PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'mkfs.btrfs.8'
$ man mkfs.btrfs.8
MKFS.BTRFS(8) Btrfs Manual MKFS.BTRFS(8)
NAME
mkfs.btrfs - create a btrfs filesystem
SYNOPSIS
mkfs.btrfs [options] <device> [<device>...]
DESCRIPTION
mkfs.btrfs is used to create the btrfs filesystem on a single or multiple devices.
<device> is typically a block device but can be a file-backed image as well. Multiple
devices are grouped by UUID of the filesystem.
Before mounting such filesystem, the kernel module must know all the devices either via
preceding execution of btrfs device scan or using the device mount option. See section
MULTIPLE DEVICES for more details.
The default block group profiles for data and metadata depend on number of devices and
possibly other factors. It?s recommended to use specific profiles but the defaults should
be OK and allowing future conversions to other profiles. Please see options -d and -m for
further detals and btrfs-balance(8) for the profile conversion post mkfs.
OPTIONS
-b|--byte-count <size>
Specify the size of the filesystem. If this option is not used, then mkfs.btrfs uses
the entire device space for the filesystem.
--csum <type>, --checksum <type>
Specify the checksum algorithm. Default is crc32c. Valid values are crc32c, xxhash,

sha256 or blake2. To mount such filesystem kernel must support the checksums as well. Page 1/14



See CHECKSUM ALGORITHMS in btrfs(5).
-d|--data <profile>
Specify the profile for the data block groups. Valid values are raidO, raidl, raid1c3,
raidlc4, raid5, raid6, raid10 or single or dup (case does not matter).
See DUP PROFILES ON A SINGLE DEVICE for more details.
On multiple devices, the default was raid0O until version 5.7, while it is single since
version 5.8. You can still select raid0 manually, but it was not suitable as default.
-m|--metadata <profile>
Specify the profile for the metadata block groups. Valid values are raid0, raid1,
raid1c3, raid1lc4, raid5, raid6, raid10, single or dup (case does not matter).
Default on a single device filesystem is DUP and is recommended for metadata in
general. The duplication might not be necessary in some use cases and it?s up to the
user to changed that at mkfs time or later. This depends on hardware that could
potentially deduplicate the blocks again but this cannot be detected at mkfs time.
NOTE
Up to version 5.14 there was a detection of a SSD device (more precisely if it?s a
rotational device, determined by the contents of file
/sys/block/DEV/queue/rotational) that used to select single. This has changed in
version 5.15 to be always dup.
Note that the rotational status can be arbitrarily set by the underlying block
device driver and may not reflect the true status (network block device,
memory-backed SCSI devices, real block device behind some additional device mapper
layer, etc). It?s recommended to always set the options --data/--metadata to avoid
confusion and unexpected results.
See DUP PROFILES ON A SINGLE DEVICE for more details.
On multiple devices the default is raid1.
-M|--mixed
Normally the data and metadata block groups are isolated. The mixed mode will remove
the isolation and store both types in the same block group type. This helps to utilize
the free space regardless of the purpose and is suitable for small devices. The
separate allocation of block groups leads to a situation where the space is reserved

for the other block group type, is not available for allocation and can lead to ENOSPC

state. Page 2/14



The recommended size for the mixed mode is for filesystems less than 1GiB. The soft
recommendation is to use it for filesystems smaller than 5GiB. The mixed mode may lead
to degraded performance on larger filesystems, but is otherwise usable, even on
multiple devices.
The nodesize and sectorsize must be equal, and the block group types must match.
Note
versions up to 4.2.x forced the mixed mode for devices smaller than 1GiB. This has
been removed in 4.3+ as it caused some usability issues.
-l|--leafsize <size>
Alias for --nodesize. Deprecated.
-n|--nodesize <size>
Specify the nodesize, the tree block size in which btrfs stores metadata. The default
value is 16KiB (16384) or the page size, whichever is bigger. Must be a multiple of
the sectorsize and a power of 2, but not larger than 64KiB (65536). Leafsize always
equals nodesize and the options are aliases.
Smaller node size increases fragmentation but leads to taller b-trees which in turn
leads to lower locking contention. Higher node sizes give better packing and less
fragmentation at the cost of more expensive memory operations while updating the
metadata blocks.
Note
versions up to 3.11 set the nodesize to 4k.
-s|--sectorsize <size>
Specify the sectorsize, the minimum data block allocation unit.
The default value is the page size and is autodetected. If the sectorsize differs from
the page size, the created filesystem may not be mountable by the running kernel.
Therefore it is not recommended to use this option unless you are going to mount it on
a system with the appropriate page size.
-L|--label <string>
Specify a label for the filesystem. The string should be less than 256 bytes and must
not contain newline characters.
-K|--nodiscard
Do not perform whole device TRIM operation on devices that are capable of that. This

