
Rocky Enterprise Linux 9.2 Manual Pages on command 'mallopt.3'

$ man mallopt.3

MALLOPT(3) Linux Programmer's Manual MALLOPT(3)

NAME

 mallopt - set memory allocation parameters

SYNOPSIS

 #include <malloc.h>

 int mallopt(int param, int value);

DESCRIPTION

 The mallopt() function adjusts parameters that control the behavior of the memory-alloca?

 tion functions (see malloc(3)). The param argument specifies the parameter to be modi?

 fied, and value specifies the new value for that parameter.

 The following values can be specified for param:

 M_ARENA_MAX

 If this parameter has a nonzero value, it defines a hard limit on the maximum num?

 ber of arenas that can be created. An arena represents a pool of memory that can

 be used by malloc(3) (and similar) calls to service allocation requests. Arenas

 are thread safe and therefore may have multiple concurrent memory requests. The

 trade-off is between the number of threads and the number of arenas. The more are?

 nas you have, the lower the per-thread contention, but the higher the memory usage.

 The default value of this parameter is 0, meaning that the limit on the number of

 arenas is determined according to the setting of M_ARENA_TEST.

 This parameter has been available since glibc 2.10 via --enable-experimental-mal?

 loc, and since glibc 2.15 by default. In some versions of the allocator there was

 no limit on the number of created arenas (e.g., CentOS 5, RHEL 5). Page 1/9

 When employing newer glibc versions, applications may in some cases exhibit high

 contention when accessing arenas. In these cases, it may be beneficial to increase

 M_ARENA_MAX to match the number of threads. This is similar in behavior to strate?

 gies taken by tcmalloc and jemalloc (e.g., per-thread allocation pools).

 M_ARENA_TEST

 This parameter specifies a value, in number of arenas created, at which point the

 system configuration will be examined to determine a hard limit on the number of

 created arenas. (See M_ARENA_MAX for the definition of an arena.)

 The computation of the arena hard limit is implementation-defined and is usually

 calculated as a multiple of the number of available CPUs. Once the hard limit is

 computed, the result is final and constrains the total number of arenas.

 The default value for the M_ARENA_TEST parameter is 2 on systems where sizeof(long)

 is 4; otherwise the default value is 8.

 This parameter has been available since glibc 2.10 via --enable-experimental-mal?

 loc, and since glibc 2.15 by default.

 The value of M_ARENA_TEST is not used when M_ARENA_MAX has a nonzero value.

 M_CHECK_ACTION

 Setting this parameter controls how glibc responds when various kinds of program?

 ming errors are detected (e.g., freeing the same pointer twice). The 3 least sig?

 nificant bits (2, 1, and 0) of the value assigned to this parameter determine the

 glibc behavior, as follows:

 Bit 0 If this bit is set, then print a one-line message on stderr that provides

 details about the error. The message starts with the string "*** glibc de?

 tected ***", followed by the program name, the name of the memory-allocation

 function in which the error was detected, a brief description of the error,

 and the memory address where the error was detected.

 Bit 1 If this bit is set, then, after printing any error message specified by bit

 0, the program is terminated by calling abort(3). In glibc versions since

 2.4, if bit 0 is also set, then, between printing the error message and

 aborting, the program also prints a stack trace in the manner of back?

 trace(3), and prints the process's memory mapping in the style of

 /proc/[pid]/maps (see proc(5)).

 Bit 2 (since glibc 2.4) Page 2/9

 This bit has an effect only if bit 0 is also set. If this bit is set, then

 the one-line message describing the error is simplified to contain just the

 name of the function where the error was detected and the brief description

 of the error.

 The remaining bits in value are ignored.

 Combining the above details, the following numeric values are meaningful for

 M_CHECK_ACTION:

 0 Ignore error conditions; continue execution (with undefined results).

 1 Print a detailed error message and continue execution.

 2 Abort the program.

 3 Print detailed error message, stack trace, and memory mappings, and abort

 the program.

