
Rocky Enterprise Linux 9.2 Manual Pages on command 'libnftables-json.5'

$ man libnftables-json.5

LIBNFTABLES-JSON(5) LIBNFTABLES-JSON(5)

NAME

 libnftables-json - Supported JSON schema by libnftables

SYNOPSIS

 { "nftables": [OBJECTS] }

 OBJECTS := LIST_OBJECTS | CMD_OBJECTS

 LIST_OBJECTS := LIST_OBJECT [, LIST_OBJECTS]

 CMD_OBJECTS := CMD_OBJECT [, CMD_OBJECTS]

 CMD_OBJECT := { CMD: LIST_OBJECT } | METAINFO_OBJECT

 CMD := "add" | "replace" | "create" | "insert" | "delete" | "list" | "reset" | "flush" |

 "rename"

 LIST_OBJECT := TABLE | CHAIN | RULE | SET | MAP | ELEMENT | FLOWTABLE | COUNTER | QUOTA |

 CT_HELPER | LIMIT | METAINFO_OBJECT | CT_TIMEOUT | CT_EXPECTATION

DESCRIPTION

 libnftables supports JSON formatted input and output. This is implemented as an

 alternative frontend to the standard CLI syntax parser, therefore basic behaviour is

 identical and, for (almost) any operation available in standard syntax, there should be an

 equivalent one in JSON.

 JSON input may be provided in a single string as parameter to nft_run_cmd_from_buffer() or

 in a file identified by the filename parameter of the nft_run_cmd_from_filename()

 function.

 JSON output has to be enabled via the nft_ctx_output_set_json() function, turning library

 standard output into JSON format. Error output remains unaffected. Page 1/31

GLOBAL STRUCTURE

 In general, any JSON input or output is enclosed in an object with a single property named

 nftables. Its value is an array containing commands (for input) or ruleset elements (for

 output).

 A command is an object with a single property whose name identifies the command. Its value

 is a ruleset element - basically identical to output elements, apart from certain

 properties which may be interpreted differently or are required when output generally

 omits them.

METAINFO OBJECT

 In output, the first object in an nftables array is a special one containing library

 information. Its content is as follows:

 { "metainfo": {

 "version": STRING,

 "release_name": STRING,

 "json_schema_version": NUMBER

 }}

 The values of version and release_name properties are equal to the package version and

 release name as printed by nft -v. The value of the json_schema_version property is an

 integer indicating the schema version.

 If supplied in library input, the parser will verify the json_schema_version value to not

 exceed the internally hardcoded one (to make sure the given schema is fully understood).

 In future, a lower number than the internal one may activate compatibility mode to parse

 outdated and incompatible JSON input.

COMMAND OBJECTS

 The structure accepts an arbitrary amount of commands which are interpreted in order of

 appearance. For instance, the following standard syntax input:

 flush ruleset

 add table inet mytable

 add chain inet mytable mychain

 add rule inet mytable mychain tcp dport 22 accept

 translates into JSON as such:

 { "nftables": [

 { "flush": { "ruleset": null }}, Page 2/31

 { "add": { "table": {

 "family": "inet",

 "name": "mytable"

 }}},

 { "add": { "chain": {

 "family": "inet",

 "table": "mytable",

 "name": "mychain"

 }}},

 { "add": { "rule": {

 "family": "inet",

 "table": "mytable",

 "chain": "mychain",

 "expr": [

 { "match": {

 "op": "==",

 "left": { "payload": {

 "protocol": "tcp",

 "field": "dport"

 }},

 "right": 22

 }},

 { "accept": null }

]

 }}}

]}

 ADD

 { "add": ADD_OBJECT }

 ADD_OBJECT := TABLE | CHAIN | RULE | SET | MAP | ELEMENT |

 FLOWTABLE | COUNTER | QUOTA | CT_HELPER | LIMIT |

 CT_TIMEOUT | CT_EXPECTATION

 Add a new ruleset element to the kernel.

 REPLACE Page 3/31

 { "replace": RULE }

 Replace a rule. In RULE, the handle property is mandatory and identifies the rule to be

 replaced.

 CREATE

 { "create": ADD_OBJECT }

 Identical to add command, but returns an error if the object already exists.

 INSERT

 { "insert": RULE }

 This command is identical to add for rules, but instead of appending the rule to the chain

 by default, it inserts at first position. If a handle or index property is given, the rule

 is inserted before the rule identified by those properties.