does not affect discard/trim operation when the filesystem is mounted. Please see the

Page 3/14



mount option discard for that in btrfs(5).
-r|--rootdir <rootdir>
Populate the toplevel subvolume with files from rootdir. This does not require root
permissions to write the new files or to mount the filesystem.
Note
This option may enlarge the image or file to ensure it?s big enough to contain the
files from rootdir. Since version 4.14.1 the filesystem size is not minimized.
Please see option --shrink if you need that functionality.
--shrink
Shrink the filesystem to its minimal size, only works with --rootdir option.
If the destination block device is a regular file, this option will also truncate the
file to the minimal size. Otherwise it will reduce the filesystem available space.
Extra space will not be usable unless the filesystem is mounted and resized using
btrfs filesystem resize.
Note
prior to version 4.14.1, the shrinking was done automatically.
-O|--features <featurel>[,<feature2>...]
A list of filesystem features turned on at mkfs time. Not all features are supported
by old kernels. To disable a feature, prefix it with ~.
See section FILESYSTEM FEATURES for more details. To see all available features that
mkfs.btrfs supports run:
mkfs.btrfs -O list-all
-R|--runtime-features <featurel>[,<feature2>...]
A list of features that be can enabled at mkfs time, otherwise would have to be turned
on a mounted filesystem. Although no runtime feature is enabled by default, to disable
a feature, prefix it with /.
See section RUNTIME FEATURES for more details. To see all available runtime features
that mkfs.btrfs supports run:
mkfs.btrfs -R list-all
-f|--force
Forcibly overwrite the block devices when an existing filesystem is detected. By
default, mkfs.btrfs will utilize libblkid to check for any known filesystem on the

devices. Alternatively you can use the wipefs utility to clear the devices. Page 4/14



-q|--quiet
Print only error or warning messages. Options --features or --help are unaffected.
Resets any previous effects of --verbose.
-U]--uuid <UUID>
Create the filesystem with the given UUID. The UUID must not exist on any filesystem
currently present.
-v|--verbose
Increase verbosity level, default is 1.
-V|--version
Print the mkfs.btrfs version and exit.
--help
Print help.
SIZE UNITS
The default unit is byte. All size parameters accept suffixes in the 1024 base. The
recognized suffixes are: k, m, g, t, p, e, both uppercase and lowercase.
MULTIPLE DEVICES
Before mounting a multiple device filesystem, the kernel module must know the association
of the block devices that are attached to the filesystem UUID.
There is typically no action needed from the user. On a system that utilizes a udev-like
daemon, any new block device is automatically registered. The rules call btrfs device
scan.
The same command can be used to trigger the device scanning if the btrfs kernel module is
reloaded (naturally all previous information about the device registration is lost).
Another possibility is to use the mount options device to specify the list of devices to
scan at the time of mount.
# mount -o device=/dev/sdb,device=/dev/sdc /dev/sda /mnt
Note
that this means only scanning, if the devices do not exist in the system, mount will
fail anyway. This can happen on systems without initramfs/initrd and root partition
created with RAID1/10/5/6 profiles. The mount action can happen before all block
devices are discovered. The waiting is usually done on the initramfs/initrd systems.
RAID5/6 has known problems and should not be used in production.

