
Rocky Enterprise Linux 9.2 Manual Pages on command 'mount.8'

$ man mount.8

MOUNT(8) System Administration MOUNT(8)

NAME

 mount - mount a filesystem

SYNOPSIS

 mount [-h|-V]

 mount [-l] [-t fstype]

 mount -a [-fFnrsvw] [-t fstype] [-O optlist]

 mount [-fnrsvw] [-o options] device|mountpoint

 mount [-fnrsvw] [-t fstype] [-o options] device mountpoint

 mount --bind|--rbind|--move olddir newdir

 mount --make-[shared|slave|private|unbindable|rshared|rslave|rprivate|runbindable]

 mountpoint

DESCRIPTION

 All files accessible in a Unix system are arranged in one big tree, the file hierarchy,

 rooted at /. These files can be spread out over several devices. The mount command serves

 to attach the filesystem found on some device to the big file tree. Conversely, the

 umount(8) command will detach it again. The filesystem is used to control how data is

 stored on the device or provided in a virtual way by network or other services.

 The standard form of the mount command is:

 mount -t type device dir

 This tells the kernel to attach the filesystem found on device (which is of type type) at

 the directory dir. The option -t type is optional. The mount command is usually able to

 detect a filesystem. The root permissions are necessary to mount a filesystem by default. Page 1/47

 See section "Non-superuser mounts" below for more details. The previous contents (if any)

 and owner and mode of dir become invisible, and as long as this filesystem remains

 mounted, the pathname dir refers to the root of the filesystem on device.

 If only the directory or the device is given, for example:

 mount /dir

 then mount looks for a mountpoint (and if not found then for a device) in the /etc/fstab

 file. It?s possible to use the --target or --source options to avoid ambiguous

 interpretation of the given argument. For example:

 mount --target /mountpoint

 The same filesystem may be mounted more than once, and in some cases (e.g., network

 filesystems) the same filesystem may be mounted on the same mountpoint multiple times. The

 mount command does not implement any policy to control this behavior. All behavior is

 controlled by the kernel and it is usually specific to the filesystem driver. The

 exception is --all, in this case already mounted filesystems are ignored (see --all below

 for more details).

 Listing the mounts

 The listing mode is maintained for backward compatibility only.

 For more robust and customizable output use findmnt(8), especially in your scripts. Note

 that control characters in the mountpoint name are replaced with '?'.

 The following command lists all mounted filesystems (of type type):

 mount [-l] [-t type]

 The option -l adds labels to this listing. See below.

 Indicating the device and filesystem

 Most devices are indicated by a filename (of a block special device), like /dev/sda1, but

 there are other possibilities. For example, in the case of an NFS mount, device may look

 like knuth.cwi.nl:/dir.

 The device names of disk partitions are unstable; hardware reconfiguration, and adding or

 removing a device can cause changes in names. This is the reason why it?s strongly

 recommended to use filesystem or partition identifiers like UUID or LABEL. Currently

 supported identifiers (tags):

 LABEL=label

 Human readable filesystem identifier. See also -L.

 UUID=uuid Page 2/47

 Filesystem universally unique identifier. The format of the UUID is usually a series

 of hex digits separated by hyphens. See also -U.

 Note that mount uses UUIDs as strings. The UUIDs from the command line or from

 fstab(5) are not converted to internal binary representation. The string

 representation of the UUID should be based on lower case characters.

 PARTLABEL=label

 Human readable partition identifier. This identifier is independent on filesystem and

 does not change by mkfs or mkswap operations It?s supported for example for GUID

 Partition Tables (GPT).

 PARTUUID=uuid

 Partition universally unique identifier. This identifier is independent on filesystem

 and does not change by mkfs or mkswap operations It?s supported for example for GUID

 Partition Tables (GPT).

 ID=id

 Hardware block device ID as generated by udevd. This identifier is usually based on

 WWN (unique storage identifier) and assigned by the hardware manufacturer. See ls

 /dev/disk/by-id for more details, this directory and running udevd is required. This

 identifier is not recommended for generic use as the identifier is not strictly

 defined and it depends on udev, udev rules and hardware.

 The command lsblk --fs provides an overview of filesystems, LABELs and UUIDs on available

 block devices. The command blkid -p <device> provides details about a filesystem on the

 specified device.

