
Rocky Enterprise Linux 9.2 Manual Pages on command 'libnftables.3'

$ man libnftables.3

LIBNFTABLES(3) LIBNFTABLES(3)

NAME

 libnftables - nftables frontend library

SYNOPSIS

 #include <nftables/libnftables.h>

 struct nft_ctx *nft_ctx_new(uint32_t flags);

 void nft_ctx_free(struct nft_ctx *ctx);

 bool nft_ctx_get_dry_run(struct nft_ctx *ctx);

 void nft_ctx_set_dry_run(struct nft_ctx *ctx, bool dry);

 unsigned int nft_ctx_output_get_flags(struct nft_ctx *ctx);

 void nft_ctx_output_set_flags(struct nft_ctx *ctx, unsigned int flags);

 unsigned int nft_ctx_output_get_debug(struct nft_ctx *ctx);

 void nft_ctx_output_set_debug(struct nft_ctx *ctx, unsigned int mask);

 FILE *nft_ctx_set_output(struct nft_ctx *ctx, FILE *fp);

 int nft_ctx_buffer_output(struct nft_ctx *ctx);

 int nft_ctx_unbuffer_output(struct nft_ctx *ctx);

 const char *nft_ctx_get_output_buffer(struct nft_ctx *ctx);

 FILE *nft_ctx_set_error(struct nft_ctx *ctx, FILE *fp);

 int nft_ctx_buffer_error(struct nft_ctx *ctx);

 int nft_ctx_unbuffer_error(struct nft_ctx *ctx);

 const char *nft_ctx_get_error_buffer(struct nft_ctx *ctx);

 int nft_ctx_add_include_path(struct nft_ctx *ctx, const char *path);

 void nft_ctx_clear_include_paths(struct nft_ctx *ctx); Page 1/8

 int nft_run_cmd_from_buffer(struct nft_ctx *nft, const char *buf);

 int nft_run_cmd_from_filename(struct nft_ctx *nft,

 const char *filename);

 Link with -lnftables.

DESCRIPTION

 This library was designed with nftables integration into applications in mind. Its API is

 therefore kept as simple as possible, which somewhat limits its flexibility. Due to

 support for JSON markup of input and output though, convenience in constructing and

 parsing of input and output data may be achieved by using a third-party library such as

 libjansson.

 At the very basic level, one has to allocate a new object of type struct nft_ctx using

 nft_ctx_new() function, then pass commands via nft_run_cmd_from_buffer() or

 nft_run_cmd_from_filename() functions. By default, any output is written to stdout (or

 stderr for error messages). These file pointers may be changed using nft_ctx_set_output()

 and nft_ctx_set_error() functions. On top of that, it is possible to have any output

 buffered by the library for later retrieval as a static buffer. See

 nft_ctx_buffer_output() and nft_ctx_buffer_error() functions for details.

 nft_ctx_new() and nft_ctx_free()

 These functions aid in nft context management. In order to make use of the library, at

 least one context object has to be allocated. The context holds temporary data such as

 caches, library configuration and (if enabled) output and error buffers.

 The nft_ctx_new() function allocates and returns a new context object. The parameter flags

 is unused at this point and should be set to zero. For convenience, the macro

 NFT_CTX_DEFAULT is defined to that value.

 The nft_ctx_free() function frees the context object pointed to by ctx, including any

 caches or buffers it may hold.

 nft_ctx_get_dry_run() and nft_ctx_set_dry_run()

 Dry-run setting controls whether ruleset changes are actually committed on kernel side or

 not. It allows to check whether a given operation would succeed without making actual

 changes to the ruleset. The default setting is false.

 The nft_ctx_get_dry_run() function returns the dry-run setting?s value contained in ctx.

 The nft_ctx_set_dry_run() function sets the dry-run setting in ctx to the value of dry.

 nft_ctx_output_get_flags() and nft_ctx_output_set_flags() Page 2/8

 The flags setting controls the output format.

