
Rocky Enterprise Linux 9.2 Manual Pages on command 'mke2fs.conf.5'

$ man mke2fs.conf.5

mke2fs.conf(5) File Formats Manual mke2fs.conf(5)

NAME

 mke2fs.conf - Configuration file for mke2fs

DESCRIPTION

 mke2fs.conf is the configuration file for mke2fs(8). It controls the default parameters

 used by mke2fs(8) when it is creating ext2, ext3, or ext4 file systems.

 The mke2fs.conf file uses an INI-style format. Stanzas, or top-level sections, are delim?

 ited by square braces: []. Within each section, each line defines a relation, which as?

 signs tags to values, or to a subsection, which contains further relations or subsections.

 An example of the INI-style format used by this configuration file follows below:

 [section1]

 tag1 = value_a

 tag1 = value_b

 tag2 = value_c

 [section 2]

 tag3 = {

 subtag1 = subtag_value_a

 subtag1 = subtag_value_b

 subtag2 = subtag_value_c

 }

 tag1 = value_d

 tag2 = value_e

 } Page 1/10

 Comments are delimited by a semicolon (';') or a hash ('#') character at the beginning of

 the comment, and are terminated by the end of line character.

 Tags and values must be quoted using double quotes if they contain spaces. Within a

 quoted string, the standard backslash interpretations apply: "\n" (for the newline charac?

 ter), "\t" (for the tab character), "\b" (for the backspace character), and "\\" (for the

 backslash character).

 Some relations expect a boolean value. The parser is quite liberal on recognizing

 ``yes'', '`y'', ``true'', ``t'', ``1'', ``on'', etc. as a boolean true value, and ``no'',

 ``n'', ``false'', ``nil'', ``0'', ``off'' as a boolean false value.

 The following stanzas are used in the mke2fs.conf file. They will be described in more

 detail in future sections of this document.

 [options]

 Contains relations which influence how mke2fs behaves.

 [defaults]

 Contains relations which define the default parameters used by mke2fs(8). In gen?

 eral, these defaults may be overridden by a definition in the fs_types stanza, or

 by a command-line option provided by the user.

 [fs_types]

 Contains relations which define defaults that should be used for specific file sys?

 tem and usage types. The file system type and usage type can be specified explic?

 itly using the -tand-T options to mke2fs(8), respectively.

 [devices]

 Contains relations which define defaults for specific devices.

THE [options] STANZA

 The following relations are defined in the [options] stanza.

 proceed_delay

 If this relation is set to a positive integer, then mke2fs will wait proceed_delay

 seconds after asking the user for permission to proceed and then continue, even if

 the user has not answered the question. Defaults to 0, which means to wait until

 the user answers the question one way or another.

 sync_kludge

 If this relation is set to a positive integer, then while writing the inode table,

 mke2fs will request the operating system flush out pending writes to initialize the Page 2/10

 inode table every sync_kludge block groups. This is needed to work around buggy

 kernels that don't handle writeback throttling correctly.

THE [defaults] STANZA

 The following relations are defined in the [defaults] stanza.

 creator_os

 This relation specifies the "creator operating system" for the file system unless

 it is overridden on the command line. The default value is the OS for which the

 mke2fs executable was compiled.

 fs_type

 This relation specifies the default file system type if the user does not specify

 it via the -t option, or if mke2fs is not started using a program name of the form

 mkfs.fs-type. If both the user and the mke2fs.conf file do not specify a default

 file system type, mke2fs will use a default file system type of ext3 if a journal

 was requested via a command-line option, or ext2 if not.

 undo_dir

 This relation specifies the directory where the undo file should be stored. It can

 be overridden via the E2FSPROGS_UNDO_DIR environment variable. If the directory

 location is set to the value none, mke2fs will not create an undo file.

 In addition, any tags that can be specified in a per-file system tags subsection as de?

 fined below (e.g., blocksize, hash_alg, inode_ratio, inode_size, reserved_ratio, etc.) can

 also be specified in the defaults stanza to specify the default value to be used if the

 user does not specify one on the command line, and the file system-type specific section

 of the configuration file does not specify a default value.

THE [fs_types] STANZA

 Each tag in the [fs_types] stanza names a file system type or usage type which can be

 specified via the -t or -T options to mke2fs(8), respectively.

