
Rocky Enterprise Linux 9.2 Manual Pages on command 'mkfs.xfs.8'

$ man mkfs.xfs.8

mkfs.xfs(8) System Manager's Manual mkfs.xfs(8)

NAME

 mkfs.xfs - construct an XFS filesystem

SYNOPSIS

 mkfs.xfs [-b block_size_options] [-m global_metadata_options] [-d data_section_op?

 tions] [-f] [-i inode_options] [-l log_section_options] [-n naming_options] [-p

 protofile] [-q] [-r realtime_section_options] [-s sector_size_options] [-L label]

 [-N] [-K] device

 mkfs.xfs -V

DESCRIPTION

 mkfs.xfs constructs an XFS filesystem by writing on a special file using the values found

 in the arguments of the command line. It is invoked automatically by mkfs(8) when it is

 given the -t xfs option.

 In its simplest (and most commonly used form), the size of the filesystem is determined

 from the disk driver. As an example, to make a filesystem with an internal log on the

 first partition on the first SCSI disk, use:

 mkfs.xfs /dev/sda1

 The metadata log can be placed on another device to reduce the number of disk seeks. To

 create a filesystem on the first partition on the first SCSI disk with a 10MiB log located

 on the first partition on the second SCSI disk, use:

 mkfs.xfs -l logdev=/dev/sdb1,size=10m /dev/sda1

 Each of the option elements in the argument list above can be given as multiple comma-sep?

 arated suboptions if multiple suboptions apply to the same option. Equivalently, each Page 1/18

 main option can be given multiple times with different suboptions. For example, -l inter?

 nal,size=10m and -l internal -l size=10m are equivalent.

 In the descriptions below, sizes are given in sectors, bytes, blocks, kilobytes,

 megabytes, gigabytes, etc. Sizes are treated as hexadecimal if prefixed by 0x or 0X, oc?

 tal if prefixed by 0, or decimal otherwise. The following lists possible multiplication

 suffixes:

 s - multiply by sector size (default = 512, see -s option below).

 b - multiply by filesystem block size (default = 4K, see -b option below).

 k - multiply by one kilobyte (1,024 bytes).

 m - multiply by one megabyte (1,048,576 bytes).

 g - multiply by one gigabyte (1,073,741,824 bytes).

 t - multiply by one terabyte (1,099,511,627,776 bytes).

 p - multiply by one petabyte (1,024 terabytes).

 e - multiply by one exabyte (1,048,576 terabytes).

 When specifying parameters in units of sectors or filesystem blocks, the -s option or the

 -b option may be used to specify the size of the sector or block. If the size of the

 block or sector is not specified, the default sizes (block: 4KiB, sector: 512B) will be

 used.

 Many feature options allow an optional argument of 0 or 1, to explicitly disable or enable

 the functionality.

OPTIONS

 Options may be specified either on the command line or in a configuration file. Not all

 command line options can be specified in configuration files; only the command line op?

 tions followed by a [section] label can be used in a configuration file.

 Options that can be used in configuration files are grouped into related sections contain?

 ing multiple options. The command line options and configuration files use the same op?

 tion sections and grouping. Configuration file section names are listed in the command

 line option sections below. Option names and values are the same for both command line

 and configuration file specification.

 Options specified are the combined set of command line parameters and configuration file

 parameters. Duplicated options will result in a respecification error, regardless of the

 location they were specified at.

 -c configuration_file_option Page 2/18

 This option specifies the files that mkfs configuration will be obtained from. The

 valid configuration_file_option is:

 options=name

 The configuration options will be sourced from the file specified by

 the name option string. This option can be use either an absolute or

 relative path to the configuration file to be read.

 -b block_size_options

 Section Name: [block]

 This option specifies the fundamental block size of the filesystem. The valid

 block_size_option is:

 size=value

 The filesystem block size is specified with a value in bytes. The de?

 fault value is 4096 bytes (4 KiB), the minimum is 512, and the maximum

 is 65536 (64 KiB).

 Although mkfs.xfs will accept any of these values and create a valid

 filesystem, XFS on Linux can only mount filesystems with pagesize or

 smaller blocks.

