FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'longjmp.3'
$ man longjmp.3
SETIMP(3) Linux Programmer's Manual SETJMP(3)
NAME
setjmp, sigsetjmp, longjmp, siglongjmp - performing a nonlocal goto
SYNOPSIS
#include <setjmp.h>
int setimp(jmp_buf env);
int sigsetjmp(sigjmp_buf env, int savesigs);
void longjmp(imp_buf env, int val);
void siglongjmp(sigjmp_buf env, int val);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
setjmp(): see NOTES.
sigsetjimp(): _POSIX_C_SOURCE
DESCRIPTION
The functions described on this page are used for performing "nonlocal gotos": transfer?
ring execution from one function to a predetermined location in another function. The
setjmp() function dynamically establishes the target to which control will later be trans?
ferred, and longjmp() performs the transfer of execution.
The setjmp() function saves various information about the calling environment (typically,
the stack pointer, the instruction pointer, possibly the values of other registers and the
signal mask) in the buffer env for later use by longjmp(). In this case, setjmp() returns
0.
The longjmp() function uses the information saved in env to transfer control back to the

point where setjmp() was called and to restore ("rewind") the stack to its state at the Page 1/4

time of the setjmp() call. In addition, and depending on the implementation (see NOTES),
the values of some other registers and the process signal mask may be restored to their
state at the time of the setjmp() call.
Following a successful longjmp(), execution continues as if setjimp() had returned for a
second time. This "fake" return can be distinguished from a true setjmp() call because
the "fake" return returns the value provided in val. If the programmer mistakenly passes
the value 0 in val, the "fake" return will instead return 1.
sigsetjmp() and siglongjmp()

sigsetjmp() and siglongjmp() also perform nonlocal gotos, but provide predictable handling
of the process signal mask.
If, and only if, the savesigs argument provided to sigsetjmp() is nonzero, the process's
current signal mask is saved in env and will be restored if a siglongjmp() is later per?
formed with this env.

RETURN VALUE
setimp() and sigsetjmp() return 0 when called directly; on the "fake" return that occurs
after longjmp() or siglongjmp(), the nonzero value specified in val is returned.
The longjmp() or siglongjmp() functions do not return.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 7?7??7??7?7?7?7?7?7???7?77?7??7?7??277?7

?Interface ? Attribute ? Value ?

PPV 7?7??7???7??7?7?7???7?77?7??7?7??277?7

?setjimp(), sigsetimp() ? Thread safety ? MT-Safe ?

PPV 7772??7?2???7??7???7??7?77?77?7

?longjmp(), siglongjmp() ? Thread safety ? MT-Safe ?

PP 7772?7????7??????7???7??7??7?77?7

CONFORMING TO
setjimp(), longjmp(): POSIX.1-2001, POSIX.1-2008, C89, C99.
sigsetjmp(), siglongjmp(): POSIX.1-2001, POSIX.1-2008.
NOTES
POSIX does not specify whether setjmp() will save the signal mask (to be later restored
during longjmp()). In System V it will not. In 4.3BSD it will, and there is a function

_setjmp() that will not. The behavior under Linux depends on the glibc version and the Page 2/4

setting of feature test macros. On Linux with glibc versions before 2.19, setjmp() fol?
lows the System V behavior by default, but the BSD behavior is provided if the _BSD_SOURCE
feature test macro is explicitly defined and none of _POSIX_SOURCE, POSIX_C_SOURCE,
_XOPEN_SOURCE, GNU_SOURCE, or _SVID_SOURCE is defined. Since glibc 2.19, <setjmp.h> ex?
poses only the System V version of setjmp(). Programs that need the BSD semantics should
replace calls to setjmp() with calls to sigsetjmp() with a nonzero savesigs argument.
setjmp() and longjmp() can be useful for dealing with errors inside deeply nested function
calls or to allow a signal handler to pass control to a specific point in the program,
rather than returning to the point where the handler interrupted the main program. In the
latter case, if you want to portably save and restore signal masks, use sigsetjmp() and
siglongjmp(). See also the discussion of program readability below.
The compiler may optimize variables into registers, and longjmp() may restore the values
of other registers in addition to the stack pointer and program counter. Consequently,
the values of automatic variables are unspecified after a call to longjmp() if they meet
all the following criteria:
? they are local to the function that made the corresponding setjmp() call;
? their values are changed between the calls to setjimp() and longjmp(); and
? they are not declared as volatile.
Analogous remarks apply for siglongjmp().
Nonlocal gotos and program readability
While it can be abused, the traditional C "goto" statement at least has the benefit that
lexical cues (the goto statement and the target label) allow the programmer to easily per?
ceive the flow of control. Nonlocal gotos provide no such cues: multiple setjmp() calls
might employ the same jmp_buf variable so that the content of the variable may change over
the lifetime of the application. Consequently, the programmer may be forced to perform
detailed reading of the code to determine the dynamic target of a particular longjmp()
call. (To make the programmer's life easier, each setjmp() call should employ a unique
jmp_buf variable.)
Adding further difficulty, the setjimp() and longjmp() calls may not even be in the same
source code module.
In summary, nonlocal gotos can make programs harder to understand and maintain, and an al?
ternative should be used if possible.

Caveats Page 3/4

If the function which called setjmp() returns before longjmp() is called, the behavior is

undefined. Some kind of subtle or unsubtle chaos is sure to result.

If, in a multithreaded program, a longjmp() call employs an env buffer that was initial?

ized by a call to setjmp() in a different thread, the behavior is undefined.

POSIX.1-2008 Technical Corrigendum 2 adds longjmp() and siglongjmp() to the list of async-

signal-safe functions. However, the standard recommends avoiding the use of these func?

tions from signal handlers and goes on to point out that if these functions are called

from a signal handler that interrupted a call to a non-async-signal-safe function (or some

equivalent, such as the steps equivalent to exit(3) that occur upon a return from the ini?

tial call to main()), the behavior is undefined if the program subsequently makes a call

to a non-async-signal-safe function. The only way of avoiding undefined behavior is to

ensure one of the following:

* After long jumping from the signal handler, the program does not call any non-async-
signal-safe functions and does not return from the initial call to main().

* Any signal whose handler performs a long jump must be blocked during every call to a
non-async-signal-safe function and no non-async-signal-safe functions are called after
returning from the initial call to main().

SEE ALSO
signal(7), signal-safety(7)
COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A description of the

project, information about reporting bugs, and the latest version of this page, can be

found at https://www.kernel.org/doc/man-pages/.

2017-03-13 SETIMP(3)

Page 4/4