FILESYSTEM FEATURES Page 5/14



Features that can be enabled during creation time. See also btrfs(5) section FILESYSTEM
FEATURES.
mixed-bg
(kernel support since 2.6.37)
mixed data and metadata block groups, also set by option --mixed
extref
(default since btrfs-progs 3.12, kernel support since 3.7)
increased hardlink limit per file in a directory to 65536, older kernels supported a
varying number of hardlinks depending on the sum of all file name sizes that can be
stored into one metadata block
raid56
(kernel support since 3.9)
extended format for RAID5/6, also enabled if raid5 or raid6 block groups are selected
skinny-metadata
(default since btrfs-progs 3.18, kernel support since 3.10)
reduced-size metadata for extent references, saves a few percent of metadata
no-holes
(default since btrfs-progs 5.15, kernel support since 3.14)
improved representation of file extents where holes are not explicitly stored as an
extent, saves a few percent of metadata if sparse files are used
zoned
(kernel support since 5.12)
zoned mode, data allocation and write friendly to zoned/SMR/ZBC/ZNS devices, see ZONED
MODE in btrfs(5), the mode is automatically selected when a zoned device is detected
RUNTIME FEATURES
Features that are typically enabled on a mounted filesystem, eg. by a mount option or by
an ioctl. Some of them can be enabled early, at mkfs time. This applies to features that
need to be enabled once and then the status is permanent, this does not replace mount
options.
quota
(kernel support since 3.4)
Enable quota support (qgroups). The ggroup accounting will be consistent, can be used

together with --rootdir. See also btrfs-quota(8). Page 6/14



free-space-tree
(default since btrfs-progs 5.15, kernel support since 4.5)
Enable the free space tree (mount option space_cache=v2) for persisting the free space
cache.

BLOCK GROUPS, CHUNKS, RAID

The highlevel organizational units of a filesystem are block groups of three types: data,

metadata and system.

DATA
store data blocks and nothing else

METADATA
store internal metadata in b-trees, can store file data if they fit into the inline
limit

SYSTEM
store structures that describe the mapping between the physical devices and the linear
logical space representing the filesystem

Other terms commonly used:

block group, chunk
a logical range of space of a given profile, stores data, metadata or both; sometimes
the terms are used interchangeably
A typical size of metadata block group is 256MiB (filesystem smaller than 50GiB) and
1GiB (larger than 50GiB), for data it?s 1GiB. The system block group size is a few
megabytes.

RAID
a block group profile type that utilizes RAID-like features on multiple devices:
striping, mirroring, parity

profile
when used in connection with block groups refers to the allocation strategy and
constraints, see the section PROFILES for more details

PROFILES

There are the following block group types available:

PP 77?777??7?7?7?7?7?2?7?7?7?7?7?7?7?777?7

?Profile ? Redundancy ? Space  ? Min/max ? Page 7/14



2 DDPPIVDIVPIVIIVVIVVIVVIVVIVPIP???2?7? utilization ?  devices ?

? ? ? ? ? ? ?
? ? Copies ? Parity ? Striping ? ? ?

PP 2?7?72??7???7?7?7?7?2?27?7?7?7?7?77?7?777?7

?single ? 1 ? ? ? 100% ? 1l/any ?

PPV 77?77?7?7??7?7?7?7?7?7?7?7?777

2 ? 2 2 2 ? 2
?DUP  ? 2/ 1 device ? ? ? 50% ? 1/any "(see ?
? ? ? ? ? ?notel) °?

PP 7?77?7??7??7??7?7?7?7?7?7?7?7?777

? ? ? ? ? ? ?
?RAIDO ? 2 2?2 1toN?  100% ? l/any (see ?
2 7 2 2 ? ?note 5) ?

PPV 7?7?7?7?7?7?7?7?777

?RAID1 ? 2 ? ? ? 50% ? 2/any *?

PP 7???7?7??7??77?7?7?7?7?77?777?7

?RAID1C3? 3 ? ? ? 33% ? 3lany ?

PP 2?7?2??7?2???7??7?7?2?7?72??72?7?777?7

?RAID1C47? 4 ? ? ? 25% ? 4lany *?

PP 72?7?7?72?7?72?7??7?77?7

?RAID10 ? 2 ? ? 1toN ? 50% ? 2/any "\(see ?
? ? ? ? ? ?note5) *?