 -m global_metadata_options

 Section Name: [metadata]

 These options specify metadata format options that either apply to the entire

 filesystem or aren't easily characterised by a specific functionality group. The

 valid global_metadata_options are:

 bigtime=value

 This option enables filesystems that can handle inode timestamps from

 December 1901 to July 2486, and quota timer expirations from January

 1970 to July 2486. The value is either 0 to disable the feature, or 1

 to enable large timestamps.

 If this feature is not enabled, the filesystem can only handle time?

 stamps from December 1901 to January 2038, and quota timers from Janu?

 ary 1970 to February 2106.

 By default, mkfs.xfs will not enable this feature. If the option -m

 crc=0 is used, the large timestamp feature is not supported and is dis?

 abled. Page 3/18

 crc=value

 This is used to create a filesystem which maintains and checks CRC in?

 formation in all metadata objects on disk. The value is either 0 to

 disable the feature, or 1 to enable the use of CRCs.

 CRCs enable enhanced error detection due to hardware issues, whilst the

 format changes also improves crash recovery algorithms and the ability

 of various tools to validate and repair metadata corruptions when they

 are found. The CRC algorithm used is CRC32c, so the overhead is depen?

 dent on CPU architecture as some CPUs have hardware acceleration of

 this algorithm. Typically the overhead of calculating and checking the

 CRCs is not noticeable in normal operation.

 By default, mkfs.xfs will enable metadata CRCs.

 Formatting a filesystem without CRCs selects the V4 format, which is

 deprecated and will be removed from upstream in September 2030. Dis?

 tributors may choose to withdraw support for the V4 format earlier than

 this date. Several other options, noted below, are only tunable on V4

 formats, and will be removed along with the V4 format itself.

 finobt=value

 This option enables the use of a separate free inode btree index in

 each allocation group. The value is either 0 to disable the feature, or

 1 to create a free inode btree in each allocation group.

 The free inode btree mirrors the existing allocated inode btree index

 which indexes both used and free inodes. The free inode btree does not

 index used inodes, allowing faster, more consistent inode allocation

 performance as filesystems age.

 By default, mkfs.xfs will create free inode btrees for filesystems cre?

 ated with the (default) -m crc=1 option set. When the option -m crc=0

 is used, the free inode btree feature is not supported and is disabled.

 inobtcount=value

 This option causes the filesystem to record the number of blocks used

 by the inode btree and the free inode btree. This can be used to re?

 duce mount times when the free inode btree is enabled.

 By default, mkfs.xfs will not enable this option. This feature is only Page 4/18

 available for filesystems created with the (default) -m finobt=1 option

 set. When the option -m finobt=0 is used, the inode btree counter fea?

 ture is not supported and is disabled.

 uuid=value

 Use the given value as the filesystem UUID for the newly created

 filesystem. The default is to generate a random UUID.

 rmapbt=value

 This option enables the creation of a reverse-mapping btree index in

 each allocation group. The value is either 0 to disable the feature,

 or 1 to create the btree.

 The reverse mapping btree maps filesystem blocks to the owner of the

 filesystem block. Most of the mappings will be to an inode number and

 an offset, though there will also be mappings to filesystem metadata.

 This secondary metadata can be used to validate the primary metadata or

 to pinpoint exactly which data has been lost when a disk error occurs.

 By default, mkfs.xfs will not create reverse mapping btrees. This fea?

 ture is only available for filesystems created with the (default) -m

 crc=1 option set. When the option -m crc=0 is used, the reverse mapping

 btree feature is not supported and is disabled.

 reflink=value

 This option enables the use of a separate reference count btree index

 in each allocation group. The value is either 0 to disable the feature,

 or 1 to create a reference count btree in each allocation group.

 The reference count btree enables the sharing of physical extents be?

 tween the data forks of different files, which is commonly known as

 "reflink". Unlike traditional Unix filesystems which assume that every

 inode and logical block pair map to a unique physical block, a reflink-

 capable XFS filesystem removes the uniqueness requirement, allowing up

 to four billion arbitrary inode/logical block pairs to map to a physi?

 cal block. If a program tries to write to a multiply-referenced block

 in a file, the write will be redirected to a new block, and that file's

 logical-to-physical mapping will be changed to the new block ("copy on

 write"). This feature enables the creation of per-file snapshots and Page 5/18

 deduplication. It is only available for the data forks of regular

 files.