 enum {

 NFT_CTX_OUTPUT_REVERSEDNS = (1 << 0),

 NFT_CTX_OUTPUT_SERVICE = (1 << 1),

 NFT_CTX_OUTPUT_STATELESS = (1 << 2),

 NFT_CTX_OUTPUT_HANDLE = (1 << 3),

 NFT_CTX_OUTPUT_JSON = (1 << 4),

 NFT_CTX_OUTPUT_ECHO = (1 << 5),

 NFT_CTX_OUTPUT_GUID = (1 << 6),

 NFT_CTX_OUTPUT_NUMERIC_PROTO = (1 << 7),

 NFT_CTX_OUTPUT_NUMERIC_PRIO = (1 << 8),

 NFT_CTX_OUTPUT_NUMERIC_SYMBOL = (1 << 9),

 NFT_CTX_OUTPUT_NUMERIC_TIME = (1 << 10),

 NFT_CTX_OUTPUT_NUMERIC_ALL = (NFT_CTX_OUTPUT_NUMERIC_PROTO |

 NFT_CTX_OUTPUT_NUMERIC_PRIO |

 NFT_CTX_OUTPUT_NUMERIC_SYMBOL |

 NFT_CTX_OUTPUT_NUMERIC_TIME),

 NFT_CTX_OUTPUT_TERSE = (1 << 11),

 };

 NFT_CTX_OUTPUT_REVERSEDNS

 Reverse DNS lookups are performed for IP addresses when printing. Note that this may

 add significant delay to list commands depending on DNS resolver speed.

 NFT_CTX_OUTPUT_SERVICE

 Print port numbers as services as described in the /etc/services file.

 NFT_CTX_OUTPUT_STATELESS

 If stateless output has been requested, then stateful data is not printed. Stateful

 data refers to those objects that carry run-time data, e.g. the counter statement

 holds packet and byte counter values, making it stateful.

 NFT_CTX_OUTPUT_HANDLE

 Upon insertion into the ruleset, some elements are assigned a unique handle for

 identification purposes. For example, when deleting a table or chain, it may be

 identified either by name or handle. Rules on the other hand must be deleted by

 handle, because there is no other way to uniquely identify them. This flag makes Page 3/8

 ruleset listings include handle values.

 NFT_CTX_OUTPUT_JSON

 If enabled at compile-time, libnftables accepts input in JSON format and is able to

 print output in JSON format as well. See libnftables-json(5) for a description of the

 supported schema. This flag controls JSON output format, input is auto-detected.

 NFT_CTX_OUTPUT_ECHO

 The echo setting makes libnftables print the changes once they are committed to the

 kernel, just like a running instance of nft monitor would. Amongst other things, this

 allows to retrieve an added rule?s handle atomically.

 NFT_CTX_OUTPUT_GUID

 Display UID and GID as described in the /etc/passwd and /etc/group files.

 NFT_CTX_OUTPUT_NUMERIC_PROTO

 Display layer 4 protocol numerically.

 NFT_CTX_OUTPUT_NUMERIC_PRIO

 Display base chain priority numerically.

 NFT_CTX_OUTPUT_NUMERIC_SYMBOL

 Display expression datatype as numeric value.

 NFT_CTX_OUTPUT_NUMERIC_TIME

 Display time, day and hour values in numeric format.

 NFT_CTX_OUTPUT_NUMERIC_ALL

 Display all numerically.

 NFT_CTX_OUTPUT_TERSE

 If terse output has been requested, then the contents of sets are not printed.

 The nft_ctx_output_get_flags() function returns the output flags setting?s value in ctx.

 The nft_ctx_output_set_flags() function sets the output flags setting in ctx to the value

 of val.

 nft_ctx_output_get_debug() and nft_ctx_output_set_debug()

 Libnftables supports separate debugging of different parts of its internals. To facilitate

 this, debugging output is controlled via a bit mask. The bits are defined as such:

 enum nft_debug_level {

 NFT_DEBUG_SCANNER = 0x1,

 NFT_DEBUG_PARSER = 0x2,

 NFT_DEBUG_EVALUATION = 0x4, Page 4/8

 NFT_DEBUG_NETLINK = 0x8,

 NFT_DEBUG_MNL = 0x10,

 NFT_DEBUG_PROTO_CTX = 0x20,

 NFT_DEBUG_SEGTREE = 0x40,

 };

 NFT_DEBUG_SCANNER

 Print LEX debug output.

 NFT_DEBUG_PARSER

 Print YACC debug output.

 NFT_DEBUG_EVALUATION

 Print debug information about evaluation phase.

 NFT_DEBUG_NETLINK

 Print netlink debug output.

 NFT_DEBUG_MNL

 Print libmnl debug output.

 NFT_DEBUG_PROTO_CTX

 Print protocol context debug output.