 Don?t forget that there is no guarantee that UUIDs and labels are really unique,

 especially if you move, share or copy the device. Use lsblk -o +UUID,PARTUUID to verify

 that the UUIDs are really unique in your system.

 The recommended setup is to use tags (e.g. UUID=uuid) rather than

 /dev/disk/by-{label,uuid,id,partuuid,partlabel} udev symlinks in the /etc/fstab file. Tags

 are more readable, robust and portable. The mount(8) command internally uses udev

 symlinks, so the use of symlinks in /etc/fstab has no advantage over tags. For more

 details see libblkid(3).

 The proc filesystem is not associated with a special device, and when mounting it, an

 arbitrary keyword - for example, proc - can be used instead of a device specification.

 (The customary choice none is less fortunate: the error message 'none already mounted' Page 3/47

 from mount can be confusing.)

 The files /etc/fstab, /etc/mtab and /proc/mounts

 The file /etc/fstab (see fstab(5)), may contain lines describing what devices are usually

 mounted where, using which options. The default location of the fstab(5) file can be

 overridden with the --fstab path command-line option (see below for more details).

 The command

 mount -a [-t type] [-O optlist]

 (usually given in a bootscript) causes all filesystems mentioned in fstab (of the proper

 type and/or having or not having the proper options) to be mounted as indicated, except

 for those whose line contains the noauto keyword. Adding the -F option will make mount

 fork, so that the filesystems are mounted in parallel.

 When mounting a filesystem mentioned in fstab or mtab, it suffices to specify on the

 command line only the device, or only the mount point.

 The programs mount and umount(8) traditionally maintained a list of currently mounted

 filesystems in the file /etc/mtab. The support for regular classic /etc/mtab is completely

 disabled at compile time by default, because on current Linux systems it is better to make

 /etc/mtab a symlink to /proc/mounts instead. The regular mtab file maintained in userspace

 cannot reliably work with namespaces, containers and other advanced Linux features. If the

 regular mtab support is enabled, then it?s possible to use the file as well as the

 symlink.

 If no arguments are given to mount, the list of mounted filesystems is printed.

 If you want to override mount options from /etc/fstab, you have to use the -o option:

 mount device**|dir -o options

 and then the mount options from the command line will be appended to the list of options

 from /etc/fstab. This default behaviour can be changed using the --options-mode

 command-line option. The usual behavior is that the last option wins if there are

 conflicting ones.

 The mount program does not read the /etc/fstab file if both device (or LABEL, UUID, ID,

 PARTUUID or PARTLABEL) and dir are specified. For example, to mount device foo at /dir:

 mount /dev/foo /dir

 This default behaviour can be changed by using the --options-source-force command-line

 option to always read configuration from fstab. For non-root users mount always reads the

 fstab configuration. Page 4/47

 Non-superuser mounts

 Normally, only the superuser can mount filesystems. However, when fstab contains the user

 option on a line, anybody can mount the corresponding filesystem.

 Thus, given a line

 /dev/cdrom /cd iso9660 ro,user,noauto,unhide

 any user can mount the iso9660 filesystem found on an inserted CDROM using the command:

 mount /cd

 Note that mount is very strict about non-root users and all paths specified on command

 line are verified before fstab is parsed or a helper program is executed. It?s strongly

 recommended to use a valid mountpoint to specify filesystem, otherwise mount may fail. For

 example it?s a bad idea to use NFS or CIFS source on command line.

 Since util-linux 2.35, mount does not exit when user permissions are inadequate according

 to libmount?s internal security rules. Instead, it drops suid permissions and continues as

 regular non-root user. This behavior supports use-cases where root permissions are not

 necessary (e.g., fuse filesystems, user namespaces, etc).

 For more details, see fstab(5). Only the user that mounted a filesystem can unmount it

 again. If any user should be able to unmount it, then use users instead of user in the

 fstab line. The owner option is similar to the user option, with the restriction that the

 user must be the owner of the special file. This may be useful e.g. for /dev/fd if a login

 script makes the console user owner of this device. The group option is similar, with the

 restriction that the user must be a member of the group of the special file.

 Bind mount operation

 Remount part of the file hierarchy somewhere else. The call is:

 mount --bind olddir newdir

 or by using this fstab entry:

 /olddir /newdir none bind

 After this call the same contents are accessible in two places.