 By default, mkfs.xfs will create reference count btrees and therefore

 will enable the reflink feature. This feature is only available for

 filesystems created with the (default) -m crc=1 option set. When the

 option -m crc=0 is used, the reference count btree feature is not sup?

 ported and reflink is disabled.

 Note: the filesystem DAX mount option (-o dax) is incompatible with

 reflink-enabled XFS filesystems. To use filesystem DAX with XFS, spec?

 ify the -m reflink=0 option to mkfs.xfs to disable the reflink feature.

 -d data_section_options

 Section Name: [data]

 These options specify the location, size, and other parameters of the data section

 of the filesystem. The valid data_section_options are:

 agcount=value

 This is used to specify the number of allocation groups. The data sec?

 tion of the filesystem is divided into allocation groups to improve the

 performance of XFS. More allocation groups imply that more parallelism

 can be achieved when allocating blocks and inodes. The minimum alloca?

 tion group size is 16 MiB; the maximum size is just under 1 TiB. The

 data section of the filesystem is divided into value allocation groups

 (default value is scaled automatically based on the underlying device

 size).

 agsize=value

 This is an alternative to using the agcount suboption. The value is the

 desired size of the allocation group expressed in bytes (usually using

 the m or g suffixes). This value must be a multiple of the filesystem

 block size, and must be at least 16MiB, and no more than 1TiB, and may

 be automatically adjusted to properly align with the stripe geometry.

 The agcount and agsize suboptions are mutually exclusive.

 cowextsize=value

 Set the copy-on-write extent size hint on all inodes created by

 mkfs.xfs. The value must be provided in units of filesystem blocks. Page 6/18

 If the value is zero, the default value (currently 32 blocks) will be

 used. Directories will pass on this hint to newly created regular

 files and directories.

 name=value

 This can be used to specify the name of the special file containing the

 filesystem. In this case, the log section must be specified as internal

 (with a size, see the -l option below) and there can be no real-time

 section.

 file[=value]

 This is used to specify that the file given by the name suboption is a

 regular file. The value is either 0 or 1, with 1 signifying that the

 file is regular. This suboption is used only to make a filesystem im?

 age. If the value is omitted then 1 is assumed.

 size=value

 This is used to specify the size of the data section. This suboption is

 required if -d file[=1] is given. Otherwise, it is only needed if the

 filesystem should occupy less space than the size of the special file.

 sunit=value

 This is used to specify the stripe unit for a RAID device or a logical

 volume. The value has to be specified in 512-byte block units. Use the

 su suboption to specify the stripe unit size in bytes. This suboption

 ensures that data allocations will be stripe unit aligned when the cur?

 rent end of file is being extended and the file size is larger than

 512KiB. Also inode allocations and the internal log will be stripe unit

 aligned.

 su=value

 This is an alternative to using sunit. The su suboption is used to

 specify the stripe unit for a RAID device or a striped logical volume.

 The value has to be specified in bytes, (usually using the m or g suf?

 fixes). This value must be a multiple of the filesystem block size.

 swidth=value

 This is used to specify the stripe width for a RAID device or a striped

 logical volume. The value has to be specified in 512-byte block units. Page 7/18

 Use the sw suboption to specify the stripe width size in bytes. This

 suboption is required if -d sunit has been specified and it has to be a

 multiple of the -d sunit suboption.

 sw=value

 suboption is an alternative to using swidth. The sw suboption is used

 to specify the stripe width for a RAID device or striped logical vol?

 ume. The value is expressed as a multiplier of the stripe unit, usually

 the same as the number of stripe members in the logical volume configu?

 ration, or data disks in a RAID device.