 NFT_DEBUG_SEGTREE

 Print segtree (i.e. interval sets) debug output.

 The nft_ctx_output_get_debug() function returns the debug output setting?s value in ctx.

 The nft_ctx_output_set_debug() function sets the debug output setting in ctx to the value

 of mask.

 Controlling library standard and error output

 By default, any output from the library (e.g., after a list command) is written to stdout

 and any error messages are written to stderr. To give applications control over them,

 there are functions to assign custom file pointers as well as having the library buffer

 what would be written for later retrieval in a static buffer. This buffer is guaranteed to

 be null-terminated and must not be freed. Note that the retrieval functions rewind the

 buffer position indicator. Further library output will probably overwrite the buffer

 content and potentially render it invalid (due to reallocation).

 The nft_ctx_set_output() and nft_ctx_set_error() functions set the output or error file

 pointer in ctx to the value of fp. They return the previous value to aid in temporary file

 pointer overrides. On error, these functions return NULL. This happens only if fp is NULL Page 5/8

 or invalid (tested using ferror() function).

 The nft_ctx_buffer_output() and nft_ctx_buffer_error() functions enable library standard

 or error output buffering. The functions return zero on success, non-zero otherwise. This

 may happen if the internal call to fopencookie() failed.

 The nft_ctx_unbuffer_output() and nft_ctx_unbuffer_error() functions disable library

 standard or error output buffering. On failure, the functions return non-zero which may

 only happen if buffering was not enabled at the time the function was called.

 The nft_ctx_get_output_buffer() and nft_ctx_get_error_buffer() functions return a pointer

 to the buffered output (which may be empty).

 nft_ctx_add_include_path() and nft_ctx_clear_include_path()

 The include command in nftables rulesets allows to outsource parts of the ruleset into a

 different file. The include path defines where these files are searched for. Libnftables

 allows to have a list of those paths which are searched in order. The default include path

 list contains a single compile-time defined entry (typically /etc/).

 The nft_ctx_add_include_path() function extends the list of include paths in ctx by the

 one given in path. The function returns zero on success or non-zero if memory allocation

 failed.

 The nft_ctx_clear_include_paths() function removes all include paths, even the built-in

 default one.

 nft_run_cmd_from_buffer() and nft_run_cmd_from_filename()

 These functions perform the actual work of parsing user input into nftables commands and

 executing them.

 The nft_run_cmd_from_buffer() function passes the command(s) contained in buf (which must

 be null-terminated) to the library, respecting settings and state in nft.

 The nft_run_cmd_from_filename() function passes the content of filename to the library,

 respecting settings and state in nft.

 Both functions return zero on success. A non-zero return code indicates an error while

 parsing or executing the command. This event should be accompanied by an error message

 written to library error output.

EXAMPLE

 #include <stdio.h>

 #include <string.h>

 #include <nftables/libnftables.h> Page 6/8

 int main(void)

 {

 char *list_cmd = "list ruleset";

 struct nft_ctx *nft;

 const char *output, *p;

 char buf[256];

 int rc = 0;

 nft = nft_ctx_new(NFT_CTX_DEFAULT);

 if (!nft)

 return 1;

 while (1) {

 if (nft_ctx_buffer_output(nft) ||

 nft_run_cmd_from_buffer(nft, list_cmd)) {

 rc = 1;

 break;

 }

 output = nft_ctx_get_output_buffer(nft);

 if (strlen(output)) {

 printf("\nThis is the current ruleset:\n| ");

 for (p = output; *(p + 1); p++) {

 if (*p == '\n')

 printf("\n| ");

 else

 putchar(*p);

 }

 putchar('\n');

 } else {

 printf("\nCurrent ruleset is empty.\n");

 }

 nft_ctx_unbuffer_output(nft);

 printf("\nEnter command ('q' to quit): ");

 fflush(stdout);

 fgets(buf, 256, stdin); Page 7/8

 if (strlen(buf))

 buf[strlen(buf) - 1] = '\0';

 if (buf[0] == 'q' && buf[1] == '\0')

 break;

 if (nft_run_cmd_from_buffer(nft, buf)) {

 rc = 1;

 break;

 }

 }

 nft_ctx_free(nft);

 return rc;

 }

SEE ALSO

 libnftables-json(5), nft(8)

AUTHOR

 Phil Sutter <phil@nwl.cc>

 Author.

 08/10/2022 LIBNFTABLES(3)

Page 8/8

