
Rocky Enterprise Linux 9.2 Manual Pages on command 'mib2c.conf.5'

$ man mib2c.conf.5

MIB2C.CONF(5)                                Net-SNMP                               MIB2C.CONF(5)

NAME

       mib2c.conf - How to write mib2c.conf files to do ANYTHING based on MIB input.

SYNOPSIS

       % cat > mib2c.test.conf  << EOF @foreach $t table@

         Starting table $t

         @foreach $c column@

           echo $t has column $c which has a syntax of $c.syntax

         @end@

       @end@ EOF

       % mib2c -c mib2c.test.conf internet

DESCRIPTION

       The mib2c.conf script language is a MIB-particular language designed to easily process MIB

       nodes in ways that you want.  mib2c is a misnomer (for historical purposes),  because  you

       can  produce  anything  (not  just  C code).  Look in the Net-SNMP "local" directory for a

       bunch of example mib2c.*.conf files and behold the power before you.

COMMANDS

       All commands within mib2c.conf files are embraced by @ signs.  Anything with an @ sign  at

       the  front  and  back  of  the  line is generally supposed to be a mib2c specific command.

       These are detailed here:

       @open FILE@

              writes generated output to FILE note that for file specifications, opening '-' will

              print to stdout. Page 1/7



       @append FILE@

              appends the given FILE

       @close FILE@

              closes the given FILE

       @push@ save the current outputs, then clear outputs. Use with @open@ and @pop@ to write to

              a new file without interfering with current outputs.

       @pop@  pop up the process() stack one level. Use after a @push@ to return to the  previous

              set of open files.

       @foreach $VAR scalar@

              repeat iterate over code until @end@ setting $VAR to all known scalars

       @foreach $VAR table@

              repeat iterate over code until @end@ setting $VAR to all known tables

       @foreach $VAR column@

              repeat  iterate  over  code  until @end@ setting $VAR to all known columns within a

              given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR nonindex@

              repeat iterate over code until @end@ setting $VAR to all  known  non-index  columns

              within a given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR internalindex@

              repeat  iterate over code until @end@ setting $VAR to all known internal index col?

              umns within a given table.  Obviously this must be called  within  a  foreach-table

              clause.

       @foreach $VAR externalindex@

              repeat  iterate over code until @end@ setting $VAR to all known external index col?

              umns within a given table.  Obviously this must be called  within  a  foreach-table

              clause.

       @foreach $VAR index@

              repeat  iterate  over  code  until @end@ setting $VAR to all known indexes within a

              given table.  Obviously this must be called within a foreach-table clause.

       @foreach $VAR notifications@

              repeat iterate over code until @end@ setting $VAR to all known notifications

       @foreach $VAR varbinds@

              repeat iterate over code until @end@ setting $VAR to all known  varbinds  Obviously Page 2/7



              this must be called within a foreach-notifications clause.

       @foreach $LABEL, $VALUE enum@

              repeat  iterate  over  code  until @end@ setting $LABEL and $VALUE to the label and

              values from the enum list.

       @foreach $RANGE_START, $RANGE_END range NODE@

              repeat iterate over code until @end@ setting $RANGE_START and $RANGE_END to the le?

              gal accepted range set for a given mib NODE.

       @foreach $var stuff a b c d@

              repeat  iterate  over values a, b, c, d as assigned generically (ie, the values are

              taken straight from the list with no mib-expansion, etc).

       @while expression@

              repeat iterate over code until the expression is false

       @eval $VAR = expression@

              evaluates expression and assigns the results to $VAR.  This  is  not  a  full  perl

              eval, but sort of a ""psuedo"" eval useful for simple expressions while keeping the

              same variable name space.  See below for a full-blown export to perl.

       @perleval STUFF@

              evaluates STUFF directly in perl.   Note  that  all  mib2c  variables  interpereted

              within  .conf  files are in $vars{NAME} and that a warning will be printed if STUFF

              does not return 0. (adding a 'return 0;' at the end of STUFF is a workaround.

       @startperl@

       @endperl@

              treats everything between these tags as perl code, and evaluates it.

       @next@ restart foreach; should only be used inside a conditional.  skips  out  of  current

              conditional, then continues to skip to end for the current foreach clause.

       @if expression@

              evaluates  expression, and if expression is true processes contained part until ap?

              propriate @end@ is reached.  If the expression is false, the  next  @elsif  expres?

              sion@  expression (if it exists) will be evaluated, until an expression is true. If

              no such expression exists and an @else@ clause is found, it will be evaluated.