 When a filesystem is created on a logical volume device, mkfs.xfs will

 automatically query the logical volume for appropriate sunit and swidth

 values.

 noalign

 This option disables automatic geometry detection and creates the

 filesystem without stripe geometry alignment even if the underlying

 storage device provides this information.

 rtinherit=value

 If value is set to 1, all inodes created by mkfs.xfs will be created

 with the realtime flag set. The default is 0. Directories will pass

 on this flag to newly created regular files and directories.

 projinherit=value

 All inodes created by mkfs.xfs will be assigned the project quota id

 provided in value. Directories will pass on the project id to newly

 created regular files and directories.

 extszinherit=value

 All inodes created by mkfs.xfs will have this value extent size hint

 applied. The value must be provided in units of filesystem blocks.

 Directories will pass on this hint to newly created regular files and

 directories.

 daxinherit=value

 If value is set to 1, all inodes created by mkfs.xfs will be created

 with the DAX flag set. The default is 0. Directories will pass on

 this flag to newly created regular files and directories. By default, Page 8/18

 mkfs.xfs will not enable DAX mode.

 -f Force overwrite when an existing filesystem is detected on the device. By default,

 mkfs.xfs will not write to the device if it suspects that there is a filesystem or

 partition table on the device already.

 -i inode_options

 Section Name: [inode]

 This option specifies the inode size of the filesystem, and other inode allocation

 parameters. The XFS inode contains a fixed-size part and a variable-size part.

 The variable-size part, whose size is affected by this option, can contain: direc?

 tory data, for small directories; attribute data, for small attribute sets; sym?

 bolic link data, for small symbolic links; the extent list for the file, for files

 with a small number of extents; and the root of a tree describing the location of

 extents for the file, for files with a large number of extents.

 The valid inode_options are:

 size=value | perblock=value

 The inode size is specified either as a value in bytes with size= or as

 the number fitting in a filesystem block with perblock=. The minimum

 (and default) value is 256 bytes without crc, 512 bytes with crc en?

 abled. The maximum value is 2048 (2 KiB) subject to the restriction

 that the inode size cannot exceed one half of the filesystem block

 size.

 XFS uses 64-bit inode numbers internally; however, the number of sig?

 nificant bits in an inode number is affected by filesystem geometry.

 In practice, filesystem size and inode size are the predominant fac?

 tors. The Linux kernel (on 32 bit hardware platforms) and most appli?

 cations cannot currently handle inode numbers greater than 32 signifi?

 cant bits, so if no inode size is given on the command line, mkfs.xfs

 will attempt to choose a size such that inode numbers will be < 32

 bits. If an inode size is specified, or if a filesystem is suffi?

 ciently large, mkfs.xfs will warn if this will create inode numbers >

 32 significant bits.

 maxpct=value

 This specifies the maximum percentage of space in the filesystem that Page 9/18

 can be allocated to inodes. The default value is 25% for filesystems

 under 1TB, 5% for filesystems under 50TB and 1% for filesystems over

 50TB.

 In the default inode allocation mode, inode blocks are chosen such that

 inode numbers will not exceed 32 bits, which restricts the inode blocks

 to the lower portion of the filesystem. The data block allocator will

 avoid these low blocks to accommodate the specified maxpct, so a high

 value may result in a filesystem with nothing but inodes in a signifi?

 cant portion of the lower blocks of the filesystem. (This restriction

 is not present when the filesystem is mounted with the inode64 option

 on 64-bit platforms).

 Setting the value to 0 means that essentially all of the filesystem can

 become inode blocks, subject to inode32 restrictions.

 This value can be modified with xfs_growfs(8).

 align[=value]

 This is used to specify that inode allocation is or is not aligned. The

 value is either 0 or 1, with 1 signifying that inodes are allocated

 aligned. If the value is omitted, 1 is assumed. The default is that

 inodes are aligned. Aligned inode access is normally more efficient

 than unaligned access; alignment must be established at the time the

 filesystem is created, since inodes are allocated at that time. This

 option can be used to turn off inode alignment when the filesystem

 needs to be mountable by a version of IRIX that does not have the inode

 alignment feature (any release of IRIX before 6.2, and IRIX 6.2 without

 XFS patches).