 5 Print a simple error message and continue execution.

 7 Print simple error message, stack trace, and memory mappings, and abort the

 program.

 Since glibc 2.3.4, the default value for the M_CHECK_ACTION parameter is 3. In

 glibc version 2.3.3 and earlier, the default value is 1.

 Using a nonzero M_CHECK_ACTION value can be useful because otherwise a crash may

 happen much later, and the true cause of the problem is then very hard to track

 down.

 M_MMAP_MAX

 This parameter specifies the maximum number of allocation requests that may be si?

 multaneously serviced using mmap(2). This parameter exists because some systems

 have a limited number of internal tables for use by mmap(2), and using more than a

 few of them may degrade performance.

 The default value is 65,536, a value which has no special significance and which

 serves only as a safeguard. Setting this parameter to 0 disables the use of

 mmap(2) for servicing large allocation requests.

 M_MMAP_THRESHOLD

 For allocations greater than or equal to the limit specified (in bytes) by

 M_MMAP_THRESHOLD that can't be satisfied from the free list, the memory-allocation

 functions employ mmap(2) instead of increasing the program break using sbrk(2).

 Allocating memory using mmap(2) has the significant advantage that the allocated Page 3/9

 memory blocks can always be independently released back to the system. (By con?

 trast, the heap can be trimmed only if memory is freed at the top end.) On the

 other hand, there are some disadvantages to the use of mmap(2): deallocated space

 is not placed on the free list for reuse by later allocations; memory may be wasted

 because mmap(2) allocations must be page-aligned; and the kernel must perform the

 expensive task of zeroing out memory allocated via mmap(2). Balancing these fac?

 tors leads to a default setting of 128*1024 for the M_MMAP_THRESHOLD parameter.

 The lower limit for this parameter is 0. The upper limit is DEFAULT_MMAP_THRESH?

 OLD_MAX: 512*1024 on 32-bit systems or 4*1024*1024*sizeof(long) on 64-bit systems.

 Note: Nowadays, glibc uses a dynamic mmap threshold by default. The initial value

 of the threshold is 128*1024, but when blocks larger than the current threshold and

 less than or equal to DEFAULT_MMAP_THRESHOLD_MAX are freed, the threshold is ad?

 justed upward to the size of the freed block. When dynamic mmap thresholding is in

 effect, the threshold for trimming the heap is also dynamically adjusted to be

 twice the dynamic mmap threshold. Dynamic adjustment of the mmap threshold is dis?

 abled if any of the M_TRIM_THRESHOLD, M_TOP_PAD, M_MMAP_THRESHOLD, or M_MMAP_MAX

 parameters is set.

 M_MXFAST (since glibc 2.3)

 Set the upper limit for memory allocation requests that are satisfied using "fast?

 bins". (The measurement unit for this parameter is bytes.) Fastbins are storage

 areas that hold deallocated blocks of memory of the same size without merging adja?

 cent free blocks. Subsequent reallocation of blocks of the same size can be han?

 dled very quickly by allocating from the fastbin, although memory fragmentation and

 the overall memory footprint of the program can increase.

 The default value for this parameter is 64*sizeof(size_t)/4 (i.e., 64 on 32-bit ar?

 chitectures). The range for this parameter is 0 to 80*sizeof(size_t)/4. Setting

 M_MXFAST to 0 disables the use of fastbins.

 M_PERTURB (since glibc 2.4)

 If this parameter is set to a nonzero value, then bytes of allocated memory (other

 than allocations via calloc(3)) are initialized to the complement of the value in

 the least significant byte of value, and when allocated memory is released using

 free(3), the freed bytes are set to the least significant byte of value. This can

 be useful for detecting errors where programs incorrectly rely on allocated memory Page 4/9

 being initialized to zero, or reuse values in memory that has already been freed.

 The default value for this parameter is 0.