       @ifconf file@

              If the specified file can be found in the conf file search path, and if found  pro?

              cesses  contained  part  until an appropriate @end@ is found. As with a regular @if Page 3/7



              expression@, @elsif expression@ and @else@ can be used.

       @ifdir dir@

              If the specified directory exists, process  contained  part  until  an  appropriate

              @end@  is  found.  As with a regular @if expression@, @elsif expression@ and @else@

              can be used.

       @define NAME@

       @enddefine@

              Memorizes ""stuff"" between the define and enddefine tags for later calling as NAME

              by @calldefine NAME@.

       @calldefine NAME@

              Executes stuff previously memorized as NAME.

       @printf "expression" stuff1, stuff2, ...@

              Like all the other printf's you know and love.

       @run FILE@

              Sources  the  contents  of  FILE as a mib2c file, but does not affect current files

              opened.

       @include FILE@

              Sources the contents of FILE as a mib2c file and appends its output to the  current

              output.

       @prompt $var QUESTION@

              Presents the user with QUESTION, expects a response and puts it in $var

       @print STUFF@

              Prints  stuff  directly  to  the users screen (ie, not to where normal mib2c output

              goes)

       @quit@ Bail out (silently)

       @exit@ Bail out!

VARIABLES

       Variables in the mib2c language look very similar to perl variables, in  that  they  start

       with  a  "$".  They can be used for anything you want, but most typically they'll hold mib

       node names being processed by @foreach ...@ clauses.

       They also have a special properties when they are a mib node,  such  that  adding  special

       suffixes  to  them  will allow them to be interpreted in some fashion.  The easiest way to

       understand this is through an example.  If the variable 'x' contained  the  word  'ifType' Page 4/7



       then  some magical things happen.  In mib2c output, anytime $x is seen it is replaced with

       "ifType".  Additional suffixes can be used to get other aspects of that mib  node  though.

       If  $x.objectID  is seen, it'll be replaced by the OID for ifType: ".1.3.6.1.2.1.2.2.1.3".

       Other suffixes that can appear after a dot are listed below.

       One last thing: you can use things like $vartext immediately ending in  some  other  text,

       you  can use {}s to get proper expansion of only part of the mib2c input.  IE, $xtext will

       produce "$xtext", but ${x}text will produce "ifTypetext" instead.

       $var.uc

              all upper case version of $var

       $var.objectID

              dotted, fully-qualified, and numeric OID

       $var.commaoid

              comma separated numeric OID for array initialization

       $var.oidlength

              length of the oid

       $var.subid

              last number component of oid

       $var.module

              MIB name that the object comes from

       $var.parent

              contains the label of the parent node of $var.

       $var.isscalar

              returns 1 if var contains the name of a scalar

       $var.iscolumn

              returns 1 if var contains the name of a column

       $var.children

              returns 1 if var has children

       $var.perltype

              node's perl SYNTAX ($SNMP::MIB{node}{'syntax'})

       $var.type

              node's ASN_XXX type (Net-SNMP specific #define)

       $var.decl

              C data type (char, u_long, ...) Page 5/7



       $var.readable

              1 if an object is readable, 0 if not

       $var.settable

              1 if an object is writable, 0 if not

       $var.creatable

              1 if a column object can be created as part of a new row, 0 if not

       $var.noaccess

              1 if not-accessible, 0 if not

       $var.accessible

              1 if accessible, 0 if not

       $var.storagetype

              1 if an object is a StorageType object, 0 if not

       $var.rowstatus

              1  if  an  object  is  a  RowStatus  object,  0  if  not  'settable',  'creatable',

              'lastchange',  'storagetype'  and 'rowstatus' can also be used with table variables

              to indicate whether it contains writable,  creatable,  LastChange,  StorageType  or

              RowStatus column objects

       $var.hasdefval

              returns 1 if var has a DEFVAL clause

       $var.defval

              node's DEFVAL

       $var.hashint

              returns 1 if var has a HINT clause

       $var.hint

              node's HINT

       $var.ranges

              returns 1 if var has a value range defined

       $var.enums

              returns 1 if var has enums defined for it.

       $var.access

              node's access type

       $var.status

              node's status Page 6/7



       $var.syntax

              node's syntax

       $var.reference

              node's reference

       $var.description

              node's description

SEE ALSO

       mib2c(1)

VVERSIONINFO                               28 Apr 2004                              MIB2C.CONF(5)

Page 7/7


