a *, the
matched line must begin with string. If string is omitted, then the next
command line containing the most recent string is accessed. In this case
a parameter of zero reverses the direction of the search.

O Operate - Execute the current line and fetch the next line relative to
current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to
the next command. The commands that accept a parameter are “F, "B,
erase, "C, "D, K, "R, *P, "N,], M-., M-"], M-_, M-=, M-b, M-c, M-d, M-

f, M-h, M-l and M-"H.

M-letter Soft-key - Your alias list is searched for an alias by the name _letter
and if an alias of this name is defined, its value will be inserted on
the input queue. The letter must not be one of the above meta-functions.

M-[letter Soft-key - Your alias list is searched for an alias by the name __letter
and if an alias of this name is defined, its value will be inserted on
the input queue. This can be used to program function keys on many ter?
minals.

M- The last word of the previous command is inserted on the line. If pre?
ceded by a numeric parameter, the value of this parameter determines
which word to insert rather than the last word.

M- Same as M-..

M-* Attempt file name generation on the current word. An asterisk is ap? Page 50/82

pended if the word doesn't match any file or contain any special pattern
characters.

M-ESC Command or file name completion as described above.

Altab Attempts command or file name completion as described above. If a par?
tial completion occurs, repeating this will behave as if M-= were en?
tered. If no match is found or entered after space, a tab is inserted.

M-= If not preceded by a numeric parameter, it generates the list of matching
commands or file names as described above. Otherwise, the word under the
cursor is replaced by the item corresponding to the value of the numeric
parameter from the most recently generated command or file list. If the
cursor is not on a word, it is inserted instead.

U Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user's erase, kill and
interrupt (normally ~?) characters may be entered in a command line or
in a search string if preceded by a\. The \ removes the next charac?
ter's editing features (if any).

M-~V Display version of the shell.

M-# If the line does not begin with a #, a # is inserted at the beginning of
the line and after each new-line, and the line is entered. This causes a
comment to be inserted in the history file. If the line begins with a #,
the # is deleted and one # after each new-line is also deleted.

Vi Editing Mode.

There are two typing modes. Initially, when you enter a command you are in the in?

put mode. To edit, the user enters control mode by typing ESC (033) and moves the

cursor to the point needing correction and then inserts or deletes characters or
words as needed. Most control commands accept an optional repeat count prior to
the command.

When in vi mode on most systems, canonical processing is initially enabled and the

command will be echoed again if the speed is 1200 baud or greater and it contains

any control characters or less than one second has elapsed since the prompt was

printed. The ESC character terminates canonical processing for the remainder of

the command and the user can then modify the command line. This scheme has the ad?

vantages of canonical processing with the type-ahead echoing of raw mode. Page 51/82

If the option viraw is also set, the terminal will always have canonical processing
disabled. This mode is implicit for systems that do not support two alternate end
of line delimiters, and may be helpful for certain terminals.
Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the stty command, usu?
ally “H or #.) Delete previous character.
AW Delete the previous blank separated word.
eof As the first character of the line causes the shell to terminate
unless the ignoreeof option is set. Otherwise this character is
ignored.
Inext (User defined literal next character as defined by the stty(1) or
AV if not defined.) Removes the next character's editing features
(if any).
\ Escape the next erase or kill character.
Al tab Attempts command or file name completion as described above and
returns to input mode. If a partial completion occurs, repeating
this will behave as if = were entered from control mode. If no
match is found or entered after space, a tab is inserted.
Motion Edit Commands
These commands will move the cursor.
[count]l Cursor forward (right) one character.
[count][C Cursor forward (right) one character.
[count]lw Cursor forward one alpha-numeric word.
[count]W Cursor to the beginning of the next word that follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank delimited word.
[count]h Cursor backward (left) one character.
[count][D Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count]? Cursor to column count.

[count]fc Find the next character ¢ in the current line. Page 52/82

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by .

[count]; Repeats count times, the last single character find command, f, F,
t,orT.

[count], Reverses the last single character find command count times.

0 Cursor to start of line.
A Cursor to start of line.
[H Cursor to first non-blank character in line.
$ Cursor to end of line.

[Y Cursor to end of line.

% Moves to balancing (,), {, }, [, or]. If cursor is not on one
of the above characters, the remainder of the line is searched for
the first occurrence of one of the above characters first.

Search Edit Commands

These commands access your command history.

[count]lk Fetch previous command. Each time k is entered the previous com?
mand back in time is accessed.

[count]- Equivalent to k.

[count][A If cursor is at the end of the line it is equivalent to / with
string”set to the contents of the current line. Otherwise, it is
equivalent to k.

[count]j Fetch next command. Each time j is entered the next command for?
ward in time is accessed.

[count]+ Equivalent to j.

[count][B Equivalent to j.

[count]G The command number count is fetched. The default is the least re?
cent history command.

/string Search backward through history for a previous command containing
string. String is terminated by a ‘'RETURN' or ‘'NEW LINE'. If
string is preceded by a *, the matched line must begin with
string. If string is null, the previous string will be used.

?string Same as / except that search will be in the forward direction. Page 53/82

n Search for next match of the last pattern to / or ? commands.

N Search for next match of the last pattern to / or ?, but in re?
verse direction.

Text Modification Edit Commands

These commands will modify the line.

a Enter input mode and enter text after the current character.

A Append text to the end of the line. Equivalent to $a.

[count]cmotion

c[count]motion
Delete current character through the character that motion would
move the cursor to and enter input mode. If motion is ¢, the en?
tire line will be deleted and input mode entered.

C Delete the current character through the end of line and enter in?
put mode. Equivalent to c$.

S Equivalent to cc.

[count]s Replace characters under the cursor in input mode.

D Delete the current character through the end of line. Equivalent
to d$.

[count]dmotion

d[count]motion
Delete current character through the character that motion would
move to. If motion is d, the entire line will be deleted.

i Enter input mode and insert text before the current character.

I Insert text before the beginning of the line. Equivalent to Oi.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen with charac?
ters you type overlay fashion.

