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MIB2C.CONF(5)                                Net-SNMP                               MIB2C.CONF(5)

NAME

       mib2c.conf - How to write mib2c.conf files to do ANYTHING based on MIB input.

SYNOPSIS

       % cat > mib2c.test.conf  << EOF @foreach $t table@

         Starting table $t

         @foreach $c column@

           echo $t has column $c which has a syntax of $c.syntax

         @end@

       @end@ EOF

       % mib2c -c mib2c.test.conf internet

DESCRIPTION

       The mib2c.conf script language is a MIB-particular language designed to easily process MIB

       nodes in ways that you want.  mib2c is a misnomer (for historical purposes),  because  you

       can  produce  anything  (not  just  C code).  Look in the Net-SNMP "local" directory for a

       bunch of example mib2c.*.conf files and behold the power before you.

COMMANDS

       All commands within mib2c.conf files are embraced by @ signs.  Anything with an @ sign  at

       the  front  and  back  of  the  line is generally supposed to be a mib2c specific command.

       These are detailed here:

       @open FILE@

              writes generated output to FILE note that for file specifications, opening '-' will
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       @append FILE@

              appends the given FILE

       @close FILE@

              closes the given FILE

       @push@ save the current outputs, then clear outputs. Use with @open@ and @pop@ to write to

              a new file without interfering with current outputs.

       @pop@  pop up the process() stack one level. Use after a @push@ to return to the  previous

              set of open files.

       @foreach $VAR scalar@

              repeat iterate over code until @end@ setting $VAR to all known scalars

       @foreach $VAR table@

              repeat iterate over code until @end@ setting $VAR to all known tables

       @foreach $VAR column@

              repeat  iterate  over  code  until @end@ setting $VAR to all known columns within a

              given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR nonindex@

              repeat iterate over code until @end@ setting $VAR to all  known  non-index  columns

              within a given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR internalindex@

              repeat  iterate over code until @end@ setting $VAR to all known internal index col?

              umns within a given table.  Obviously this must be called  within  a  foreach-table

              clause.

       @foreach $VAR externalindex@

              repeat  iterate over code until @end@ setting $VAR to all known external index col?

              umns within a given table.  Obviously this must be called  within  a  foreach-table

              clause.

       @foreach $VAR index@

              repeat  iterate  over  code  until @end@ setting $VAR to all known indexes within a

              given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR notifications@

              repeat iterate over code until @end@ setting $VAR to all known notifications

       @foreach $VAR varbinds@

              repeat iterate over code until @end@ setting $VAR to all known  varbinds  Obviously Page 2/7



              this must be called within a foreach-notifications clause.

       @foreach $LABEL, $VALUE enum@

              repeat  iterate  over  code  until @end@ setting $LABEL and $VALUE to the label and

              values from the enum list.

       @foreach $RANGE_START, $RANGE_END range NODE@

              repeat iterate over code until @end@ setting $RANGE_START and $RANGE_END to the le?

              gal accepted range set for a given mib NODE.

       @foreach $var stuff a b c d@

              repeat  iterate  over values a, b, c, d as assigned generically (ie, the values are

              taken straight from the list with no mib-expansion, etc).

       @while expression@

              repeat iterate over code until the expression is false

       @eval $VAR = expression@

              evaluates expression and assigns the results to $VAR.  This  is  not  a  full  perl

              eval, but sort of a ""psuedo"" eval useful for simple expressions while keeping the

              same variable name space.  See below for a full-blown export to perl.

       @perleval STUFF@

              evaluates STUFF directly in perl.   Note  that  all  mib2c  variables  interpereted

              within  .conf  files are in $vars{NAME} and that a warning will be printed if STUFF

              does not return 0. (adding a 'return 0;' at the end of STUFF is a workaround.

       @startperl@

       @endperl@

              treats everything between these tags as perl code, and evaluates it.

       @next@ restart foreach; should only be used inside a conditional.  skips  out  of  current

              conditional, then continues to skip to end for the current foreach clause.

       @if expression@

              evaluates  expression, and if expression is true processes contained part until ap?

              propriate @end@ is reached.  If the expression is false, the  next  @elsif  expres?

              sion@  expression (if it exists) will be evaluated, until an expression is true. If

              no such expression exists and an @else@ clause is found, it will be evaluated.