PP 7?7?72?7?7?7?7?7??77?77?7

?2RAID5S 2 1 2 1 ?2toN-1? (N-1)/N? 2/any *(see ?
2 2 2 2 ? ?note2) ?

PP 7?7?7?72?7?777?7??7?7?77?7

Page 8/14



?2RAID6 2 1 2 2 ?3toN-2? (N-2)/N? 3/any (see ?
2 7 2 2 ? ?note 3) ?

PPV 7?77?77?7??7??777?7?7?7?7?777

Warning
It?s not recommended to create filesystems with RAID0/1/10/5/6 profiles on partitions
from the same device. Neither redundancy nor performance will be improved.
Note 1: DUP may exist on more than 1 device if it starts on a single device and another
one is added. Since version 4.5.1, mkfs.btrfs will let you create DUP on multiple devices
without restrictions.
Note 2: It?s not recommended to use 2 devices with RAIDS. In that case, parity stripe will
contain the same data as the data stripe, making RAID5 degraded to RAID1 with more
overhead.
Note 3: I1t?s also not recommended to use 3 devices with RAIDG6, unless you want to get
effectively 3 copies in a RAID1-like manner (but not exactly that).
Note 4: Since kernel 5.5 it?s possible to use RAID1C3 as replacement for RAID6, higher
space cost but reliable.
Note 5: Since kernel 5.15 it?s possible to use (mount, convert profiles) RAIDO on one
device and RAID10 on two devices.
PROFILE LAYOUT
For the following examples, assume devices numbered by 1, 2, 3 and 4, data or metadata
blocks A, B, C, D, with possible stripes eg. A1, A2 that would be logically A, etc. For
parity profiles PA and QA are parity and syndrom, associated with the given stripe. The
simple layouts single or DUP are left out. Actual physical block placement on devices
depends on current state of the free/allocated space and may appear random. All devices
are assumed to be present at the time of the blocks would have been written.

RAID1

PPV 2?7?7???777????7??77?777?777

?device 1 ? device 2 ? device 3 ? device 4 ?

PPV 2?7?7???7??7???7?7??7?777?777

? ? ? ? ? Page 9/14



?B 2?2 2?2 2?2 C ?

PP 2?????77?77???7?7?77?7?7?7?7?77

?D ? A ?2 B 2?2 ?

PP 27????7?7??7??7?7??77?7?7?7?7?77

RAID1C3

PP ???7?27?7???7?77??7??7?7??77?7?7?7??77

?device 1 ? device 2 ? device 3 ? device 4 ?

PPV 277???7?77??7??77??77?7?7?7?7?77

?A ? A ?2 D 2?2 ?

PPV 7?7?7?7?7?7?7??7?7?7?7?7?7?77?7

? C 7 ? A ? C ?

P00 ???7?2?7????7??7???7?7??7?777?777

? b ? D 2?2 C ? B ?

QP07 72?7?7?7??7?70?7??7?7??7??7??77?7

RAIDO

P07 77?7?7?2?77?7??7??7??7???7?77?7

?device 1 ? device 2 ? device 3 ? device 4 ?

PP 7?7??7?7?77?7??7??7??7??7?7??77?7

? A2 ? C3 ? A3 ? C2 ?

PPV ???7?2?7?7???2??7??7?7?7?7?7?77?7?777

? BL ? AL ? D2 ? B3 ?

Page 10/14



PP 7??2?7??7??7??7??7?7??7?77?7

? CiL ? D3 ? B4 ? D1 7

P07 2????7?77??7?7??77?7?7?7?7?77

? D4 ? B2 ? C4 ? A4 7

PPV 7??7??7??7???7?7?7?77?7

RAIDS

PP 7?77??7?7?7?7??7?7?7?77?7

?device 1 ? device 2 ? device 3 ? device 4 ?

PP 7??7?7?7??7??7??7???7?7?7?77?7

? A2 ? C3 ? A3 ? C2 ?

P07 2?77???7???7??77??77?7?77?7?77

? BL ? Al ? D2 ? B3 ?

PPV 7??7????7?7?7?7?7?7?777

? CiL ? D3 ? pPB ? D1 ?