 M_TOP_PAD

 This parameter defines the amount of padding to employ when calling sbrk(2) to mod?

 ify the program break. (The measurement unit for this parameter is bytes.) This

 parameter has an effect in the following circumstances:

 * When the program break is increased, then M_TOP_PAD bytes are added to the

 sbrk(2) request.

 * When the heap is trimmed as a consequence of calling free(3) (see the discussion

 of M_TRIM_THRESHOLD) this much free space is preserved at the top of the heap.

 In either case, the amount of padding is always rounded to a system page boundary.

 Modifying M_TOP_PAD is a trade-off between increasing the number of system calls

 (when the parameter is set low) and wasting unused memory at the top of the heap

 (when the parameter is set high).

 The default value for this parameter is 128*1024.

 M_TRIM_THRESHOLD

 When the amount of contiguous free memory at the top of the heap grows sufficiently

 large, free(3) employs sbrk(2) to release this memory back to the system. (This

 can be useful in programs that continue to execute for a long period after freeing

 a significant amount of memory.) The M_TRIM_THRESHOLD parameter specifies the min?

 imum size (in bytes) that this block of memory must reach before sbrk(2) is used to

 trim the heap.

 The default value for this parameter is 128*1024. Setting M_TRIM_THRESHOLD to -1

 disables trimming completely.

 Modifying M_TRIM_THRESHOLD is a trade-off between increasing the number of system

 calls (when the parameter is set low) and wasting unused memory at the top of the

 heap (when the parameter is set high).

 Environment variables

 A number of environment variables can be defined to modify some of the same parameters as

 are controlled by mallopt(). Using these variables has the advantage that the source code

 of the program need not be changed. To be effective, these variables must be defined be?

 fore the first call to a memory-allocation function. (If the same parameters are adjusted

 via mallopt(), then the mallopt() settings take precedence.) For security reasons, these Page 5/9

 variables are ignored in set-user-ID and set-group-ID programs.

 The environment variables are as follows (note the trailing underscore at the end of the

 name of some variables):

 MALLOC_ARENA_MAX

 Controls the same parameter as mallopt() M_ARENA_MAX.

 MALLOC_ARENA_TEST

 Controls the same parameter as mallopt() M_ARENA_TEST.

 MALLOC_CHECK_

 This environment variable controls the same parameter as mallopt() M_CHECK_ACTION.

 If this variable is set to a nonzero value, then a special implementation of the

 memory-allocation functions is used. (This is accomplished using the mal?

 loc_hook(3) feature.) This implementation performs additional error checking, but

 is slower than the standard set of memory-allocation functions. (This implementa?

 tion does not detect all possible errors; memory leaks can still occur.)

 The value assigned to this environment variable should be a single digit, whose

 meaning is as described for M_CHECK_ACTION. Any characters beyond the initial

 digit are ignored.

 For security reasons, the effect of MALLOC_CHECK_ is disabled by default for set-

 user-ID and set-group-ID programs. However, if the file /etc/suid-debug exists

 (the content of the file is irrelevant), then MALLOC_CHECK_ also has an effect for

 set-user-ID and set-group-ID programs.

 MALLOC_MMAP_MAX_

 Controls the same parameter as mallopt() M_MMAP_MAX.

 MALLOC_MMAP_THRESHOLD_

 Controls the same parameter as mallopt() M_MMAP_THRESHOLD.

 MALLOC_PERTURB_

 Controls the same parameter as mallopt() M_PERTURB.

 MALLOC_TRIM_THRESHOLD_

 Controls the same parameter as mallopt() M_TRIM_THRESHOLD.

 MALLOC_TOP_PAD_

 Controls the same parameter as mallopt() M_TOP_PAD.

RETURN VALUE

 On success, mallopt() returns 1. On error, it returns 0. Page 6/9

ERRORS

 On error, errno is not set.

CONFORMING TO

 This function is not specified by POSIX or the C standards. A similar function exists on

 many System V derivatives, but the range of values for param varies across systems. The

 SVID defined options M_MXFAST, M_NLBLKS, M_GRAIN, and M_KEEP, but only the first of these

 is implemented in glibc.

