FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'ldd.1’
$man Idd.1
LDD(1) Linux Programmer's Manual LDD(1)
NAME
Idd - print shared object dependencies
SYNOPSIS
Idd [option]... file...
DESCRIPTION
Idd prints the shared objects (shared libraries) required by each program or shared object
specified on the command line. An example of its use and output (using sed(1) to trim
leading white space for readability in this page) is the following:
$1dd /bin/ls | sed 's/* ¥ I'
linux-vdso.s0.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so0.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.s0.6 => /lib64/libc.s0.6 (0x00007f87e4€92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4¢22000)
libdl.s0.2 => /lib64/libdl.s0.2 (0x00007f87e4a1e000)
/lib64/1d-linux-x86-64.50.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so0.1 (0x00007f87e4817000)
libpthread.so0.0 => /lib64/libpthread.so0.0 (0x00007f87e45fa000)
In the usual case, Idd invokes the standard dynamic linker (see Id.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dynamic linker to
inspect the program's dynamic dependencies, and find (according to the rules described in

Id.so(8)) and load the objects that satisfy those dependencies. For each dependency, Idd Page 1/3

displays the location of the matching object and the (hexadecimal) address at which it is
loaded. (The linux-vdso and Id-linux shared dependencies are special, see vdso(7) and
Id.so(8).)
Security
Be aware that in some circumstances (e.g., where the program specifies an ELF interpreter
other than Id-linux.so), some versions of [dd may attempt to obtain the dependency infor?
mation by attempting to directly execute the program, which may lead to the execution of
whatever code is defined in the program's ELF interpreter, and perhaps to execution of the
program itself. (In glibc versions before 2.27, the upstream Idd implementation did this
for example, although most distributions provided a modified version that did not.)
Thus, you should never employ Idd on an untrusted executable, since this may result in the
execution of arbitrary code. A safer alternative when dealing with untrusted executables
is:
$ objdump -p /path/to/program | grep NEEDED
Note, however, that this alternative shows only the direct dependencies of the executable,
while Idd shows the entire dependency tree of the executable.
OPTIONS

--version

Print the version number of Idd.
-v, --verbose

Print all information, including, for example, symbol versioning information.
-u, --unused

Print unused direct dependencies. (Since glibc 2.3.4.)
-d, --data-relocs

Perform relocations and report any missing objects (ELF only).
-r, --function-relocs

Perform relocations for both data objects and functions, and report any missing ob?

jects or functions (ELF only).
--help Usage information.

BUGS

Idd does not work on a.out shared libraries.
Idd does not work with some extremely old a.out programs which were built before Idd sup?

port was added to the compiler releases. If you use Idd on one of these programs, the Page 2/3

program will attempt to run with argc = 0 and the results will be unpredictable.

SEE ALSO
pldd(1), sprof(1), Id.so(8), Idconfig(8)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

2019-03-06 LDD(1)

Page 3/3