 DELETE

 { "delete": ADD_OBJECT }

 Delete an object from the ruleset. Only the minimal number of properties required to

 uniquely identify an object is generally needed in ADD_OBJECT. For most ruleset elements,

 this is family and table plus either handle or name (except rules since they don?t have a

 name).

 LIST

 { "list": LIST_OBJECT }

 LIST_OBJECT := TABLE | TABLES | CHAIN | CHAINS | SET | SETS |

 MAP | MAPS | COUNTER | COUNTERS | QUOTA | QUOTAS |

 CT_HELPER | CT_HELPERS | LIMIT | LIMITS | RULESET |

 METER | METERS | FLOWTABLE | FLOWTABLES |

 CT_TIMEOUT | CT_EXPECTATION

 List ruleset elements. The plural forms are used to list all objects of that kind,

 optionally filtered by family and for some, also table.

 RESET

 { "reset": RESET_OBJECT }

 RESET_OBJECT := COUNTER | COUNTERS | QUOTA | QUOTAS

 Reset state in suitable objects, i.e. zero their internal counter.

 FLUSH

 { "flush": FLUSH_OBJECT }

 FLUSH_OBJECT := TABLE | CHAIN | SET | MAP | METER | RULESET Page 4/31

 Empty contents in given object, e.g. remove all chains from given table or remove all

 elements from given set.

 RENAME

 { "rename": CHAIN }

 Rename a chain. The new name is expected in a dedicated property named newname.

RULESET ELEMENTS

 TABLE

 { "table": {

 "family": STRING,

 "name": STRING,

 "handle": NUMBER

 }}

 This object describes a table.

 family

 The table?s family, e.g. "ip" or "ip6".

 name

 The table?s name.

 handle

 The table?s handle. In input, it is used only in delete command as alternative to

 name.

 CHAIN

 { "chain": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "newname": STRING,

 "handle": NUMBER,

 "type": STRING,

 "hook": STRING,

 "prio": NUMBER,

 "dev": STRING,

 "policy": STRING

 }} Page 5/31

 This object describes a chain.

 family

 The table?s family.

 table

 The table?s name.

 name

 The chain?s name.

 handle

 The chain?s handle. In input, it is used only in delete command as alternative to

 name.

 newname

 A new name for the chain, only relevant in the rename command.

 The following properties are required for base chains:

 type

 The chain?s type.

 hook

 The chain?s hook.

 prio

 The chain?s priority.

 dev

 The chain?s bound interface (if in the netdev family).

 policy

 The chain?s policy.

 RULE

 { "rule": {

 "family": STRING,

 "table": STRING,

 "chain": STRING,

 "expr": [STATEMENTS],

 "handle": NUMBER,

 "index": NUMBER,

 "comment": STRING

 }} Page 6/31

 STATEMENTS := STATEMENT [, STATEMENTS]

 This object describes a rule. Basic building blocks of rules are statements. Each rule

 consists of at least one.

 family

 The table?s family.

 table

 The table?s name.

 chain

 The chain?s name.

 expr

 An array of statements this rule consists of. In input, it is used in

 add/insert/replace commands only.

 handle

 The rule?s handle. In delete/replace commands, it serves as an identifier of the rule

 to delete/replace. In add/insert commands, it serves as an identifier of an existing

 rule to append/prepend the rule to.

 index

 The rule?s position for add/insert commands. It is used as an alternative to handle

 then.

 comment

 Optional rule comment.

 SET / MAP

 { "set": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "type": SET_TYPE,

 "policy": SET_POLICY,

 "flags": [SET_FLAG_LIST],

 "elem": SET_ELEMENTS,

 "timeout": NUMBER,

 "gc-interval": NUMBER, Page 7/31

 "size": NUMBER

 }}

 { "map": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "type": SET_TYPE,

 "map": STRING,

 "policy": SET_POLICY,

 "flags": [SET_FLAG_LIST],

 "elem": SET_ELEMENTS,

 "timeout": NUMBER,

 "gc-interval": NUMBER,

 "size": NUMBER

 }}

 SET_TYPE := STRING | [SET_TYPE_LIST]

 SET_TYPE_LIST := STRING [, SET_TYPE_LIST]

 SET_POLICY := "performance" | "memory"

 SET_FLAG_LIST := SET_FLAG [, SET_FLAG_LIST]

 SET_FLAG := "constant" | "interval" | "timeout"