[count]rc Replace the count character(s) starting at the current cursor po?
sition with ¢, and advance the cursor.

[count]x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification command. Page 54/82

[count]? Invert the case of the count character(s) starting at the current
cursor position and advance the cursor.

[count]_ Causes the count word of the previous command to be appended and
input mode entered. The last word is used if count is omitted.

* Causes an * to be appended to the current word and file name gen?
eration attempted. If no match is found, it rings the bell. Oth?
erwise, the word is replaced by the matching pattern and input
mode is entered.

\ Command or file name completion as described above.

Other Edit Commands

Miscellaneous commands.

[count]lymotion

y[count]motion
Yank current character through character that motion would move
the cursor to and puts them into the delete buffer. The text and
cursor are unchanged.

vy Yanks the entire line.

Y Yanks from current position to end of line. Equivalent to y$.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.

[count]lv Returns the command hist -e ${VISUAL:-${EDITOR:-vi}} count in the

input buffer. If count is omitted, then the current line is used.

AL Line feed and print current line. Has effect only in control
mode.

N (New line) Execute the current line, regardless of mode.

"M (Return) Execute the current line, regardless of mode.

If the first character of the command is a #, then this command

deletes this # and each # that follows a newline. Otherwise,

sends the line after inserting a # in front of each line in the
command. Useful for causing the current line to be inserted in

the history as a comment and uncommenting previously commented
commands in the history file.

[count]= If count is not specified, it generates the list of matching com? Page 55/82

mands or file names as described above. Otherwise, the word under
the cursor is replaced by the count item from the most recently
generated command or file list. If the cursor is not on a word,
it is inserted instead.
@letter Your alias list is searched for an alias by the name _letter and
if an alias of this name is defined, its value will be inserted on
the input queue for processing.
Y Display version of the shell.
Programmable Completion.
By default, hitting the tab key causes the current word to be matched against files
starting with the characters you typed and adding as many characters that provide a
unique match. If the matching prefix is not unique hitting tab again will output a
numbered list with the choices and entering number tab will replace the current
word with that selection.
Programmable completion allows you to control how words are expanded when you enter
the tab key for one or more specified commands. The complete built-in command al?
lows you to specify how to complete the current word of the specified command.
Built-in Commands.
The following simple-commands are executed in the shell process. Input/Output re?
direction is permitted. Unless otherwise indicated, the output is written on file
descriptor 1 and the exit status, when there is no syntax error, is zero. Except
for :, true, false, echo, newgrp, and login, all built-in commands accept -- to in?
dicate end of options. They also interpret the option --man as a request to dis?
play the man page onto standard error and -? as a help request which prints a us?
age message on standard error. Commands that are preceded by one or two ? symbols
are special built-in commands and are treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the
command completes.
2. 1/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. They are not valid function names.
5. Words following a command preceded by ?? that are in the format of a vari?

able assignment are expanded with the same rules as a variable assignment. Page 56/82

This means that tilde substitution is performed after the = sign and field
splitting and file name generation are not performed. These are called dec?
laration built-ins.

?:[arg...]
The command only expands parameters.

?.name[arg ...]
If name is a function defined with the function name reserved word syntax,
the function is executed in the current environment (as if it had been de?
fined with the name() syntax.) Otherwise if name refers to a file, the file
is read in its entirety and the commands are executed in the current shell
environment. The search path specified by PATH is used to find the direc?
tory containing the file. If any arguments arg are given, they become the
positional parameters while processing the . command and the original posi?
tional parameters are restored upon completion. Otherwise the positional
parameters are unchanged. The exit status is the exit status of the last
command executed.

?? alias [-ptx] [name[=value]] ...
alias with no arguments prints the list of aliases in the form name=value on
standard output. The -p option causes the word alias to be inserted before
each one. When one or more arguments are given, an alias is defined for
each name whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The obsolete -t option is used
to set and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes undefined when
the value of PATH is reset but the alias remains tracked. Without the -t
option, for each name in the argument list for which no value is given, the
name and value of the alias is printed. The obsolete -x option has no ef?
fect. The exit status is non-zero if a name is given, but no value, and no
alias has been defined for the name.

bg [job...]
This command is only on systems that support job control. Puts each speci?
fied job into the background. The current job is put in the background if

job is not specified. See Jobs for a description of the format of job. Page 57/82

? break [n]
Exit from the enclosing for, while, until, or select loop, if any. If nis
specified, then break n levels.
builtin [-dsp] [-f file] [name ...]
If name is not specified, and no -f option is specified, the built-ins are
printed on standard output. The -s option prints only the special built-
ins. Otherwise, each name represents the pathname whose basename is the
name of the built-in. The entry point function name is determined by
prepending b_ to the built-in name. A built-in specified by a pathname will
only be executed when that pathname would be found during the path search.
Built-ins found in libraries loaded via the .paths file will be associate
with the pathname of the directory containing the .paths file.
The ISO C/C++ prototype is b_mycommand(int argc, char *argv[], void *con?
text) for the builtin command mycommand where argv is array an of argc ele?
ments and context is an optional pointer to a Shell_t structure as described
in <ast/shell.h>.
Special built-ins cannot be bound to a pathname or deleted. The -d option
deletes each of the given built-ins. On systems that support dynamic load?
ing, the -f option names a shared library containing the code for built-ins.
The shared library prefix and/or suffix, which depend on the system, can be
omitted. Once a library is loaded, its symbols become available for subse?
guent invocations of builtin. Multiple libraries can be specified with sep?
arate invocations of the builtin command. Libraries are searched in the re?
verse order in which they are specified. When a library is loaded, it looks
for a function in the library whose name is lib_init() and invokes this
function with an argument of 0.
The -p causes the outputto be in a form of builtin commands that can be
used as input to the shell to recreate the current set of builtins.
cd[-LP][arg]
cd [-LP] old new
This command can be in either of two forms. In the first form it changes
the current directory to arg. If arg is - the directory is changed to the

previous directory. The shell variable HOME is the default arg. The vari? Page 58/82

able PWD is set to the current directory. The shell variable CDPATH defines
the search path for the directory containing arg. Alternative directory
names are separated by a colon (:). The default path is <null> (specifying
the current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or between
the colon delimiters anywhere else in the path list. If arg begins with a /
then the search path is not used. Otherwise, each directory in the path is
searched for arg.
The second form of cd substitutes the string new for the string old in the
current directory name, PWD, and tries to change to this new directory.
By default, symbolic link names are treated literally when finding the di?
rectory name. This is equivalent to the -L option. The -P option causes
symbolic links to be resolved when determining the directory. The last in?
stance of -L or -P on the command line determines which method is used.
The cd command may not be executed by rksh.