 It is important to understand that "bind" does not create any second-class or special node

 in the kernel VFS. The "bind" is just another operation to attach a filesystem. There is

 nowhere stored information that the filesystem has been attached by a "bind" operation.

 The olddir and newdir are independent and the olddir may be unmounted.

 One can also remount a single file (on a single file). It?s also possible to use a bind

 mount to create a mountpoint from a regular directory, for example: Page 5/47

 mount --bind foo foo

 The bind mount call attaches only (part of) a single filesystem, not possible submounts.

 The entire file hierarchy including submounts can be attached a second place by using:

 mount --rbind olddir newdir

 Note that the filesystem mount options maintained by the kernel will remain the same as

 those on the original mount point. The userspace mount options (e.g., _netdev) will not be

 copied by mount and it?s necessary to explicitly specify the options on the mount command

 line.

 Since util-linux 2.27 mount permits changing the mount options by passing the relevant

 options along with --bind. For example:

 mount -o bind,ro foo foo

 This feature is not supported by the Linux kernel; it is implemented in userspace by an

 additional mount(2) remounting system call. This solution is not atomic.

 The alternative (classic) way to create a read-only bind mount is to use the remount

 operation, for example:

 mount --bind olddir newdir mount -o remount,bind,ro olddir newdir

 Note that a read-only bind will create a read-only mountpoint (VFS entry), but the

 original filesystem superblock will still be writable, meaning that the olddir will be

 writable, but the newdir will be read-only.

 It?s also possible to change nosuid, nodev, noexec, noatime, nodiratime and relatime VFS

 entry flags via a "remount,bind" operation. The other flags (for example

 filesystem-specific flags) are silently ignored. It?s impossible to change mount options

 recursively (for example with -o rbind,ro).

 Since util-linux 2.31, mount ignores the bind flag from /etc/fstab on a remount operation

 (if "-o remount" is specified on command line). This is necessary to fully control mount

 options on remount by command line. In previous versions the bind flag has been always

 applied and it was impossible to re-define mount options without interaction with the bind

 semantic. This mount behavior does not affect situations when "remount,bind" is specified

 in the /etc/fstab file.

 The move operation

 Move a mounted tree to another place (atomically). The call is:

 mount --move olddir newdir

 This will cause the contents which previously appeared under olddir to now be accessible Page 6/47

 under newdir. The physical location of the files is not changed. Note that olddir has to

 be a mountpoint.

 Note also that moving a mount residing under a shared mount is invalid and unsupported.

 Use findmnt -o TARGET,PROPAGATION to see the current propagation flags.

 Shared subtree operations

 Since Linux 2.6.15 it is possible to mark a mount and its submounts as shared, private,

 slave or unbindable. A shared mount provides the ability to create mirrors of that mount

 such that mounts and unmounts within any of the mirrors propagate to the other mirror. A

 slave mount receives propagation from its master, but not vice versa. A private mount

 carries no propagation abilities. An unbindable mount is a private mount which cannot be

 cloned through a bind operation. The detailed semantics are documented in

 Documentation/filesystems/sharedsubtree.txt file in the kernel source tree; see also

 mount_namespaces(7).

 Supported operations are:

 mount --make-shared mountpoint

 mount --make-slave mountpoint

 mount --make-private mountpoint

 mount --make-unbindable mountpoint

 The following commands allow one to recursively change the type of all the mounts under a

 given mountpoint.

 mount --make-rshared mountpoint

 mount --make-rslave mountpoint

 mount --make-rprivate mountpoint

 mount --make-runbindable mountpoint

 mount(8) does not read fstab(5) when a --make-* operation is requested. All necessary

 information has to be specified on the command line.

 Note that the Linux kernel does not allow changing multiple propagation flags with a

 single mount(2) system call, and the flags cannot be mixed with other mount options and

 operations.

 Since util-linux 2.23 the mount command can be used to do more propagation (topology)

 changes by one mount(8) call and do it also together with other mount operations. The

 propagation flags are applied by additional mount(2) system calls when the preceding mount

 operations were successful. Note that this use case is not atomic. It is possible to Page 7/47

 specify the propagation flags in fstab(5) as mount options (private, slave, shared,

 unbindable, rprivate, rslave, rshared, runbindable).