 SET_ELEMENTS := EXPRESSION | [EXPRESSION_LIST]

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION_LIST]

 These objects describe a named set or map. Maps are a special form of sets in that they

 translate a unique key to a value.

 family

 The table?s family.

 table

 The table?s name.

 name

 The set?s name.

 handle

 The set?s handle. For input, it is used in the delete command only. Page 8/31

 type

 The set?s datatype, see below.

 map

 Type of values this set maps to (i.e. this set is a map).

 policy

 The set?s policy.

 flags

 The set?s flags.

 elem

 Initial set element(s), see below.

 timeout

 Element timeout in seconds.

 gc-interval

 Garbage collector interval in seconds.

 size

 Maximum number of elements supported.

 TYPE

 The set type might be a string, such as "ipv4_addr" or an array consisting of strings

 (for concatenated types).

 ELEM

 A single set element might be given as string, integer or boolean value for simple

 cases. If additional properties are required, a formal elem object may be used.

 Multiple elements may be given in an array.

 ELEMENT

 { "element": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "elem": SET_ELEM

 }}

 SET_ELEM := EXPRESSION | [EXPRESSION_LIST]

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION]

 Manipulate element(s) in a named set. Page 9/31

 family

 The table?s family.

 table

 The table?s name.

 name

 The set?s name.

 elem

 See elem property of set object.

 FLOWTABLE

 { "flowtable": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "hook": STRING,

 "prio": NUMBER,

 "dev": FT_INTERFACE

 }}

 FT_INTERFACE := STRING | [FT_INTERFACE_LIST]

 FT_INTERFACE_LIST := STRING [, STRING]

 This object represents a named flowtable.

 family

 The table?s family.

 table

 The table?s name.

 name

 The flow table?s name.

 handle

 The flow table?s handle. In input, it is used by the delete command only.

 hook

 The flow table?s hook.

 prio

 The flow table?s priority. Page 10/31

 dev

 The flow table?s interface(s).

 COUNTER

 { "counter": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "packets": NUMBER,

 "bytes": NUMBER

 }}

 This object represents a named counter.

 family

 The table?s family.

 table

 The table?s name.

 name

 The counter?s name.

 handle

 The counter?s handle. In input, it is used by the delete command only.

 packets

 Packet counter value.

 bytes

 Byte counter value.

 QUOTA

 { "quota": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "bytes": NUMBER,

 "used": NUMBER,

 "inv": BOOLEAN Page 11/31

 }}

 This object represents a named quota.

 family

 The table?s family.

 table

 The table?s name.

 name

 The quota?s name.

 handle

 The quota?s handle. In input, it is used by the delete command only.

 bytes

 Quota threshold.

 used

 Quota used so far.

 inv

 If true, match if the quota has been exceeded.

 CT HELPER

 { "ct helper": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": ... ',

 "type": 'STRING,

 "protocol": CTH_PROTO,

 "l3proto": STRING

 }}

 CTH_PROTO := "tcp" | "udp"

 This object represents a named conntrack helper.

 family

 The table?s family.

 table

 The table?s name.

 name Page 12/31

 The ct helper?s name.

 handle

 The ct helper?s handle. In input, it is used by the delete command only.

 type

 The ct helper type name, e.g. "ftp" or "tftp".

 protocol

 The ct helper?s layer 4 protocol.

 l3proto

 The ct helper?s layer 3 protocol, e.g. "ip" or "ip6".

 LIMIT

 { "limit": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "rate": NUMBER,

 "per": STRING,

 "burst": NUMBER,

 "unit": LIMIT_UNIT,

 "inv": BOOLEAN

 }}

 LIMIT_UNIT := "packets" | "bytes"

 This object represents a named limit.

 family

 The table?s family.

 table

 The table?s name.

 name

 The limit?s name.

 handle

 The limit?s handle. In input, it is used by the delete command only.

 rate

 The limit?s rate value. Page 13/31

 per

 Time unit to apply the limit to, e.g. "week", "day", "hour", etc. If omitted,

 defaults to "second".

 burst

 The limit?s burst value. If omitted, defaults to 0.

 unit

 Unit of rate and burst values. If omitted, defaults to "packets".

 inv

 If true, match if limit was exceeded. If omitted, defaults to false.