 The mke2fs program constructs a list of fs_types by concatenating the file system type

 (i.e., ext2, ext3, etc.) with the usage type list. For most configuration options, mke2fs

 will look for a subsection in the [fs_types] stanza corresponding with each entry in the

 constructed list, with later entries overriding earlier file system or usage types. For

 example, consider the following mke2fs.conf fragment:

 [defaults]

 base_features = sparse_super,filetype,resize_inode,dir_index Page 3/10

 blocksize = 4096

 inode_size = 256

 inode_ratio = 16384

 [fs_types]

 ext3 = {

 features = has_journal

 }

 ext4 = {

 features = extents,flex_bg

 inode_size = 256

 }

 small = {

 blocksize = 1024

 inode_ratio = 4096

 }

 floppy = {

 features = ^resize_inode

 blocksize = 1024

 inode_size = 128

 }

 If mke2fs started with a program name of mke2fs.ext4, then the file system type of ext4

 will be used. If the file system is smaller than 3 megabytes, and no usage type is speci?

 fied, then mke2fs will use a default usage type of floppy. This results in an fs_types

 list of "ext4, floppy". Both the ext4 subsection and the floppy subsection define an in?

 ode_size relation, but since the later entries in the fs_types list supersede earlier

 ones, the configuration parameter for fs_types.floppy.inode_size will be used, so the file

 system will have an inode size of 128.

 The exception to this resolution is the features tag, which specifies a set of changes to

 the features used by the file system, and which is cumulative. So in the above example,

 first the configuration relation defaults.base_features would enable an initial feature

 set with the sparse_super, filetype, resize_inode, and dir_index features enabled. Then

 configuration relation fs_types.ext4.features would enable the extents and flex_bg fea?

 tures, and finally the configuration relation fs_types.floppy.features would remove the Page 4/10

 resize_inode feature, resulting in a file system feature set consisting of the sparse_su?

 per, filetype, dir_index, extents_and flex_bg features.

 For each file system type, the following tags may be used in that fs_type's subsection.

 These tags may also be used in the default section:

 base_features

 This relation specifies the features which are initially enabled for this file sys?

 tem type. Only one base_features will be used, so if there are multiple entries in

 the fs_types list whose subsections define the base_features relation, only the

 last will be used by mke2fs(8).

 enable_periodic_fsck

 This boolean relation specifies whether periodic file system checks should be en?

 forced at boot time. If set to true, checks will be forced every 180 days, or af?

 ter a random number of mounts. These values may be changed later via the -i and -c

 command-line options to tune2fs(8).

 errors Change the behavior of the kernel code when errors are detected. In all cases, a

 file system error will cause e2fsck(8) to check the file system on the next boot.

 errors can be one of the following:

 continue Continue normal execution.

 remount-ro Remount file system read-only.

 panic Cause a kernel panic.

 features

 This relation specifies a comma-separated list of features edit requests which mod?

 ify the feature set used by the newly constructed file system. The syntax is the

 same as the -O command-line option to mke2fs(8); that is, a feature can be prefixed

 by a caret ('^') symbol to disable a named feature. Each feature relation speci?

 fied in the fs_types list will be applied in the order found in the fs_types list.

 force_undo

 This boolean relation, if set to a value of true, forces mke2fs to always try to

 create an undo file, even if the undo file might be huge and it might extend the

 time to create the file system image because the inode table isn't being initial?

 ized lazily.

 default_features

 This relation specifies set of features which should be enabled or disabled after Page 5/10

 applying the features listed in the base_features and features relations. It may

 be overridden by the -O command-line option to mke2fs(8).

 auto_64-bit_support

 This relation is a boolean which specifies whether mke2fs(8) should automatically

 add the 64bit feature if the number of blocks for the file system requires this

 feature to be enabled. The resize_inode feature is also automatically disabled

 since it doesn't support 64-bit block numbers.

 default_mntopts

 This relation specifies the set of mount options which should be enabled by de?

 fault. These may be changed at a later time with the -o command-line option to

 tune2fs(8).

 blocksize

 This relation specifies the default blocksize if the user does not specify a block?

 size on the command line.

 lazy_itable_init

 This boolean relation specifies whether the inode table should be lazily initial?

 ized. It only has meaning if the uninit_bg feature is enabled. If

 lazy_itable_init is true and the uninit_bg feature is enabled, the inode table

 will not be fully initialized by mke2fs(8). This speeds up file system initializa?

 tion noticeably, but it requires the kernel to finish initializing the file system

 in the background when the file system is first mounted.

 lazy_journal_init

 This boolean relation specifies whether the journal inode should be lazily initial?

 ized. It only has meaning if the has_journal feature is enabled. If lazy_jour?

 nal_init is true, the journal inode will not be fully zeroed out by mke2fs. This

 speeds up file system initialization noticeably, but carries some small risk if the

 system crashes before the journal has been overwritten entirely one time.

 journal_location

 This relation specifies the location of the journal.

 num_backup_sb

 This relation indicates whether file systems with the sparse_super2 feature enabled

 should be created with 0, 1, or 2 backup superblocks.

 packed_meta_blocks Page 6/10

 This boolean relation specifies whether the allocation bitmaps, inode table, and

 journal should be located at the beginning of the file system.

 inode_ratio

 This relation specifies the default inode ratio if the user does not specify one on

 the command line.

 inode_size

 This relation specifies the default inode size if the user does not specify one on

 the command line.

 reserved_ratio

 This relation specifies the default percentage of file system blocks reserved for

 the super-user, if the user does not specify one on the command line.