 This option is only tunable on the deprecated V4 format.

 attr=value

 This is used to specify the version of extended attribute inline allo?

 cation policy to be used. By default, this is 2, which uses an effi?

 cient algorithm for managing the available inline inode space between

 attribute and extent data.

 The previous version 1, which has fixed regions for attribute and ex?

 tent data, is kept for backwards compatibility with kernels older than Page 10/18

 version 2.6.16.

 This option is only tunable on the deprecated V4 format.

 projid32bit[=value]

 This is used to enable 32bit quota project identifiers. The value is

 either 0 or 1, with 1 signifying that 32bit projid are to be enabled.

 If the value is omitted, 1 is assumed. (This default changed in re?

 lease version 3.2.0.)

 This option is only tunable on the deprecated V4 format.

 sparse[=value]

 Enable sparse inode chunk allocation. The value is either 0 or 1, with

 1 signifying that sparse allocation is enabled. If the value is omit?

 ted, 1 is assumed. Sparse inode allocation is disabled by default. This

 feature is only available for filesystems formatted with -m crc=1.

 When enabled, sparse inode allocation allows the filesystem to allocate

 smaller than the standard 64-inode chunk when free space is severely

 limited. This feature is useful for filesystems that might fragment

 free space over time such that no free extents are large enough to ac?

 commodate a chunk of 64 inodes. Without this feature enabled, inode al?

 locations can fail with out of space errors under severe fragmented

 free space conditions.

 -l log_section_options

 Section Name: [log]

 These options specify the location, size, and other parameters of the log section

 of the filesystem. The valid log_section_options are:

 agnum=value

 If the log is internal, allocate it in this AG.

 internal[=value]

 This is used to specify that the log section is a piece of the data

 section instead of being another device or logical volume. The value is

 either 0 or 1, with 1 signifying that the log is internal. If the value

 is omitted, 1 is assumed.

 logdev=device

 This is used to specify that the log section should reside on the de? Page 11/18

 vice separate from the data section. The internal=1 and logdev options

 are mutually exclusive.

 size=value

 This is used to specify the size of the log section.

 If the log is contained within the data section and size isn't speci?

 fied, mkfs.xfs will try to select a suitable log size depending on the

 size of the filesystem. The actual logsize depends on the filesystem

 block size and the directory block size.

 Otherwise, the size suboption is only needed if the log section of the

 filesystem should occupy less space than the size of the special file.

 The value is specified in bytes or blocks, with a b suffix meaning mul?

 tiplication by the filesystem block size, as described above. The over?

 riding minimum value for size is 512 blocks. With some combinations of

 filesystem block size, inode size, and directory block size, the mini?

 mum log size is larger than 512 blocks.

 version=value

 This specifies the version of the log. The current default is 2, which

 allows for larger log buffer sizes, as well as supporting stripe-

 aligned log writes (see the sunit and su options, below).

 The previous version 1, which is limited to 32k log buffers and does

 not support stripe-aligned writes, is kept for backwards compatibility

 with very old 2.4 kernels.

 This option is only tunable on the deprecated V4 format.

 sunit=value

 This specifies the alignment to be used for log writes. The value has

 to be specified in 512-byte block units. Use the su suboption to spec?

 ify the log stripe unit size in bytes. Log writes will be aligned on

 this boundary, and rounded up to this boundary. This gives major im?

 provements in performance on some configurations such as software RAID5

 when the sunit is specified as the filesystem block size. The equiva?

 lent byte value must be a multiple of the filesystem block size. Ver?

 sion 2 logs are automatically selected if the log sunit suboption is

 specified. Page 12/18

 The su suboption is an alternative to using sunit.

 su=value

 This is used to specify the log stripe. The value has to be specified

 in bytes, (usually using the s or b suffixes). This value must be a

 multiple of the filesystem block size. Version 2 logs are automati?

 cally selected if the log su suboption is specified.

 lazy-count=value

 This changes the method of logging various persistent counters in the

 superblock. Under metadata intensive workloads, these counters are up?

 dated and logged frequently enough that the superblock updates become a

 serialization point in the filesystem. The value can be either 0 or 1.