 CT TIMEOUT

 { "ct timeout": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "protocol": CTH_PROTO,

 "state": STRING,

 "value: NUMBER,

 "l3proto": STRING

 }}

 CTH_PROTO := "tcp" | "udp" | "dccp" | "sctp" | "gre" | "icmpv6" | "icmp" | "generic"

 This object represents a named conntrack timeout policy.

 family

 The table?s family.

 table

 The table?s name.

 name

 The ct timeout object?s name.

 handle

 The ct timeout object?s handle. In input, it is used by delete command only.

 protocol

 The ct timeout object?s layer 4 protocol.

 state Page 14/31

 The connection state name, e.g. "established", "syn_sent", "close" or "close_wait",

 for which the timeout value has to be updated.

 value

 The updated timeout value for the specified connection state.

 l3proto

 The ct timeout object?s layer 3 protocol, e.g. "ip" or "ip6".

 CT EXPECTATION

 { "ct expectation": {

 "family": STRING,

 "table": STRING,

 "name": STRING,

 "handle": NUMBER,

 "l3proto": STRING

 "protocol":* CTH_PROTO,

 "dport": NUMBER,

 "timeout: NUMBER,

 "size: NUMBER,

 *}}

 CTH_PROTO := "tcp" | "udp" | "dccp" | "sctp" | "gre" | "icmpv6" | "icmp" | "generic"

 This object represents a named conntrack expectation.

 family

 The table?s family.

 table

 The table?s name.

 name

 The ct expectation object?s name.

 handle

 The ct expectation object?s handle. In input, it is used by delete command only.

 l3proto

 The ct expectation object?s layer 3 protocol, e.g. "ip" or "ip6".

 protocol

 The ct expectation object?s layer 4 protocol.

 dport Page 15/31

 The destination port of the expected connection.

 timeout

 The time in millisecond that this expectation will live.

 size

 The maximum count of expectations to be living in the same time.

STATEMENTS

 Statements are the building blocks for rules. Each rule consists of at least one.

 VERDICT

 { "accept": null }

 { "drop": null }

 { "continue": null }

 { "return": null }

 { "jump": { "target": * STRING *}}

 { "goto": { "target": * STRING *}}

 A verdict either terminates packet traversal through the current chain or delegates to a

 different one.

 jump and goto statements expect a target chain name.

 MATCH

 { "match": {

 "left": EXPRESSION,

 "right": EXPRESSION,

 "op": STRING

 }}

 This matches the expression on left hand side (typically a packet header or packet meta

 info) with the expression on right hand side (typically a constant value). If the

 statement evaluates to true, the next statement in this rule is considered. If not,

 processing continues with the next rule in the same chain.

 left

 Left hand side of this match.

 right

 Right hand side of this match.

 op

 Operator indicating the type of comparison. Page 16/31

 OPERATORS

 & Binary AND

 | Binary OR

 ^ Binary XOR

 << Left shift

 >> Right shift

 == Equal

 != Not equal

 < Less than

 > Greater than

 ? Less than or equal to

 >= Greater than or equal to

 in Perform a lookup, i.e. test if

 bits on RHS are contained in LHS

 value

 Unlike with the standard API, the operator is mandatory here. In the standard API, a

 missing operator may be resolved in two ways, depending on the type of expression on

 the RHS:

 ? If the RHS is a bitmask or a list of bitmasks, the expression resolves into a

 binary operation with the inequality operator, like this: LHS & RHS != 0.

 ? In any other case, the equality operator is simply inserted.

 For the non-trivial first case, the JSON API supports the in operator.

 COUNTER

 { "counter": {

 "packets": NUMBER,

 "bytes": NUMBER

 }}

 { "counter": STRING }

 This object represents a byte/packet counter. In input, no properties are required. If

 given, they act as initial values for the counter.

 The first form creates an anonymous counter which lives in the rule it appears in. The

 second form specifies a reference to a named counter object.

 packets Page 17/31

 Packets counted.

 bytes

 Bytes counted.

 MANGLE

 { "mangle": {

 "key": EXPRESSION,

 "value": EXPRESSION

 }}

 This changes the packet data or meta info.

 key

 The packet data to be changed, given as an exthdr, payload, meta, ct or ct helper

 expression.

 value

 Value to change data to.