command [-pvxV] nhame [arg ...]
Without the -v or -V options, command executes name with the arguments given
by arg. The -p option causes a default path to be searched rather than the
one defined by the value of PATH. Functions will not be searched for when
finding name. In addition, if name refers to a special built-in, none of
the special properties associated with the leading daggers will be honored.
(For example, the predefined alias redirect=?command exec? prevents a script
from terminating when an invalid redirection is given.) With the -x option,
if command execution would result in a failure because there are too many
arguments, errno E2BIG, the shell will invoke command name multiple times
with a subset of the arguments on each invocation. Arguments that occur
prior to the first word that expands to multiple arguments and after the
last word that expands to multiple arguments will be passed on each invoca?
tion. The exit status will be the maximum invocation exit status. With the
-v option, command is equivalent to the built-in whence command described
below. The -V option causes command to act like whence -v.

? continue [n]

Resume the next iteration of the enclosing for, while, until, or select Page 59/82

loop. If nis specified, then resume at the n-th enclosing loop.

disown [job...]
Causes the shell not to send a HUP signal to each given job, or all active
jobs if job is omitted, when a login shell terminates.

echo[-n -e][arg ...]
echo builtin prints all of its arguments separated by space and terminated
by new-line. -n will skip putting a newline character at the end of output.
If -e is set, it will enable interpreting escape sequences.

?? enum [-i] type[=(value ...)]
Creates a declaration command named type that is an integer type that allows
one of the specified values as enumeration names. If =(value ...) is omit?
ted, then type must be an indexed array variable with at least two elements
and the values are taken from this array variable. If -i is specified the
values are case insensitive.
When an enumeration variable is used in arithmetic expression, its value is
the index into the array that defined it starting from index 0. Enumeration
strings can be used in an arithmetic expression when comparing against an
enumeration variable. Also, each non-subscripted enumeration variable fol?
lowed by .name where name is one of the enumeration names expands to the in?
dex corresponding to name.
The enum _Bool is created with values true and false. The predefined alias
bool is defined as _Bool.

?eval[arg ...]
The arguments are read as input to the shell and the resulting command(s)
executed.

?exec[-c][-aname][arg ...]
If arg is given, the command specified by the arguments is executed in place
of this shell without creating a new process. The -c option causes the en?
vironment to be cleared before applying variable assignments associated with
the exec invocation. The -a option causes name rather than the first arg,
to become argv[0] for the new process. Input/output arguments may appear
and affect the current process. If arg is not given, the effect of this

command is to modify file descriptors as prescribed by the input/output re? Page 60/82

direction list. In this case, any file descriptor numbers greater than 2
that are opened with this mechanism are closed when invoking another pro?
gram.

?exit[n]
Causes the shell to exit with the exit status specified by n. The value
will be the least significant 8 bits of the specified status. If nis omit?
ted, then the exit status is that of the last command executed. An end-of-
file will also cause the shell to exit except for a shell which has the ig?
noreeof option (see set below) turned on.

?? export [-p] [name[=value]] ...
If name is not given, the names and values of each variable with the export
attribute are printed with the values quoted in a manner that allows them to
be re-input. The export command is the same as typeset -x except that if
you use export within a function, no local variable is created. The -p op?
tion causes the word export to be inserted before each one. Otherwise, the
given names are marked for automatic export to the environment of subse?
guently-executed commands.

false Does nothing, and exits 1. Used with until for infinite loops.

fg [job...]
This command is only on systems that support job control. Each job speci?
fied is brought to the foreground and waited for in the specified order.
Otherwise, the current job is brought into the foreground. See Jobs for a
description of the format of job.

getopts [-a name] optstring vname [arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters
are used. An option argument begins with a + or a -. An option not begin?
ning with + or - or the argument -- ends the options. Options beginning
with + are only recognized when optstring begins with a +. optstring con?
tains the letters that getopts recognizes. If a letter is followed by a :,
that option is expected to have an argument. The options can be separated
from the argument by blanks. The option -? causes getopts to generate a
usage message on standard error. The -a argument can be used to specify the

name to use for the usage message, which defaults to $0. Page 61/82

getopts places the next option letter it finds inside variable vname each
time it is invoked. The option letter will be prepended with a + when arg
begins with a +. The index of the next arg is stored in OPTIND. The option
argument, if any, gets stored in OPTARG.
A leading : in optstring causes getopts to store the letter of an invalid
option in OPTARG, and to set vname to ? for an unknown option and to : when
a required option argument is missing. Otherwise, getopts prints an error
message. The exit status is non-zero when there are no more options.
There is no way to specify any of the options :, +, -, ?, [, and]. The op?
tion # can only be specified as the first option.
hist [-e ename][-nlr] [first[last]]
hist -s [old=new] [command]
In the first form, a range of commands from first to last is selected from
the last HISTSIZE commands that were typed at the terminal. The arguments
first and last may be specified as a number or as a string. A string is
used to locate the most recent command starting with the given string. A
negative number is used as an offset to the current command number. If the
-| option is selected, the commands are listed on standard output. Other?
wise, the editor program ename is invoked on a file containing these key?
board commands. If ename is not supplied, then the value of the variable
HISTEDIT is used. If HISTEDIT is not set, then FCEDIT (default /bin/ed) is
used as the editor. When editing is complete, the edited command(s) is exe?
cuted if the changes have been saved. If lastis not specified, then it
will be set to first. If first is not specified, the default is the previ?
ous command for editing and -16 for listing. The option -r reverses the or?
der of the commands and the option -n suppresses command numbers when list?
ing. In the second form, command is interpreted as first described above
and defaults to the last command executed. The resulting command is exe?
cuted after the optional substitution old=new is performed.
jobs[-Inp][job...]
Lists information about each given job; or all active jobs if job is omit?
ted. The -l option lists process ids in addition to the normal information.