 For example:

 mount --make-private --make-unbindable /dev/sda1 /foo

 is the same as:

 mount /dev/sda1 /foo

 mount --make-private /foo

 mount --make-unbindable /foo

COMMAND-LINE OPTIONS

 The full set of mount options used by an invocation of mount is determined by first

 extracting the mount options for the filesystem from the fstab table, then applying any

 options specified by the -o argument, and finally applying a -r or -w option, when

 present.

 The mount command does not pass all command-line options to the /sbin/mount.suffix mount

 helpers. The interface between mount and the mount helpers is described below in the

 section EXTERNAL HELPERS.

 Command-line options available for the mount command are:

 -a, --all

 Mount all filesystems (of the given types) mentioned in fstab (except for those whose

 line contains the noauto keyword). The filesystems are mounted following their order

 in fstab. The mount command compares filesystem source, target (and fs root for bind

 mount or btrfs) to detect already mounted filesystems. The kernel table with already

 mounted filesystems is cached during mount --all. This means that all duplicated fstab

 entries will be mounted.

 The option --all is possible to use for remount operation too. In this case all

 filters (-t and -O) are applied to the table of already mounted filesystems.

 Since version 2.35 is possible to use the command line option -o to alter mount

 options from fstab (see also --options-mode).

 Note that it is a bad practice to use mount -a for fstab checking. The recommended

 solution is findmnt --verify.

 -B, --bind

 Remount a subtree somewhere else (so that its contents are available in both places).

 See above, under Bind mounts. Page 8/47

 -c, --no-canonicalize

 Don?t canonicalize paths. The mount command canonicalizes all paths (from the command

 line or fstab) by default. This option can be used together with the -f flag for

 already canonicalized absolute paths. The option is designed for mount helpers which

 call mount -i. It is strongly recommended to not use this command-line option for

 normal mount operations.

 Note that mount does not pass this option to the /sbin/mount.type helpers.

 -F, --fork

 (Used in conjunction with -a.) Fork off a new incarnation of mount for each device.

 This will do the mounts on different devices or different NFS servers in parallel.

 This has the advantage that it is faster; also NFS timeouts proceed in parallel. A

 disadvantage is that the order of the mount operations is undefined. Thus, you cannot

 use this option if you want to mount both /usr and /usr/spool.

 -f, --fake

 Causes everything to be done except for the actual system call; if it?s not obvious,

 this "fakes" mounting the filesystem. This option is useful in conjunction with the -v

 flag to determine what the mount command is trying to do. It can also be used to add

 entries for devices that were mounted earlier with the -n option. The -f option checks

 for an existing record in /etc/mtab and fails when the record already exists (with a

 regular non-fake mount, this check is done by the kernel).

 -i, --internal-only

 Don?t call the /sbin/mount.filesystem helper even if it exists.

 -L, --label label

 Mount the partition that has the specified label.

 -l, --show-labels

 Add the labels in the mount output. mount must have permission to read the disk device

 (e.g. be set-user-ID root) for this to work. One can set such a label for ext2, ext3

 or ext4 using the e2label(8) utility, or for XFS using xfs_admin(8), or for reiserfs

 using reiserfstune(8).

 -M, --move

 Move a subtree to some other place. See above, the subsection The move operation.

 -n, --no-mtab

 Mount without writing in /etc/mtab. This is necessary for example when /etc is on a Page 9/47

 read-only filesystem.

 -N, --namespace ns

 Perform the mount operation in the mount namespace specified by ns. ns is either PID

 of process running in that namespace or special file representing that namespace.

 mount switches to the mount namespace when it reads /etc/fstab, writes /etc/mtab: (or

 writes to _/run/mount) and calls the mount(2) system call, otherwise it runs in the

 original mount namespace. This means that the target namespace does not have to

 contain any libraries or other requirements necessary to execute the mount(2) call.

 See mount_namespaces(7) for more information.

 -O, --test-opts opts

 Limit the set of filesystems to which the -a option applies. In this regard it is like

 the -t option except that -O is useless without -a. For example, the command

 mount -a -O no_netdev

 mounts all filesystems except those which have the option netdev specified in the

 options field in the /etc/fstab file.

 It is different from -t in that each option is matched exactly; a leading no at the

 beginning of one option does not negate the rest.

 The -t and -O options are cumulative in effect; that is, the command

 mount -a -t ext2 -O _netdev

 mounts all ext2 filesystems with the _netdev option, not all filesystems that are

 either ext2 or have the _netdev option specified.