 QUOTA

 { "quota": {

 "val": NUMBER,

 "val_unit": STRING,

 "used": NUMBER,

 "used_unit": STRING,

 "inv": BOOLEAN

 }}

 { "quota": STRING }

 The first form creates an anonymous quota which lives in the rule it appears in. The

 second form specifies a reference to a named quota object.

 val

 Quota value.

 val_unit

 Unit of val, e.g. "kbytes" or "mbytes". If omitted, defaults to "bytes".

 used

 Quota used so far. Optional on input. If given, serves as initial value.

 used_unit

 Unit of used. Defaults to "bytes". Page 18/31

 inv

 If true, will match if quota was exceeded. Defaults to false.

 LIMIT

 { "limit": {

 "rate": NUMBER,

 "rate_unit": STRING,

 "per": STRING,

 "burst": NUMBER,

 "burst_unit": STRING,

 "inv": BOOLEAN

 }}

 { "limit": STRING }

 The first form creates an anonymous limit which lives in the rule it appears in. The

 second form specifies a reference to a named limit object.

 rate

 Rate value to limit to.

 rate_unit

 Unit of rate, e.g. "packets" or "mbytes". Defaults to "packets".

 per

 Denominator of rate, e.g. "week" or "minutes".

 burst

 Burst value. Defaults to 0.

 burst_unit

 Unit of burst, ignored if rate_unit is "packets". Defaults to "bytes".

 inv

 If true, matches if the limit was exceeded. Defaults to false.

 FWD

 { "fwd": {

 "dev": EXPRESSION,

 "family": FWD_FAMILY,

 "addr": EXPRESSION

 }}

 FWD_FAMILY := "ip" | "ip6" Page 19/31

 Forward a packet to a different destination.

 dev

 Interface to forward the packet on.

 family

 Family of addr.

 addr

 IP(v6) address to forward the packet to.

 Both family and addr are optional, but if at least one is given, both must be present.

 NOTRACK

 { "notrack": null }

 Disable connection tracking for the packet.

 DUP

 { "dup": {

 "addr": EXPRESSION,

 "dev": EXPRESSION

 }}

 Duplicate a packet to a different destination.

 addr

 Address to duplicate packet to.

 dev

 Interface to duplicate packet on. May be omitted to not specify an interface

 explicitly.

 NETWORK ADDRESS TRANSLATION

 { "snat": {

 "addr": EXPRESSION,

 "family": STRING,

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 { "dnat": {

 "addr": EXPRESSION,

 "family": STRING,

 "port": EXPRESSION, Page 20/31

 "flags": FLAGS

 }}

 { "masquerade": {

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 { "redirect": {

 "port": EXPRESSION,

 "flags": FLAGS

 }}

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "random" | "fully-random" | "persistent"

 Perform Network Address Translation.

 addr

 Address to translate to.

 family

 Family of addr, either ip or ip6. Required in inet table family.

 port

 Port to translate to.

 flags

 Flag(s).

 All properties are optional and default to none.

 REJECT

 { "reject": {

 "type": STRING,

 "expr": EXPRESSION

 }}

 Reject the packet and send the given error reply.

 type

 Type of reject, either "tcp reset", "icmpx", "icmp" or "icmpv6".

 expr

 ICMP code to reject with. Page 21/31

 All properties are optional.

 SET

 { "set": {

 "op": STRING,

 "elem": EXPRESSION,

 "set": STRING

 }}

 Dynamically add/update elements to a set.

 op

 Operator on set, either "add" or "update".

 elem

 Set element to add or update.

 set

 Set reference.

 LOG

 { "log": {

 "prefix": STRING,

 "group": NUMBER,

 "snaplen": NUMBER,

 "queue-threshold": NUMBER,

 "level": LEVEL,

 "flags": FLAGS

 }}

 LEVEL := "emerg" | "alert" | "crit" | "err" | "warn" | "notice" |

 "info" | "debug" | "audit"

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "tcp sequence" | "tcp options" | "ip options" | "skuid" |

 "ether" | "all"

 Log the packet.

 prefix

 Prefix for log entries.

 group Page 22/31

 Log group.

 snaplen

 Snaplen for logging.

 queue-threshold

 Queue threshold.

 level

 Log level. Defaults to "warn".

 flags

 Log flags.

 All properties are optional.

 CT HELPER

 { "ct helper": EXPRESSION }

 Enable the specified conntrack helper for this packet.

 ct helper

 CT helper reference.

 METER

 { "meter": {

 "name": STRING,

 "key": EXPRESSION,

 "stmt": STATEMENT

 }}

 Apply a given statement using a meter.

 name

 Meter name.

 key

 Meter key.

 stmt

 Meter statement.