The -n option only displays jobs that have stopped or exited since last no? Page 62/82

tified. The -p option causes only the process group to be listed. See Jobs
for a description of the format of job.

kill [-s signame][-q n]job ...

kill [-n signum][-gn]job ...

kill -LI [sig ...]
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number with the -n
option or by name with the -s option (as given in <signal.h>, stripped of
the prefix “SIG" with the exception that SIGCLD is named CHLD). For back?
ward compatibility, the n and s can be omitted and the number or name placed
immediately after the -. If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (continue) signal
if itis stopped. The argument job can be the process id of a process that
is not a member of one of the active jobs. See Jobs for a description of
the format of job. In the third form, kill -I, or kill -L, if sig is not
specified, the signal names are listed. The -l option list only the signal
names. -L options lists each signal name and corresponding number. Other?
wise, for each sig thatis a name, the corresponding signal number is
listed. For each sig that is a number, the signal name corresponding to the
least significant 8 bits of sig is listed.
On systems that support sigqueue(2) the -q option can be used to send a
queued signal with message number n. Each specified job must be a positive
number. On systems that do not support sigqueue(2), a signal is sent with?
out the message number n and the signal will not be queued. If the signal
cannot be queued because of a return of EAGAIN, the exit status will be 2.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. let only rec?
ognizes octal constants starting with 0 when the set option letoctal is on.
See Arithmetic Evaluation above, for a description of arithmetic expression
evaluation.
The exit status is 0 if the value of the last expression is non-zero, and 1
otherwise.

? newgrp [arg ...] Page 63/82

Equivalent to exec /bin/newgrp arg
print [-CRenprsv] [-u unit] [-f format] [arg ...]
With no options or with option - or --, each arg is printed on standard out?
put. The -f option causes the arguments to be printed as described by
printf. In this case, any e, n, r, R options are ignored. Otherwise, un?
less the -C, -R, -r, or -v are specified, the following escape conventions
will be applied:
\a The alert character (ascii 07).
\b The backspace character (ascii 010).
\c Causes print to end without processing more arguments and not adding
a new-line.
\f The formfeed character (ascii 014).
\n The new-line character (ascii 012).
\r The carriage return character (ascii 015).
\t The tab character (ascii 011).
\v The vertical tab character (ascii 013).
\E The escape character (ascii 033).
\\ The backslash character \.
\Ox The character defined by the 1, 2, or 3-digit octal string given by
X.
The -R option will print all subsequent arguments and options other than -n.
The -e causes the above escape conventions to be applied. This is the de?
fault behavior. It reverses the effect of an earlier -r. The -p option
causes the arguments to be written onto the pipe of the process spawned with
?& instead of standard output. The -v option treats each arg as a variable
name and writes the value in the printf %B format. The -C option treats
each arg as a variable name and writes the value in the printf %#B format.
The -s option causes the arguments to be written onto the history file in?
stead of standard output. The -u option can be used to specify a one digit
file descriptor unit number unit on which the output will be placed. The
default is 1. If the option -n is used, no new-line is added to the output.
printf [-v varname] format [arg ...]

The arguments arg are printed on standard output in accordance with the Page 64/82

ANSI-C formatting rules associated with the format string format. If the
number of arguments exceeds the number of format specifications, the format
string is reused to format remaining arguments. If the -v option is speci?
fied the output is assigned to the variable varname. The following exten?
sions can also be used:

%b A %b format can be used instead of %s to cause escape sequences in
the corresponding arg to be expanded as described in print.

%B A %B option causes each of the arguments to be treated as variable
names and the binary value of variable will be printed. The alter?
nate flag # causes a compound variable to be output on a single line.
This is most useful for compound variables and variables whose attri?
bute is -b.

%H A %H format can be used instead of %s to cause characters in arg that
are special in HTML and XML to be output as their entity name. The
alternate flag # formats the output for use as a URI.

%P A %P format can be used instead of %s to cause arg to be interpreted
as an extended regular expression and be printed as a shell pattern.

%R A %R format can be used instead of %s to cause arg to be interpreted
as a shell pattern and to be printed as an extended regular expres?
sion.

%q A %q format can be used instead of %s to cause the resulting string
to be quoted in a manner than can be reinput to the shell. When q is
preceded by the alternative format specifier, #, the string is quoted
in manner suitable as a field in a .csv format file.

%(date-format)T
A %(date-format)T format can be use to treat an argument as a
date/time string and to format the date/time according to the date-
format as defined for the date(1) command. Values specified as dig?
its are interpreted as described in the touch(1) command.

%Z A %Z format will output a byte whose value is 0.

%d The precision field of the %d format can be followed by a. and the
output base. In this case, the # flag character causes base# to be

prepended.

Page 65/82

The # flag, when used with the %d format without an output base, dis?
plays the output in powers of 1000 indicated by one of the following
suffixes: kM G T P E, and when used with the %i format displays the
output in powers of 1024 indicated by one of the following suffixes:

Ki Mi Gi Ti Pi Ei.

= The = flag centers the output within the specified field width.

L The L flag, when used with the %c or %s formats, treats precision as
character width instead of byte count.

, The, flag, when used with the %d or %f formats, separates groups of
digits with the grouping delimiter (, on groups of 3 in the C lo?
cale.)

pwd [-LP][-ffd]

Outputs the value of the current working directory. The -L option is the

default; it prints the logical name of the current directory. If the -P op?

tion is given, all symbolic links are resolved from the name. The last in?

stance of -L or -P on the command line determines which method is used. If

the -f option is specified, the directory name corresponding to file de?
scriptor fd is outputted.
read [-AaCSprsv | [-d delim][-n n][-N n] [-m method] [-t timeout] [-u
unit] [vname?prompt] [vname ...]