PPV ??7?7???7?7??7??77??77?7?77?7?77

? PD ? B2 ? PC ? PA ?

PPV 2?7????77????7?7??7?7?7?777

RAID6

PPV 2?7?7???7??7???7?7??7?777?777

?device 1 ? device 2 ? device 3 ? device 4 ?

PPV 2?7?7???777????7??77?777?777

? A2 ? QC ? QA ? C2 ?

PPV 77?77?7?7?77?7??7??7??7???7?77?7

? BL ? A1l ? D2 ? QB ?

PPV 2?77???777?77?7?7?7?7?77?7?7?7??777

Page 11/14



? ? ? ? ?

? C1L ? Qb ? PB ? D1 ?

PPV 7??77?7??7??7??7???7??7?77?7

? PD ? B2 ? PC ? PA ?

PPV ???7?27????7?7??7??7?7??77?7?7?7?7?77

DUP PROFILES ON A SINGLE DEVICE
The mkfs utility will let the user create a filesystem with profiles that write the
logical blocks to 2 physical locations. Whether there are really 2 physical copies highly
depends on the underlying device type.
For example, a SSD drive can remap the blocks internally to a single copy?thus
deduplicating them. This negates the purpose of increased redundancy and just wastes
filesystem space without providing the expected level of redundancy.
The duplicated data/metadata may still be useful to statistically improve the chances on a
device that might perform some internal optimizations. The actual details are not usually
disclosed by vendors. For example we could expect that not all blocks get deduplicated.
This will provide a non-zero probability of recovery compared to a zero chance if the
single profile is used. The user should make the tradeoff decision. The deduplication in
SSDs is thought to be widely available so the reason behind the mkfs default is to not
give a false sense of redundancy.
As another example, the widely used USB flash or SD cards use a translation layer between
the logical and physical view of the device. The data lifetime may be affected by frequent
plugging. The memory cells could get damaged, hopefully not destroying both copies of
particular data in case of DUP.
The wear levelling techniques can also lead to reduced redundancy, even if the device does
not do any deduplication. The controllers may put data written in a short timespan into
the same physical storage unit (cell, block etc). In case this unit dies, both copies are
lost. BTRFS does not add any artificial delay between metadata writes.
The traditional rotational hard drives usually fail at the sector level.
In any case, a device that starts to misbehave and repairs from the DUP copy should be
replaced! DUP is not backup.

KNOWN ISSUES

SMALL FILESYSTEMS AND LARGE NODESIZE Page 12/14



The combination of small filesystem size and large nodesize is not recommended in general
and can lead to various ENOSPC-related issues during mount time or runtime.
Since mixed block group creation is optional, we allow small filesystem instances with
differing values for sectorsize and nodesize to be created and could end up in the
following situation:

# mkfs.btrfs -f -n 65536 /dev/loop0

btrfs-progs v3.19-rc2-405-g976307¢

See http://btrfs.wiki.kernel.org for more information.

Performing full device TRIM (512.00MiB) ...

Label: (null)
UuID: 49fab72e-0c8b-466b-a3ca-d1bfe56475f0
Node size: 65536

Sector size: 4096
Filesystem size: 512.00MiB

Block group profiles:

Data: single 8.00MiB
Metadata: DUP 40.00MiB
System: DUP 12.00MiB

SSD detected: no
Incompat features: extref, skinny-metadata
Number of devices: 1
Devices:
ID SIZE PATH
1 512.00MiB /dev/loop0
# mount /dev/loop0 /mnt/
mount: mount /dev/loop0 on /mnt failed: No space left on device
The ENOSPC occurs during the creation of the UUID tree. This is caused by large metadata
blocks and space reservation strategy that allocates more than can fit into the
filesystem.
AVAILABILITY
mkfs.btrfs is part of btrfs-progs. Please refer to the btrfs wiki
http://btrfs.wiki.kernel.org for further details.

SEE ALSO Page 13/14



btrfs(5), btrfs(8), btrfs-balance(8), wipefs(8)

Btrfs v5.16.2 02/16/2022 MKFS.BTRFS(8)

Page 14/14