 -o, --options opts

 Use the specified mount options. The opts argument is a comma-separated list. For

 example:

 mount LABEL=mydisk -o noatime,nodev,nosuid

 For more details, see the FILESYSTEM-INDEPENDENT MOUNT OPTIONS and FILESYSTEM-SPECIFIC

 MOUNT OPTIONS sections.

 --options-mode mode

 Controls how to combine options from fstab/mtab with options from the command line.

 mode can be one of ignore, append, prepend or replace. For example, append means that

 options from fstab are appended to options from the command line. The default value is

 prepend ? it means command line options are evaluated after fstab options. Note that

 the last option wins if there are conflicting ones. Page 10/47

 --options-source source

 Source of default options. source is a comma-separated list of fstab, mtab and

 disable. disable disables fstab and mtab and disables --options-source-force. The

 default value is fstab,mtab.

 --options-source-force

 Use options from fstab/mtab even if both device and dir are specified.

 -R, --rbind

 Remount a subtree and all possible submounts somewhere else (so that its contents are

 available in both places). See above, the subsection Bind mounts.

 -r, --read-only

 Mount the filesystem read-only. A synonym is -o ro.

 Note that, depending on the filesystem type, state and kernel behavior, the system may

 still write to the device. For example, ext3 and ext4 will replay the journal if the

 filesystem is dirty. To prevent this kind of write access, you may want to mount an

 ext3 or ext4 filesystem with the ro,noload mount options or set the block device

 itself to read-only mode, see the blockdev(8) command.

 -s

 Tolerate sloppy mount options rather than failing. This will ignore mount options not

 supported by a filesystem type. Not all filesystems support this option. Currently

 it?s supported by the mount.nfs mount helper only.

 --source device

 If only one argument for the mount command is given, then the argument might be

 interpreted as the target (mountpoint) or source (device). This option allows you to

 explicitly define that the argument is the mount source.

 --target directory

 If only one argument for the mount command is given, then the argument might be

 interpreted as the target (mountpoint) or source (device). This option allows you to

 explicitly define that the argument is the mount target.

 --target-prefix directory

 Prepend the specified directory to all mount targets. This option can be used to

 follow fstab, but mount operations are done in another place, for example:

 mount --all --target-prefix /chroot -o X-mount.mkdir

 mounts all from system fstab to /chroot, all missing mountpoint are created (due to Page 11/47

 X-mount.mkdir). See also --fstab to use an alternative fstab.

 -T, --fstab path

 Specifies an alternative fstab file. If path is a directory, then the files in the

 directory are sorted by strverscmp(3); files that start with "." or without an .fstab

 extension are ignored. The option can be specified more than once. This option is

 mostly designed for initramfs or chroot scripts where additional configuration is

 specified beyond standard system configuration.

 Note that mount does not pass the option --fstab to the /sbin/mount.type helpers,

 meaning that the alternative fstab files will be invisible for the helpers. This is no

 problem for normal mounts, but user (non-root) mounts always require fstab to verify

 the user?s rights.

 -t, --types fstype

 The argument following the -t is used to indicate the filesystem type. The filesystem

 types which are currently supported depend on the running kernel. See

 /proc/filesystems and /lib/modules/$(uname -r)/kernel/fs for a complete list of the

 filesystems. The most common are ext2, ext3, ext4, xfs, btrfs, vfat, sysfs, proc, nfs

 and cifs.

 The programs mount and umount(8) support filesystem subtypes. The subtype is defined

 by a '.subtype' suffix. For example 'fuse.sshfs'. It?s recommended to use subtype

 notation rather than add any prefix to the mount source (for example

 'sshfs#example.com' is deprecated).

 If no -t option is given, or if the auto type is specified, mount will try to guess

 the desired type. mount uses the libblkid(3) library for guessing the filesystem type;

 if that does not turn up anything that looks familiar, mount will try to read the file

 /etc/filesystems, or, if that does not exist, /proc/filesystems. All of the filesystem

 types listed there will be tried, except for those that are labeled "nodev" (e.g.

 devpts, proc and nfs). If /etc/filesystems ends in a line with a single *, mount will

 read /proc/filesystems afterwards. While trying, all filesystem types will be mounted

 with the mount option silent.

 The auto type may be useful for user-mounted floppies. Creating a file

 /etc/filesystems can be useful to change the probe order (e.g., to try vfat before

 msdos or ext3 before ext2) or if you use a kernel module autoloader.