BUGS

 Specifying an invalid value for param does not generate an error.

 A calculation error within the glibc implementation means that a call of the form:

 mallopt(M_MXFAST, n)

 does not result in fastbins being employed for all allocations of size up to n. To ensure

 desired results, n should be rounded up to the next multiple greater than or equal to

 (2k+1)*sizeof(size_t), where k is an integer.

 If mallopt() is used to set M_PERTURB, then, as expected, the bytes of allocated memory

 are initialized to the complement of the byte in value, and when that memory is freed, the

 bytes of the region are initialized to the byte specified in value. However, there is an

 off-by-sizeof(size_t) error in the implementation: instead of initializing precisely the

 block of memory being freed by the call free(p), the block starting at p+sizeof(size_t) is

 initialized.

EXAMPLES

 The program below demonstrates the use of M_CHECK_ACTION. If the program is supplied with

 an (integer) command-line argument, then that argument is used to set the M_CHECK_ACTION

 parameter. The program then allocates a block of memory, and frees it twice (an error).

 The following shell session shows what happens when we run this program under glibc, with

 the default value for M_CHECK_ACTION:

 $./a.out

 main(): returned from first free() call

 *** glibc detected *** ./a.out: double free or corruption (top): 0x09d30008 ***

 ======= Backtrace: =========

 /lib/libc.so.6(+0x6c501)[0x523501]

 /lib/libc.so.6(+0x6dd70)[0x524d70]

 /lib/libc.so.6(cfree+0x6d)[0x527e5d] Page 7/9

 ./a.out[0x80485db]

 /lib/libc.so.6(__libc_start_main+0xe7)[0x4cdce7]

 ./a.out[0x8048471]

 ======= Memory map: ========

 001e4000-001fe000 r-xp 00000000 08:06 1083555 /lib/libgcc_s.so.1

 001fe000-001ff000 r--p 00019000 08:06 1083555 /lib/libgcc_s.so.1

 [some lines omitted]

 b7814000-b7817000 rw-p 00000000 00:00 0

 bff53000-bff74000 rw-p 00000000 00:00 0 [stack]

 Aborted (core dumped)

 The following runs show the results when employing other values for M_CHECK_ACTION:

 $./a.out 1 # Diagnose error and continue

 main(): returned from first free() call

 *** glibc detected *** ./a.out: double free or corruption (top): 0x09cbe008 ***

 main(): returned from second free() call

 $./a.out 2 # Abort without error message

 main(): returned from first free() call

 Aborted (core dumped)

 $./a.out 0 # Ignore error and continue

 main(): returned from first free() call

 main(): returned from second free() call

 The next run shows how to set the same parameter using the MALLOC_CHECK_ environment vari?

 able:

 $ MALLOC_CHECK_=1 ./a.out

 main(): returned from first free() call

 *** glibc detected *** ./a.out: free(): invalid pointer: 0x092c2008 ***

 main(): returned from second free() call

 Program source

 #include <malloc.h>

 #include <stdio.h>

 #include <stdlib.h>

 int

 main(int argc, char *argv[]) Page 8/9

 {

 char *p;

 if (argc > 1) {

 if (mallopt(M_CHECK_ACTION, atoi(argv[1])) != 1) {

 fprintf(stderr, "mallopt() failed");

 exit(EXIT_FAILURE);

 }

 }

 p = malloc(1000);

 if (p == NULL) {

 fprintf(stderr, "malloc() failed");

 exit(EXIT_FAILURE);

 }

 free(p);

 printf("main(): returned from first free() call\n");

 free(p);

 printf("main(): returned from second free() call\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 mmap(2), sbrk(2), mallinfo(3), malloc(3), malloc_hook(3), malloc_info(3), malloc_stats(3),

 malloc_trim(3), mcheck(3), mtrace(3), posix_memalign(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MALLOPT(3)

Page 9/9