The shell input mechanism. One line is read and is broken up into fields

using the characters in IFS as separators. The escape character, \, is used

to remove any special meaning for the next character and for line continua?
tion. The -d option causes the read to continue to the first character of
delim rather than new-line. The -n option causes at most n bytes to read
rather a full line but will return when reading from a slow device as soon

as any characters have been read. The -N option causes exactly n to be read

unless an end-of-file has been encountered or the read times out because of

the -t option. In raw mode, -r, the \ character is not treated specially.

The first field is assigned to the first vname, the second field to the sec?

ond vname, etc., with leftover fields assigned to the last vname. When

vname has the binary attribute and -n or -N is specified, the bytes that are

read are stored directly into the variable. If the -v is specified, then Page 66/82

the value of the first vname will be used as a default value when reading
from a terminal device. The -A option causes the variable vname to be unset
and each field that is read to be stored in successive elements of the in?
dexed array vname. -a is an alias for -A. The -m option reads a compound
variable with the read method defined by method. Currently, only the json
and ksh methods exist. The -C option causes the variable vname to be read
as a compound variable. Blanks will be ignored when finding the beginning
open parenthesis. This is equivalent to -m ksh. The -S option causes the
line to be treated like a record in a .csv format file so that double quotes
can be used to allow the delimiter character and the new-line character to
appear within a field. The -p option causes the input line to be taken from
the input pipe of a process spawned by the shell using ?&. If the -s option
is present, the input will be saved as a command in the history file. The
option -u can be used to specify a one digit file descriptor unit unit to
read from. The file descriptor can be opened with the exec special built-in
command. The default value of unit n is 0. The option -t is used to spec?
ify atimeout in seconds when reading from a terminal or pipe. If vname is
omitted, then REPLY is used as the default vname. An end-of-file with the
-p option causes cleanup for this process so that another can be spawned.
If the first argument contains a ?, the remainder of this word is used as a
prompt on standard error when the shell is interactive. The exit status is
0 unless an end-of-file is encountered or read has timed out.

?? readonly [-p] [vname[=value]] ...
If vname is not given, the names and values of each variable with the read?
only attribute is printed with the values quoted in a manner that allows
them to be re-inputted. The -p option causes the word readonly to be in?
serted before each one. Otherwise, the given vnames are marked readonly and
these names cannot be changed by subsequent assignment. When defining a
type, if the value of a readonly sub-variable is not defined the value is
required when creating each instance.

?return[n]
Causes a shell function or . script to return to the invoking script with

the exit status specified by n. The value will be the least significant 8 Page 67/82

bits of the specified status. If n is omitted, then the return status is

that of the last command executed. If return is invoked while not in a

function or a . script, then it behaves the same as exit.

? set [?BCGabefhkmnoprstuvx | [?0 [option]] ... [?A vname] [-K keylist] [
arg ... |

The options for this command have meaning as follows:

-A Array assignment. If arg is specified, unset the variable vname and
assign values sequentially from the arg list. If +A is used, the
variable vname is not unset first.

-B Enable brace group expansion. On by default.

-C Prevents redirection > from truncating existing files. Files that
are created are opened with the O_EXCL mode. Requires >? to trun?
cate a file when turned on.

-G Causes the pattern ** by itself to match files and zero or more di?
rectories and sub-directories when used for file name generation.

If followed by a / only directories and sub-directories are matched.

-H Enable !-style history expansion similar to csh(1).

-K When no arguments are specified, it is used along with -s to specify
the sort fields and sort options for sorting an array. (See "Array
Sorting" above for the description of the keylist option.)

-a All subsequent variables that are defined are automatically ex?
ported.

-b Prints job completion messages as soon as a background job changes
state rather than waiting for the next prompt.

-e Unless contained in a ?? or && command, or the command following an
if while or until command or in the pipeline following !, if a com?
mand has a non-zero exit status, execute the ERR trap, if set, and
exit. This mode is disabled while reading profiles.

-f Disables file name generation.

-h Each command becomes a tracked alias when first encountered.

-k (Obsolete). All variable assignment arguments are placed in the en?
vironment for a command, not just those that precede the command

name.

Page 68/82

-m

Background jobs will run in a separate process group and a line will
print upon completion. The exit status of background jobs is re?
ported in a completion message. On systems with job control, this
option is turned on automatically for interactive shells.

Read commands and check them for syntax errors, but do not execute
them. Ignored for interactive shells.

The following argument can be one of the following option names:
allexport
Same as -a.
bgnice All background jobs are run at a lower priority. This is
the default mode.
braceexpand
Same as -B.
emacs Puts you in an emacs style in-line editor for command entry.
errexit Same as -e.
globstar
Same as -G.
gmacs Puts you in a gmacs style in-line editor for command entry.
histexpand
Same as -H.
ignoreeof
The shell will not exit on end-of-file. The command exit
must be used.
keyword Same as -k.
letoctal
The let command allows octal constants starting with O.
markdirs
All directory names resulting from file name generation have
a trailing / appended.
monitor Same as -m.
multiline
The built-in editors will use multiple lines on the screen

for lines that are longer than the width of the screen.

Page 69/82

This may not work for all terminals.

noclobber
Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Do not save function definitions in the history file.

notify Same as -b.

nounset Same as -u.

pipefail
A pipeline will not complete until all components of the
pipeline have completed, and the return value will be the
value of the last non-zero command to fail or zero if no
command has failed.

privileged

Same as -p.

showme When enabled, simple commands or pipelines preceded by a

semicolon (;) will be displayed as if the xtrace option were
enabled but will not be executed. Otherwise, the leading ;
will be ignored.

trackall
Same as -h.

verbose Same as -v.

vi Puts you ininsert mode of a vi style in-line editor until
you hit the escape character 033. This puts you in control
mode. A return sends the line.

viraw Each character is processed as it is typed in vi mode. This
is now always enabled. Disabling the option at run time has
no effect.

xtrace Same as -X.