 QUEUE

 { "queue": {

 "num": EXPRESSION,

 "flags": FLAGS

 }} Page 23/31

 FLAGS := FLAG | [FLAG_LIST]

 FLAG_LIST := FLAG [, FLAG_LIST]

 FLAG := "bypass" | "fanout"

 Queue the packet to userspace.

 num

 Queue number.

 flags

 Queue flags.

 VERDICT MAP

 { "vmap": {

 "key": EXPRESSION,

 "data": EXPRESSION

 }}

 Apply a verdict conditionally.

 key

 Map key.

 data

 Mapping expression consisting of value/verdict pairs.

 CT COUNT

 { "ct count": {

 "val": NUMBER,

 "inv": BOOLEAN

 }}

 Limit the number of connections using conntrack.

 val

 Connection count threshold.

 inv

 If true, match if val was exceeded. If omitted, defaults to false.

 CT TIMEOUT

 { "ct timeout": EXPRESSION }

 Assign connection tracking timeout policy.

 ct timeout

 CT timeout reference. Page 24/31

 CT EXPECTATION

 { "ct expectation": EXPRESSION }

 Assign connection tracking expectation.

 ct expectation

 CT expectation reference.

 XT

 { "xt": null }

 This represents an xt statement from xtables compat interface. Sadly, at this point, it is

 not possible to provide any further information about its content.

EXPRESSIONS

 Expressions are the building blocks of (most) statements. In their most basic form, they

 are just immediate values represented as a JSON string, integer or boolean type.

 IMMEDIATES

 STRING

 NUMBER

 BOOLEAN

 Immediate expressions are typically used for constant values. For strings, there are two

 special cases:

 @STRING

 The remaining part is taken as set name to create a set reference.

 *

 Construct a wildcard expression.

 LISTS

 ARRAY

 List expressions are constructed by plain arrays containing of an arbitrary number of

 expressions.

 CONCAT

 { "concat": CONCAT }

 CONCAT := [EXPRESSION_LIST]

 EXPRESSION_LIST := EXPRESSION [, EXPRESSION_LIST]

 Concatenate several expressions.

 SET

 { "set": SET } Page 25/31

 SET := EXPRESSION | [EXPRESSION_LIST]

 This object constructs an anonymous set. For mappings, an array of arrays with exactly two

 elements is expected.

 MAP

 { "map": {

 "key": EXPRESSION,

 "data": EXPRESSION

 }}

 Map a key to a value.

 key

 Map key.

 data

 Mapping expression consisting of value/target pairs.

 PREFIX

 { "prefix": {

 "addr": EXPRESSION,

 "len": NUMBER

 }}

 Construct an IPv4 or IPv6 prefix consisting of address part in addr and prefix length in

 len.

 RANGE

 { "range": [EXPRESSION , EXPRESSION] }

 Construct a range of values. The first array item denotes the lower boundary, the second

 one the upper boundary.

 PAYLOAD

 { "payload": {

 "base": BASE,

 "offset": NUMBER,

 "len": NUMBER

 }}

 { "payload": {

 "protocol": STRING,

 "field": STRING Page 26/31

 }}

 BASE := "ll" | "nh" | "th"

 Construct a payload expression, i.e. a reference to a certain part of packet data. The

 first form creates a raw payload expression to point at a random number (len) of bytes at

 a certain offset (offset) from a given reference point (base). The following base values

 are accepted:

 "ll"

 The offset is relative to Link Layer header start offset.

 "nh"

 The offset is relative to Network Layer header start offset.

 "th"

 The offset is relative to Transport Layer header start offset.

 The second form allows to reference a field by name (field) in a named packet header

 (protocol).

 EXTHDR

 { "exthdr": {

 "name": STRING,

 "field": STRING,

 "offset": NUMBER

 }}

 Create a reference to a field (field) in an IPv6 extension header (name). offset is used

 only for rt0 protocol.

 If the field property is not given, the expression is to be used as a header existence

 check in a match statement with a boolean on the right hand side.

 TCP OPTION

 { "tcp option": {

 "name": STRING,

 "field": STRING

 }}

 Create a reference to a field (field) of a TCP option header (name).

 If the field property is not given, the expression is to be used as a TCP option existence

 check in a match statement with a boolean on the right hand side.

 SCTP CHUNK Page 27/31

 { "sctp chunk": {

 "name": STRING,

 "field": STRING

 }}

 Create a reference to a field (field) of an SCTP chunk (name).