 hash_alg

 This relation specifies the default hash algorithm used for the new file systems

 with hashed b-tree directories. Valid algorithms accepted are: legacy, half_md4,

 and tea.

 flex_bg_size

 This relation specifies the number of block groups that will be packed together to

 create one large virtual block group on an ext4 file system. This improves meta-

 data locality and performance on meta-data heavy workloads. The number of groups

 must be a power of 2 and may only be specified if the flex_bg file system feature

 is enabled.

 options

 This relation specifies additional extended options which should be treated by

 mke2fs(8) as if they were prepended to the argument of the -E option. This can be

 used to configure the default extended options used by mke2fs(8) on a per-file sys?

 tem type basis.

 discard

 This boolean relation specifies whether the mke2fs(8) should attempt to discard de?

 vice prior to file system creation.

 cluster_size

 This relation specifies the default cluster size if the bigalloc file system fea?

 ture is enabled. It can be overridden via the -C command line option to mke2fs(8)

 make_hugefiles Page 7/10

 This boolean relation enables the creation of pre-allocated files as part of for?

 matting the file system. The extent tree blocks for these pre-allocated files will

 be placed near the beginning of the file system, so that if all of the other meta?

 data blocks are also configured to be placed near the beginning of the file system

 (by disabling the backup superblocks, using the packed_meta_blocks option, etc.),

 the data blocks of the pre-allocated files will be contiguous.

 hugefiles_dir

 This relation specifies the directory where huge files are created, relative to the

 file system root.

 hugefiles_uid

 This relation controls the user ownership for all of the files and directories cre?

 ated by the make_hugefiles feature.

 hugefiles_gid

 This relation controls the group ownership for all of the files and directories

 created by the make_hugefiles feature.

 hugefiles_umask

 This relation specifies the umask used when creating the files and directories by

 the make_hugefiles feature.

 num_hugefiles

 This relation specifies the number of huge files to be created. If this relation

 is not specified, or is set to zero, and the hugefiles_size relation is non-zero,

 then make_hugefiles will create as many huge files as can fit to fill the entire

 file system.

 hugefiles_slack

 This relation specifies how much space should be reserved for other files.

 hugefiles_size

 This relation specifies the size of the huge files. If this relation is not speci?

 fied, the default is to fill the entire file system.

 hugefiles_align

 This relation specifies the alignment for the start block of the huge files. It

 also forces the size of huge files to be a multiple of the requested alignment. If

 this relation is not specified, no alignment requirement will be imposed on the

 huge files. Page 8/10

 hugefiles_align_disk

 This relations specifies whether the alignment should be relative to the beginning

 of the hard drive (assuming that the starting offset of the partition is available

 to mke2fs). The default value is false, which will cause hugefile alignment to be

 relative to the beginning of the file system.

 hugefiles_name

 This relation specifies the base file name for the huge files.

 hugefiles_digits

 This relation specifies the (zero-padded) width of the field for the huge file num?

 ber.

 warn_y2038_dates

 This boolean relation specifies whether mke2fs will issue a warning when creating a

 file system with 128 byte inodes (and so therefore will not support dates after

 January 19th, 2038). The default value is true, except for file systems created

 for the GNU Hurd since it only supports 128-byte inodes.

 zero_hugefiles

 This boolean relation specifies whether or not zero blocks will be written to the

 hugefiles while mke2fs(8) is creating them. By default, zero blocks will be writ?

 ten to the huge files to avoid stale data from being made available to potentially

 untrusted user programs, unless the device supports a discard/trim operation which

 will take care of zeroing the device blocks. By setting zero_hugefiles to false,

 this step will always be skipped, which can be useful if it is known that the disk

 has been previously erased, or if the user programs that will have access to the

 huge files are trusted to not reveal stale data.

 encoding

 This relation defines the file name encoding to be used if the casefold feature is

 enabled. Currently the only valid encoding is utf8-12.1 or utf8, which requests

 the most recent Unicode version; since 12.1 is the only available Unicode version,

 utf8 and utf8-12.1 have the same result. encoding_flags This relation defines en?

 coding-specific flags. For utf8 encodings, the only available flag is strict,

 which will cause attempts to create file names containing invalid Unicode charac?

 ters to be rejected by the kernel. Strict mode is not enabled by default.

THE [devices] STANZA Page 9/10

 Each tag in the [devices] stanza names device name so that per-device defaults can be

 specified.

 fs_type

 This relation specifies the default parameter for the -t option, if this option

 isn't specified on the command line.

 usage_types

 This relation specifies the default parameter for the -T option, if this option

 isn't specified on the command line.

FILES

 /etc/mke2fs.conf

 The configuration file for mke2fs(8).

SEE ALSO

 mke2fs(8)

E2fsprogs version 1.46.5 December 2021 mke2fs.conf(5)

Page 10/10