If no option name is supplied, then the current option settings are

printed.

Disables processing of the $HOME/.profile file and uses the file

letc/suid_profile instead of the ENV file. This mode is on whenever

Page 70/82

the effective uid (gid) is not equal to the real uid (gid). Turning
this off causes the effective uid and gid to be set to the real uid
and gid.

-r Enables the restricted shell. This option cannot be unset once set.

-s Sort the positional parameters lexicographically. When used with -A

sorts the elements of the array.

-t (Obsolete). Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-Xx Print commands and their arguments as they are executed.

-- Do not change any of the options; useful in setting $1 to a value
beginning with -. If no arguments follow this option then the posi?
tional parameters are unset.

As an obsolete feature, if the first arg is - then the -x and -v options are

turned off and the next arg is treated as the first argument. Using +

rather than - causes these options to be turned off. These options can also

be used upon invocation of the shell. The current set of options may be
found in $-. Unless -A is specified, the remaining arguments are positional
parameters and are assigned, in order, to $1 $2 If no arguments are
given, then the names and values of all variables are printed on the stan?
dard output.

? shift[n]

The positional parameters from $n+1 ... are renamed $1 ..., default n is

1. The parameter n can be any arithmetic expression that evaluates to a

non-negative number less than or equal to $#.

sleep seconds

Suspends execution for the number of decimal seconds or fractions of a sec?

ond given by seconds. seconds A suffix of one of smhd can be used to indi?

cate seconds, minutes, hours, and days respectively. Seconds can also be
specified using a date/time format.
times Display CPU time used by the shell and all of its child processes.
?trap[-alp][action][sig] ...

The -p option causes the trap action associated with each trap as specified Page 71/82

by the arguments to be printed with appropriate quoting. Otherwise, action
will be processed as if it were an argument to eval when the shell receives
signal(s) sig.

The -a option causes the current trap setting to be appended to action.
Each sig can be given as a number or as the name of the signal. Trap com?
mands are executed in order of signal number. Any attempt to set a trap on

a signal that was ignored on entry to the current shell is ineffective. If

action is omitted and the first sig is a number, or if action is -, then the

trap(s) for each sig are reset to their original values. If action is the

null string then this signal is ignored by the shell and by the commands it
invokes.

If sig is ERR then action will be executed whenever a command has a non-zero
exit status.

If sig is DEBUG then action will be executed before each command. The vari?
able .sh.command will contain the contents of the current command line when
action is running. If the exit status of the trap is 2 the command will not

be executed. If the exit status of the trap is 255 and inside a function or

a dot script, the function or dot script will return.

If sigis 0 or EXIT and the trap statement is executed inside the body of a
function defined with the function name syntax, then the command action is
executed after the function completes. For a trap set outside any function
then the command action is executed on exit from the shell.

If sig is KEYBD, then action will be executed whenever a key is read while

in emacs, gmacs, orvi mode. The trap command with no arguments prints a
list of commands associated with each signal number.

An exit or return without an argument in a trap action will preserve the

exit status of the command that invoked the trap. action. Each sig can be
given as a number or as the name of the signal. Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. If action is omitted

and the first sig is a number, or if action is -, then the trap(s) for each

sig are reset to their original values. The -I option lists the signals and

their numbers to standard output. Page 72/82

true Does nothing, and exits 0. Used with while for infinite loops.

?? typeset [?ACHSfbimnprstux] [?EFLRXZi[n]] [+-M [mapname]][-T [

tname=(assign_list)]][-h str] [-a [type]] [vname[=value]] ...

Sets attributes and values for shell variables and functions. When invoked

inside a function defined with the function name syntax, a new instance of

the variable vname is created, and the variable's value and type are re?

stored when the function completes. The following list of attributes may be

specified:

-A

Declares vname to be an associative array. Subscripts are strings
rather than arithmetic expressions.

causes each vname to be a compound variable. value names a compound
variable it is copied into vname. Otherwise, it unsets each vhame.
Declares vname to be an indexed array. If type is specified, it must
be the name of an enumeration type created with the enum command and
it allows enumeration constants to be used as subscripts.

Declares vname to be a double precision floating point number. If n
is non-zero, it defines the number of significant figures that are
used when expanding vname. Otherwise, ten significant figures will
be used.

Declares vnhame to be a double precision floating point number. If n
is non-zero, it defines the number of places after the decimal point
that are used when expanding vname. Otherwise ten places after the
decimal point will be used.

This option provides UNIX to host-name file mapping on non-UNIX ma?
chines.

Left justify and remove leading blanks from value. If n is non-zero,
it defines the width of the field, otherwise it is determined by the
width of the value of first assignment. When the variable is as?
signed to, it is filled on the right with blanks or truncated, if
necessary, to fit into the field. The -R option is turned off.

Use the character mapping mapping defined by wctrans(3). such as
tolower and toupper when assigning a value to each of the specified

operands. When mapping is specified and there are not operands, all Page 73/82

variables that use this mapping are written to standard output. When
mapping is omitted and there are no operands, all mapped variables
are written to standard output.

Right justify and fill with leading blanks. If n is non-zero, it de?
fines the width of the field, otherwise it is determined by the width
of the value of first assignment. The field is left filled with
blanks or truncated from the end if the variable is reassigned. The
-L option is turned off.

When used within the assign_list of a type definition, it causes the
specified sub-variable to be shared by all instances of the type.
When used inside a function defined with the function reserved word,
the specified variables will have function static scope. Otherwise,
the variable is unset prior to processing the assignment list.

If followed by thame, it creates a type named by thame using the com?
pound assignment assign_list to tname. Otherwise, it writes all the
type definitions to standard output.

Declares vname to be a double precision floating point number and ex?
pands using the %a format of ISO-C99. If n is non-zero, it defines
the number of hex digits after the radix point that is used when ex?
panding vname. The default is 10.

Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L option has not been set. Remove
leading zeros if the -L option is also set. If nis non-zero, it de?
fines the width of the field, otherwise it is determined by the width
of the value of first assignment.

The names refer to function names rather than variable names. No as?
signments can be made and the only other valid options are -S, -t, -u
and -x. The -S can be used with discipline functions defined in a

type to indicate that the function is static. For a static function,

the same method will be used by all instances of that type no matter
which instance references it. In addition, it can only use value of
variables from the original type definition. These discipline func?

tions cannot be redefined in any type instance. The -t option turns

Page 74/82

on execution tracing for this function. The -u option causes this
function to be marked undefined. The FPATH variable will be searched
to find the function definition when the function is referenced. If

no options other than -f is specified, then the function definition
will be displayed on standard output. If +f is specified, then a
line containing the function name followed by a shell comment con?
taining the line number and path name of the file where this function
was defined, if any, is displayed. The exit status can be used to
determine whether the function is defined so that typeset -f
.sh.math.name will return O when math function name is defined and
non-zero otherwise.

The variable can hold any number of bytes of data. The data can be
text or binary. The value is represented by the base64 encoding of
the data. If -Z is also specified, the size in bytes of the data in
the buffer will be determined by the size associated with the -Z. If
the base64 string assigned results in more data, it will be trun?
cated. Otherwise, it will be filled with bytes whose value is zero.

The printf format %B can be used to output the actual data in this
buffer instead of the base64 encoding of the data.

Used within type definitions to add information when generating in?
formation about the sub-variable on the man page. Itis ignored when
used outside of a type definition. When used with -f the information
is associated with the corresponding discipline function.

Declares vname to be represented internally as integer. The right
hand side of an assignment is evaluated as an arithmetic expression
when assigning to an integer. If nis non-zero, it defines the out?
put arithmetic base, otherwise the output base will be ten.

Used with -i, -E or -F, to indicate long integer, or long double.
Otherwise, all upper-case characters are converted to lower-case.
The upper-case option, -u, is turned off. Equivalent to -M tolower .

moves or renames the variable. The value is the name of a variable
whose value will be moved to vname. The original variable will be

unset. Cannot be used with any other options. Page 75/82

-n Declares vname to be a reference to the variable whose name is de?
fined by the value of variable vname. This is usually used to refer?
ence a variable inside a function whose name has been passed as an
argument. Cannot be used with any other options.

-p The name, attributes and values for the given vnames are written on
standard output in a form that can be used as shell input. If +p is
specified, then the values are not displayed.

-r The given vnames are marked readonly and these names cannot be
changed by subsequent assignment.

-s Used with -i, -E or -F, to indicate short integer, or float.

-t Tags the variables. Tags are user definable and have no special
meaning to the shell.

-u When given along with -i, specifies unsigned integer. Otherwise, all
lower-case characters are converted to upper-case. The lower-case
option, -l, is turned off. Equivalent to -M toupper .

-x The given vnames are marked for automatic export to the environment
of subsequently-executed commands. Variables whose names contain a .
cannot be exported.

The -i attribute cannot be specified along with -R, -L, -Z, or -f.

Using + rather than - causes these options to be turned off. If no vname

arguments are given, a list of vnames (and optionally the values) of the

variables is printed. (Using + rather than - keeps the values from being
printed.) The -p option causes typeset followed by the option letters to be
printed before each name rather than the names of the options. If any op?
tion other than -p is given, only those variables which have all of the
given options are printed. Otherwise, the vnames and attributes of all
variables that have attributes are printed.

ulimit [-HSacdfmnpstv] [limit]

Set or display a resource limit. The available resource limits are listed

below. Many systems do not support one or more of these limits. The limit

for a specified resource is set when limit is specified. The value of limit

can be a number in the unit specified below with each resource, or the value

unlimited. The -H and -S options specify whether the hard limit or the soft Page 76/82

limit for the given resource is set. A hard limit cannot be increased once

it is set. A soft limit can be increased up to the value of the hard limit.

If neither the H nor S option is specified, the limit applies to both. The

current resource limit is printed when limit is omitted. In this case, the

soft limit is printed unless H is specified. When more than one resource is

specified, then the limit name and unit is printed before the value.

-a Lists all of the current resource limits.

-c The number of 512-byte blocks on the size of core dumps.

-d The number of K-bytes on the size of the data area.

-f The number of 512-byte blocks on files that can be written by the
current process or by child processes (files of any size may be
read).

-m The number of K-bytes on the size of physical memory.

-n The number of file descriptors plus 1.

-p The number of 512-byte blocks for pipe buffering.

-s The number of K-bytes on the size of the stack area.

-t The number of CPU seconds to be used by each process.

-v The number of K-bytes for virtual memory.

If no option is given, -f is assumed.

umask [-pS][mask]

The user file-creation mask is set to mask (see umask(2)). mask can either

be an octal number or a symbolic value as described in chmod(1). If a sym?

bolic value is given, the new umask value is the complement of the result of
applying mask to the complement of the previous umask value. If mask is
omitted, the current value of the mask is printed. The -S option causes the
mode to be printed as a symbolic value. Otherwise, the mask is printed in
octal. The -p option cause the output to be in a form that can be use for
reinput.

? unalias [-a] name ...
The aliases given by the list of names are removed from the alias list. The
-a option causes all the aliases to be unset.

?unset [-fnv] vname ...