       @ifconf file@

              If the specified file can be found in the conf file search path, and if found  pro?
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              expression@, @elsif expression@ and @else@ can be used.

       @ifdir dir@

              If the specified directory exists, process  contained  part  until  an  appropriate

              @end@  is  found.  As with a regular @if expression@, @elsif expression@ and @else@

              can be used.

       @define NAME@

       @enddefine@

              Memorizes ""stuff"" between the define and enddefine tags for later calling as NAME

              by @calldefine NAME@.

       @calldefine NAME@

              Executes stuff previously memorized as NAME.

       @printf "expression" stuff1, stuff2, ...@

              Like all the other printf's you know and love.

       @run FILE@

              Sources  the  contents  of  FILE as a mib2c file, but does not affect current files

              opened.

       @include FILE@

              Sources the contents of FILE as a mib2c file and appends its output to the  current

              output.

       @prompt $var QUESTION@

              Presents the user with QUESTION, expects a response and puts it in $var

       @print STUFF@

              Prints  stuff  directly  to  the users screen (ie, not to where normal mib2c output

              goes)

       @quit@ Bail out (silently)

       @exit@ Bail out!

VARIABLES

       Variables in the mib2c language look very similar to perl variables, in  that  they  start

       with  a  "$".  They can be used for anything you want, but most typically they'll hold mib

       node names being processed by @foreach ...@ clauses.

       They also have a special properties when they are a mib node,  such  that  adding  special

       suffixes  to  them  will allow them to be interpreted in some fashion.  The easiest way to
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       then  some magical things happen.  In mib2c output, anytime $x is seen it is replaced with

       "ifType".  Additional suffixes can be used to get other aspects of that mib  node  though.

       If  $x.objectID  is seen, it'll be replaced by the OID for ifType: ".1.3.6.1.2.1.2.2.1.3".

       Other suffixes that can appear after a dot are listed below.

       One last thing: you can use things like $vartext immediately ending in  some  other  text,

       you  can use {}s to get proper expansion of only part of the mib2c input.  IE, $xtext will

       produce "$xtext", but ${x}text will produce "ifTypetext" instead.

       $var.uc

              all upper case version of $var

       $var.objectID

              dotted, fully-qualified, and numeric OID

       $var.commaoid

              comma separated numeric OID for array initialization

       $var.oidlength

              length of the oid

       $var.subid

              last number component of oid

       $var.module

              MIB name that the object comes from

       $var.parent

              contains the label of the parent node of $var.

       $var.isscalar

              returns 1 if var contains the name of a scalar

       $var.iscolumn

              returns 1 if var contains the name of a column

       $var.children

              returns 1 if var has children

       $var.perltype

              node's perl SYNTAX ($SNMP::MIB{node}{'syntax'})

       $var.type

              node's ASN_XXX type (Net-SNMP specific #define)
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       $var.readable

              1 if an object is readable, 0 if not

       $var.settable

              1 if an object is writable, 0 if not

       $var.creatable

              1 if a column object can be created as part of a new row, 0 if not

       $var.noaccess

              1 if not-accessible, 0 if not

       $var.accessible

              1 if accessible, 0 if not

       $var.storagetype

              1 if an object is a StorageType object, 0 if not

       $var.rowstatus

              1  if  an  object  is  a  RowStatus  object,  0  if  not  'settable',  'creatable',

              'lastchange',  'storagetype'  and 'rowstatus' can also be used with table variables

              to indicate whether it contains writable,  creatable,  LastChange,  StorageType  or

              RowStatus column objects

       $var.hasdefval

              returns 1 if var has a DEFVAL clause

       $var.defval

              node's DEFVAL

       $var.hashint

              returns 1 if var has a HINT clause

       $var.hint

              node's HINT

       $var.ranges

              returns 1 if var has a value range defined

       $var.enums

              returns 1 if var has enums defined for it.

       $var.access

              node's access type

       $var.status
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       $var.syntax

              node's syntax

       $var.reference

              node's reference

       $var.description

              node's description

SEE ALSO

       mib2c(1)
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