 If the field property is not given, the expression is to be used as an SCTP chunk

 existence check in a match statement with a boolean on the right hand side.

 META

 { "meta": {

 "key": META_KEY

 }}

 META_KEY := "length" | "protocol" | "priority" | "random" | "mark" |

 "iif" | "iifname" | "iiftype" | "oif" | "oifname" |

 "oiftype" | "skuid" | "skgid" | "nftrace" |

 "rtclassid" | "ibriport" | "obriport" | "ibridgename" |

 "obridgename" | "pkttype" | "cpu" | "iifgroup" |

 "oifgroup" | "cgroup" | "nfproto" | "l4proto" |

 "secpath"

 Create a reference to packet meta data.

 RT

 { "rt": {

 "key": RT_KEY,

 "family": RT_FAMILY

 }}

 RT_KEY := "classid" | "nexthop" | "mtu"

 RT_FAMILY := "ip" | "ip6"

 Create a reference to packet routing data.

 The family property is optional and defaults to unspecified.

 CT

 { "ct": {

 "key": STRING,

 "family": CT_FAMILY,

 "dir": CT_DIRECTION Page 28/31

 }}

 CT_FAMILY := "ip" | "ip6"

 CT_DIRECTION := "original" | "reply"

 Create a reference to packet conntrack data.

 Some CT keys do not support a direction. In this case, dir must not be given.

 NUMGEN

 { "numgen": {

 "mode": NG_MODE,

 "mod": NUMBER,

 "offset": NUMBER

 }}

 NG_MODE := "inc" | "random"

 Create a number generator.

 The offset property is optional and defaults to 0.

 HASH

 { "jhash": {

 "mod": NUMBER,

 "offset": NUMBER,

 "expr": EXPRESSION,

 "seed": NUMBER

 }}

 { "symhash": {

 "mod": NUMBER,

 "offset": NUMBER

 }}

 Hash packet data.

 The offset and seed properties are optional and default to 0.

 FIB

 { "fib": {

 "result": FIB_RESULT,

 "flags": FIB_FLAGS

 }}

 FIB_RESULT := "oif" | "oifname" | "type" Page 29/31

 FIB_FLAGS := FIB_FLAG | [FIB_FLAG_LIST]

 FIB_FLAG_LIST := FIB_FLAG [, FIB_FLAG_LIST]

 FIB_FLAG := "saddr" | "daddr" | "mark" | "iif" | "oif"

 Perform kernel Forwarding Information Base lookups.

 BINARY OPERATION

 { "|": [EXPRESSION, EXPRESSION] }

 { "^": [EXPRESSION, EXPRESSION] }

 { "&": [EXPRESSION, EXPRESSION] }

 { "<<": [EXPRESSION, EXPRESSION] }

 { ">>": [EXPRESSION, EXPRESSION] }

 All binary operations expect an array of exactly two expressions, of which the first

 element denotes the left hand side and the second one the right hand side.

 VERDICT

 { "accept": null }

 { "drop": null }

 { "continue": null }

 { "return": null }

 { "jump": { "target": STRING }}

 { "goto": { "target": STRING }}

 Same as the verdict statement, but for use in verdict maps.

 jump and goto verdicts expect a target chain name.

 ELEM

 { "elem": {

 "val": EXPRESSION,

 "timeout": NUMBER,

 "expires": NUMBER,

 "comment": STRING

 }}

 Explicitly set element object, in case timeout, expires or comment are desired. Otherwise,

 it may be replaced by the value of val.

 SOCKET

 { "socket": {

 "key": SOCKET_KEY Page 30/31

 }}

 SOCKET_KEY := "transparent"

 Construct a reference to packet?s socket.

 OSF

 { "osf": {

 "key": OSF_KEY,

 "ttl": OSF_TTL

 }}

 OSF_KEY := "name"

 OSF_TTL := "loose" | "skip"

 Perform OS fingerprinting. This expression is typically used in the LHS of a match

 statement.

 key

 Which part of the fingerprint info to match against. At this point, only the OS name

 is supported.

 ttl

 Define how the packet?s TTL value is to be matched. This property is optional. If

 omitted, the TTL value has to match exactly. A value of loose accepts TTL values less

 than the fingerprint one. A value of skip omits TTL value comparison entirely.

AUTHOR

 Phil Sutter <phil@nwl.cc>

 Author.

 08/10/2022 LIBNFTABLES-JSON(5)

Page 31/31