 With lazy-count=1, the superblock is not modified or logged on every

 change of the persistent counters. Instead, enough information is kept

 in other parts of the filesystem to be able to maintain the persistent

 counter values without needed to keep them in the superblock. This

 gives significant improvements in performance on some configurations.

 The default value is 1 (on) so you must specify lazy-count=0 if you

 want to disable this feature for older kernels which don't support it.

 This option is only tunable on the deprecated V4 format.

 -n naming_options

 Section Name: [naming]

 These options specify the version and size parameters for the naming (directory)

 area of the filesystem. The valid naming_options are:

 size=value

 The directory block size is specified with a value in bytes. The block

 size must be a power of 2 and cannot be less than the filesystem block

 size. The default size value for version 2 directories is 4096 bytes

 (4 KiB), unless the filesystem block size is larger than 4096, in which

 case the default value is the filesystem block size. For version 1 di?

 rectories the block size is the same as the filesystem block size.

 version=value

 The naming (directory) version value can be either 2 or 'ci', default?

 ing to 2 if unspecified. With version 2 directories, the directory Page 13/18

 block size can be any power of 2 size from the filesystem block size up

 to 65536.

 The version=ci option enables ASCII only case-insensitive filename

 lookup and version 2 directories. Filenames are case-preserving, that

 is, the names are stored in directories using the case they were cre?

 ated with.

 Note: Version 1 directories are not supported.

 ftype=value

 This feature allows the inode type to be stored in the directory struc?

 ture so that the readdir(3) and getdents(2) do not need to look up the

 inode to determine the inode type.

 The value is either 0 or 1, with 1 signifying that filetype information

 will be stored in the directory structure. The default value is 1.

 When CRCs are enabled (the default), the ftype functionality is always

 enabled, and cannot be turned off.

 In other words, this option is only tunable on the deprecated V4 for?

 mat.

 -p protofile

 If the optional -p protofile argument is given, mkfs.xfs uses protofile as a proto?

 type file and takes its directions from that file. The blocks and inodes speci?

 fiers in the protofile are provided for backwards compatibility, but are otherwise

 unused. The syntax of the protofile is defined by a number of tokens separated by

 spaces or newlines. Note that the line numbers are not part of the syntax but are

 meant to help you in the following discussion of the file contents.

 1 /stand/diskboot

 2 4872 110

 3 d--777 3 1

 4 usr d--777 3 1

 5 sh ---755 3 1 /bin/sh

 6 ken d--755 6 1

 7 $

 8 b0 b--644 3 1 0 0

 9 c0 c--644 3 1 0 0 Page 14/18

 10 fifo p--644 3 1

 11 slink l--644 3 1 /a/symbolic/link

 12 : This is a comment line

 13 $

 14 $

 Line 1 is a dummy string. (It was formerly the bootfilename.) It is present for

 backward compatibility; boot blocks are not used on SGI systems.

 Note that some string of characters must be present as the first line of the proto

 file to cause it to be parsed correctly; the value of this string is immaterial

 since it is ignored.

 Line 2 contains two numeric values (formerly the numbers of blocks and inodes).

 These are also merely for backward compatibility: two numeric values must appear at

 this point for the proto file to be correctly parsed, but their values are immate?

 rial since they are ignored.

 The lines 3 through 11 specify the files and directories you want to include in

 this filesystem. Line 3 defines the root directory. Other directories and files

 that you want in the filesystem are indicated by lines 4 through 6 and lines 8

 through 10. Line 11 contains symbolic link syntax.

 Notice the dollar sign ($) syntax on line 7. This syntax directs the mkfs.xfs com?

 mand to terminate the branch of the filesystem it is currently on and then continue

 from the directory specified by the next line, in this case line 8. It must be the

 last character on a line. The colon on line 12 introduces a comment; all charac?

 ters up until the following newline are ignored. Note that this means you cannot

 have a file in a prototype file whose name contains a colon. The $ on lines 13 and

 14 end the process, since no additional specifications follow.