 More than one type may be specified in a comma-separated list, for the -t option as Page 12/47

 well as in an /etc/fstab entry. The list of filesystem types for the -t option can be

 prefixed with no to specify the filesystem types on which no action should be taken.

 The prefix no has no effect when specified in an /etc/fstab entry.

 The prefix no can be meaningful with the -a option. For example, the command

 mount -a -t nomsdos,smbfs

 mounts all filesystems except those of type msdos and smbfs.

 For most types all the mount program has to do is issue a simple mount(2) system call,

 and no detailed knowledge of the filesystem type is required. For a few types however

 (like nfs, nfs4, cifs, smbfs, ncpfs) an ad hoc code is necessary. The nfs, nfs4, cifs,

 smbfs, and ncpfs filesystems have a separate mount program. In order to make it

 possible to treat all types in a uniform way, mount will execute the program

 /sbin/mount.type (if that exists) when called with type type. Since different versions

 of the smbmount program have different calling conventions, /sbin/mount.smbfs may have

 to be a shell script that sets up the desired call.

 -U, --uuid uuid

 Mount the partition that has the specified uuid.

 -v, --verbose

 Verbose mode.

 -w, --rw, --read-write

 Mount the filesystem read/write. Read-write is the kernel default and the mount

 default is to try read-only if the previous mount syscall with read-write flags on

 write-protected devices of filesystems failed.

 A synonym is -o rw.

 Note that specifying -w on the command line forces mount to never try read-only mount

 on write-protected devices or already mounted read-only filesystems.

 -V, --version

 Display version information and exit.

 -h, --help

 Display help text and exit.

FILESYSTEM-INDEPENDENT MOUNT OPTIONS

 Some of these options are only useful when they appear in the /etc/fstab file.

 Some of these options could be enabled or disabled by default in the system kernel. To

 check the current setting see the options in /proc/mounts. Note that filesystems also have Page 13/47

 per-filesystem specific default mount options (see for example tune2fs -l output for

 ext_N_ filesystems).

 The following options apply to any filesystem that is being mounted (but not every

 filesystem actually honors them - e.g., the sync option today has an effect only for ext2,

 ext3, ext4, fat, vfat, ufs and xfs):

 async

 All I/O to the filesystem should be done asynchronously. (See also the sync option.)

 atime

 Do not use the noatime feature, so the inode access time is controlled by kernel

 defaults. See also the descriptions of the relatime and strictatime mount options.

 noatime

 Do not update inode access times on this filesystem (e.g. for faster access on the

 news spool to speed up news servers). This works for all inode types (directories

 too), so it implies nodiratime.

 auto

 Can be mounted with the -a option.

 noauto

 Can only be mounted explicitly (i.e., the -a option will not cause the filesystem to

 be mounted).

 context=context, fscontext=context, defcontext=context, and rootcontext=context

 The context= option is useful when mounting filesystems that do not support extended

 attributes, such as a floppy or hard disk formatted with VFAT, or systems that are not

 normally running under SELinux, such as an ext3 or ext4 formatted disk from a

 non-SELinux workstation. You can also use context= on filesystems you do not trust,

 such as a floppy. It also helps in compatibility with xattr-supporting filesystems on

 earlier 2.4.<x> kernel versions. Even where xattrs are supported, you can save time

 not having to label every file by assigning the entire disk one security context.

 A commonly used option for removable media is context="system_u:object_r:removable_t.

 The fscontext= option works for all filesystems, regardless of their xattr support.

 The fscontext option sets the overarching filesystem label to a specific security

 context. This filesystem label is separate from the individual labels on the files. It

 represents the entire filesystem for certain kinds of permission checks, such as

 during mount or file creation. Individual file labels are still obtained from the Page 14/47

 xattrs on the files themselves. The context option actually sets the aggregate context

 that fscontext provides, in addition to supplying the same label for individual files.

 You can set the default security context for unlabeled files using defcontext= option.

 This overrides the value set for unlabeled files in the policy and requires a

 filesystem that supports xattr labeling.

 The rootcontext= option allows you to explicitly label the root inode of a FS being

 mounted before that FS or inode becomes visible to userspace. This was found to be

 useful for things like stateless Linux.

 Note that the kernel rejects any remount request that includes the context option,

 even when unchanged from the current context.

