
Rocky Enterprise Linux 9.2 Manual Pages on command 'mkdirat.2'

$ man mkdirat.2

MKDIR(2) Linux Programmer's Manual MKDIR(2)

NAME

 mkdir, mkdirat - create a directory

SYNOPSIS

 #include <sys/stat.h>

 #include <sys/types.h>

 int mkdir(const char *pathname, mode_t mode);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int mkdirat(int dirfd, const char *pathname, mode_t mode);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 mkdirat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 mkdir() attempts to create a directory named pathname.

 The argument mode specifies the mode for the new directory (see inode(7)). It is modified

 by the process's umask in the usual way: in the absence of a default ACL, the mode of the

 created directory is (mode & ~umask & 0777). Whether other mode bits are honored for the

 created directory depends on the operating system. For Linux, see NOTES below.

 The newly created directory will be owned by the effective user ID of the process. If the Page 1/4

 directory containing the file has the set-group-ID bit set, or if the filesystem is

 mounted with BSD group semantics (mount -o bsdgroups or, synonymously mount -o grpid), the

 new directory will inherit the group ownership from its parent; otherwise it will be owned

 by the effective group ID of the process.

 If the parent directory has the set-group-ID bit set, then so will the newly created di?

 rectory.

 mkdirat()

 The mkdirat() system call operates in exactly the same way as mkdir(), except for the dif?

 ferences described here.

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by mkdir() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

 preted relative to the current working directory of the calling process (like mkdir()).

 If pathname is absolute, then dirfd is ignored.

 See openat(2) for an explanation of the need for mkdirat().

RETURN VALUE

 mkdir() and mkdirat() return zero on success, or -1 if an error occurred (in which case,

 errno is set appropriately).

ERRORS

 EACCES The parent directory does not allow write permission to the process, or one of the

 directories in pathname did not allow search permission. (See also path_resolu?

 tion(7).)

 EDQUOT The user's quota of disk blocks or inodes on the filesystem has been exhausted.

 EEXIST pathname already exists (not necessarily as a directory). This includes the case

 where pathname is a symbolic link, dangling or not.

 EFAULT pathname points outside your accessible address space.

 EINVAL The final component ("basename") of the new directory's pathname is invalid (e.g.,

 it contains characters not permitted by the underlying filesystem).

 ELOOP Too many symbolic links were encountered in resolving pathname.

 EMLINK The number of links to the parent directory would exceed LINK_MAX.

 ENAMETOOLONG

 pathname was too long. Page 2/4

 ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

 ENOMEM Insufficient kernel memory was available.

 ENOSPC The device containing pathname has no room for the new directory.

 ENOSPC The new directory cannot be created because the user's disk quota is exhausted.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a directory.

 EPERM The filesystem containing pathname does not support the creation of directories.

 EROFS pathname refers to a file on a read-only filesystem.

 The following additional errors can occur for mkdirat():

 EBADF dirfd is not a valid file descriptor.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to a file other than

 a directory.

VERSIONS

 mkdirat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 mkdir(): SVr4, BSD, POSIX.1-2001, POSIX.1-2008.

 mkdirat(): POSIX.1-2008.

NOTES

 Under Linux, apart from the permission bits, the S_ISVTX mode bit is also honored.

 There are many infelicities in the protocol underlying NFS. Some of these affect mkdir().

 Glibc notes

 On older kernels where mkdirat() is unavailable, the glibc wrapper function falls back to

 the use of mkdir(). When pathname is a relative pathname, glibc constructs a pathname

 based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

SEE ALSO

 mkdir(1), chmod(2), chown(2), mknod(2), mount(2), rmdir(2), stat(2), umask(2), unlink(2),

 acl(5), path_resolution(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 3/4

Linux 2020-06-09 MKDIR(2)

Page 4/4