 File specifications provide the following:

 * file mode

 * user ID

 * group ID

 * the file's beginning contents

 A 6-character string defines the mode for a file. The first character of this

 string defines the file type. The character range for this first character is

 -bcdpl. A file may be a regular file, a block special file, a character special Page 15/18

 file, directory files, named pipes (first-in, first out files), and symbolic links.

 The second character of the mode string is used to specify setuserID mode, in which

 case it is u. If setuserID mode is not specified, the second character is -. The

 third character of the mode string is used to specify the setgroupID mode, in which

 case it is g. If setgroupID mode is not specified, the third character is -. The

 remaining characters of the mode string are a three digit octal number. This octal

 number defines the owner, group, and other read, write, and execute permissions for

 the file, respectively. For more information on file permissions, see the chmod(1)

 command.

 Following the mode character string are two decimal number tokens that specify the

 user and group IDs of the file's owner.

 In a regular file, the next token specifies the pathname from which the contents

 and size of the file are copied. In a block or character special file, the next

 token are two decimal numbers that specify the major and minor device numbers.

 When a file is a symbolic link, the next token specifies the contents of the link.

 When the file is a directory, the mkfs.xfs command creates the entries dot (.) and

 dot-dot (..) and then reads the list of names and file specifications in a recur?

 sive manner for all of the entries in the directory. A scan of the protofile is al?

 ways terminated with the dollar ($) token.

 -q Quiet option. Normally mkfs.xfs prints the parameters of the filesystem to be con?

 structed; the -q flag suppresses this.

 -r realtime_section_options

 Section Name: [realtime]

 These options specify the location, size, and other parameters of the real-time

 section of the filesystem. The valid realtime_section_options are:

 rtdev=device

 This is used to specify the device which should contain the real-time

 section of the filesystem. The suboption value is the name of a block

 device.

 extsize=value

 This is used to specify the size of the blocks in the real-time section

 of the filesystem. This value must be a multiple of the filesystem

 block size. The minimum allowed size is the filesystem block size or 4 Page 16/18

 KiB (whichever is larger); the default size is the stripe width for

 striped volumes or 64 KiB for non-striped volumes; the maximum allowed

 size is 1 GiB. The real-time extent size should be carefully chosen to

 match the parameters of the physical media used.

 size=value

 This is used to specify the size of the real-time section. This subop?

 tion is only needed if the real-time section of the filesystem should

 occupy less space than the size of the partition or logical volume con?

 taining the section.

 noalign

 This option disables stripe size detection, enforcing a realtime device

 with no stripe geometry.

 -s sector_size_options

 Section Name: [sector]

 This option specifies the fundamental sector size of the filesystem. The valid

 sector_size_option is:

 size=value

 The sector size is specified with a value in bytes. The default sec?

 tor_size is 512 bytes. The minimum value for sector size is 512; the

 maximum is 32768 (32 KiB). The sector_size must be a power of 2 size

 and cannot be made larger than the filesystem block size.

 -L label

 Set the filesystem label. XFS filesystem labels can be at most 12 characters long;

 if label is longer than 12 characters, mkfs.xfs will not proceed with creating the

 filesystem. Refer to the mount(8) and xfs_admin(8) manual entries for additional

 information.

 -N Causes the file system parameters to be printed out without really creating the

 file system.

 -K Do not attempt to discard blocks at mkfs time.

 -V Prints the version number and exits.

Configuration File Format

 The configuration file uses a basic INI format to specify sections and options within a

 section. Section and option names are case sensitive. Section names must not contain Page 17/18

 whitespace. Options are name-value pairs, ended by the first whitespace in the line. Op?

 tion names cannot contain whitespace. Full line comments can be added by starting a line

 with a # symbol. If values contain whitespace, then it must be quoted.

 The following example configuration file sets the block size to 4096 bytes, turns on re?

 verse mapping btrees and sets the inode size to 2048 bytes.

 # Example mkfs.xfs configuration file

 [block]

 size=4k

 [metadata]

 rmapbt=1

 [inode]

 size=2048

SEE ALSO

 xfs(5), mkfs(8), mount(8), xfs_info(8), xfs_admin(8).

BUGS

 With a prototype file, it is not possible to specify hard links.

 mkfs.xfs(8)

Page 18/18