The variables given by the list of vnames are unassigned, i.e., except for Page 77/82

sub-variables within a type, their values and attributes are erased. For
sub-variables of a type, the values are reset to the default value from the
type definition. Readonly variables cannot be unset. If the -f option is
set, then the names refer to function names. If the -v option is set, then
the names refer to variable names. The -f option overrides -v. If -nis
set and name is a name reference, then name will be unset rather than the
variable that it references. The default is equivalent to -v. Unsetting
LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes
their special meaning even if they are subsequently assigned to.
wait [job ...]
Wait for the specified job and report its termination status. If job is not
given, then all currently active child processes are waited for. The exit
status from this command is that of the last process waited for if job is
specified; otherwise it is zero. See Jobs for a description of the format
of job.
whence [-afpv] name ...
For each name, indicate how it would be interpreted if used as a command
name.
The -v option produces a more verbose report. The -f option skips the
search for functions. The -p option does a path search for name even if
name is an alias, a function, or a reserved word. The -p option turns off
the -v option. The -a option is similar to the -v option but causes all in?
terpretations of the given name to be reported.
Invocation.
If the shell is invoked by exec(2), and the first character of argument zero ($0)
is -, then the shell is assumed to be a login shell and commands are read from
/etc/profile and then from $HOME/.profile, if it exists. Alternatively, the option
-I causes the shell to a treated as a login shell. Next, for interactive shells,
commands are read from the file named by performing parameter expansion, command
substitution, and arithmetic substitution on the value of the environment variable
ENV if the file exists. If the -s option is not present and arg and a file by the
name of arg exists, then it reads and executes this script. Otherwise, if the

first arg does not contain a /, a path search is performed on the first arg to de? Page 78/82

termine the name of the script to execute. The script arg must have execute per?

mission and any setuid and setgid settings will be ignored. If the script is not

found on the path, arg is processed as if it named a built-in command or function.

Commands are then read as described below; the following options are interpreted by

the shell when it is invoked:

-D

1
-

A list of all double quoted strings that are preceded by a $ will be
printed on standard output and the shell will exit. This set of strings
will be subject to language translation when the locale is not C or POSIX.
No commands will be executed.

Reads the file named by the ENV variable or by $SHOME/ .kshrc if not defined
after the profiles.

If the -c option is present, then commands are read from the first arg.
Any remaining arguments become positional parameters starting at 0.

If the -s option is present or if no arguments remain, then commands are
read from the standard input. Shell output, except for the output of the
Special Commands listed above, is written to file descriptor 2.

If the -i option is present or if the shell input and error output are at?
tached to a terminal (as told by tcgetattr(2)), then this shell is interac?
tive. In this case TERM is ignored (so that kill 0 does not kill an inter?
active shell) and INTR is caught and ignored (so that wait is interrupt?
ible). In all cases, QUIT is ignored by the shell.

If the -r option is present, the shell is a restricted shell.

-R filename

The remaining options and arguments are described under the set command above. An

The -R filename option is used to generate a cross reference database that
can be used by a separate utility to find definitions and references for
variables and commands. The filename argument specifies the generated

database. A script file must be provided on the command line as well.

optional - as the first argument is ignored.

Rksh Only.

Rksh is used to set up login names and execution environments whose capabilities

are more controlled than those of the standard shell. The actions of rksh are

identical to those of ksh, except that the following are disallowed:

Page 79/82

Unsetting the restricted option.

changing directory (see cd(1)),

setting or unsetting the value or attributes of SHELL, ENV, FPATH, or PATH,

specifying path or command names containing /,

redirecting output (>, >|, <>, and >>).

adding or deleting built-in commands.

using command -p to invoke a command.
The restrictions above are enforced after .profile and the ENV files are inter?
preted.
When a command to be executed is found to be a shell procedure, rksh invokes ksh to
execute it. Thus, it is possible to provide to the end-user shell procedures that
have access to the full power of the standard shell, while imposing a limited menu
of commands; this scheme assumes that the end-user does not have write and execute
permissions in the same directory.
The net effect of these rules is that the writer of the .profile has complete con?
trol over user actions, by performing guaranteed setup actions and leaving the user
in an appropriate directory (probably not the login directory).
The system administrator often sets up a directory of commands (e.g., /usr/rbin)
that can be safely invoked by rksh.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively, then execution
of the shell file is abandoned unless the error occurs inside a subshell in which
case the subshell is abandoned. Otherwise, the shell returns the exit status of
the last command executed (see also the exit command above). Run time errors de?
tected by the shell are reported by printing the command or function name and the
error condition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after the command
or function name.
FILES

/etc/profile

The system wide initialization file, executed for login shells.

$HOME/.profile Page 80/82

The personal initialization file, executed for login shells after /etc/pro?

file.
$HOME/.kshrc

Default personal initialization file, executed for interactive shells when

ENV is not set.
/etc/suid_profile

Alternative initialization file, executed instead of the personal initial?

ization file when the real and effective user or group id do not match.
/dev/null

NULL device

SEE ALSO
cat(1), cd(1), chmod(l), cut(1), date(1), egrep(l), echo(l), emacs(l), env(1),
fgrep(1), gmacs(1), grep(1), newgrp(1), stty(1), test(1), touch(1), umask(1),
vi(1), dup(2), exec(2), fork(2), getpwnam(3), ioctl(2), Iseek(2), paste(1), path?
conf(2), pipe(2), sigsetinfo(2), sysconf(2), umask(2), ulimit(2), wait(2), wc?
trans(3), rand(3), a.out(5), profile(5), environ(7).
Morris |. Bolsky and David G. Korn, The New KornShell Command and Programming Lan?
guage, Prentice Hall, 1995.
POSIX - Part 2: Shell and Utilities, IEEE Std 1003.2-1992, ISO/IEC 9945-2, IEEE,
1993.
CAVEATS

If a command is executed, and then a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the -t option of
the alias command to correct this situation.
Some very old shell scripts contain a * as a synonym for the pipe character ?.
Using the hist built-in command within a compound command will cause the whole com?
mand to disappear from the history file.
The built-in command . file reads the whole file before any commands are executed.
Therefore, alias and unalias commands in the file will not apply to any commands
defined in the file.
Traps are not processed while a job is waiting for a foreground process. Thus, a

trap on CHLD won't be executed until the foreground job terminates. Page 81/82

Itis a good idea to leave a space after the comma operator in arithmetic expres?
sions to prevent the comma from being interpreted as the decimal point character in
certain locales.

KSH(1)

Page 82/82