 Warning: the context value might contain commas, in which case the value has to be

 properly quoted, otherwise mount will interpret the comma as a separator between mount

 options. Don?t forget that the shell strips off quotes and thus double quoting is

 required. For example:

 mount -t tmpfs none /mnt -o \

 'context="system_u:object_r:tmp_t:s0:c127,c456",noexec'

 For more details, see selinux(8).

 defaults

 Use the default options: rw, suid, dev, exec, auto, nouser, and async.

 Note that the real set of all default mount options depends on the kernel and

 filesystem type. See the beginning of this section for more details.

 dev

 Interpret character or block special devices on the filesystem.

 nodev

 Do not interpret character or block special devices on the filesystem.

 diratime

 Update directory inode access times on this filesystem. This is the default. (This

 option is ignored when noatime is set.)

 nodiratime

 Do not update directory inode access times on this filesystem. (This option is implied

 when noatime is set.)

 dirsync

 All directory updates within the filesystem should be done synchronously. This affects Page 15/47

 the following system calls: creat(2), link(2), unlink(2), symlink(2), mkdir(2),

 rmdir(2), mknod(2) and rename(2).

 exec

 Permit execution of binaries.

 noexec

 Do not permit direct execution of any binaries on the mounted filesystem.

 group

 Allow an ordinary user to mount the filesystem if one of that user?s groups matches

 the group of the device. This option implies the options nosuid and nodev (unless

 overridden by subsequent options, as in the option line group,dev,suid).

 iversion

 Every time the inode is modified, the i_version field will be incremented.

 noiversion

 Do not increment the i_version inode field.

 mand

 Allow mandatory locks on this filesystem. See fcntl(2).

 nomand

 Do not allow mandatory locks on this filesystem.

 _netdev

 The filesystem resides on a device that requires network access (used to prevent the

 system from attempting to mount these filesystems until the network has been enabled

 on the system).

 nofail

 Do not report errors for this device if it does not exist.

 relatime

 Update inode access times relative to modify or change time. Access time is only

 updated if the previous access time was earlier than the current modify or change

 time. (Similar to noatime, but it doesn?t break mutt(1) or other applications that

 need to know if a file has been read since the last time it was modified.)

 Since Linux 2.6.30, the kernel defaults to the behavior provided by this option

 (unless noatime was specified), and the strictatime option is required to obtain

 traditional semantics. In addition, since Linux 2.6.30, the file?s last access time is

 always updated if it is more than 1 day old. Page 16/47

 norelatime

 Do not use the relatime feature. See also the strictatime mount option.

 strictatime

 Allows to explicitly request full atime updates. This makes it possible for the kernel

 to default to relatime or noatime but still allow userspace to override it. For more

 details about the default system mount options see /proc/mounts.

 nostrictatime

 Use the kernel?s default behavior for inode access time updates.

 lazytime

 Only update times (atime, mtime, ctime) on the in-memory version of the file inode.

 This mount option significantly reduces writes to the inode table for workloads that

 perform frequent random writes to preallocated files.

 The on-disk timestamps are updated only when:

 ? the inode needs to be updated for some change unrelated to file timestamps

 ? the application employs fsync(2), syncfs(2), or sync(2)

 ? an undeleted inode is evicted from memory

 ? more than 24 hours have passed since the inode was written to disk.

 nolazytime

 Do not use the lazytime feature.

 suid

 Honor set-user-ID and set-group-ID bits or file capabilities when executing programs

 from this filesystem.

 nosuid

 Do not honor set-user-ID and set-group-ID bits or file capabilities when executing

 programs from this filesystem. In addition, SELinux domain transitions require

 permission nosuid_transition, which in turn needs also policy capability

 nnp_nosuid_transition.

 silent

 Turn on the silent flag.

 loud

 Turn off the silent flag.

 owner

 Allow an ordinary user to mount the filesystem if that user is the owner of the Page 17/47

 device. This option implies the options nosuid and nodev (unless overridden by

 subsequent options, as in the option line owner,dev,suid).

 remount

 Attempt to remount an already-mounted filesystem. This is commonly used to change the

 mount flags for a filesystem, especially to make a readonly filesystem writable. It

 does not change device or mount point.

 The remount operation together with the bind flag has special semantics. See above,

 the subsection Bind mounts.

 The remount functionality follows the standard way the mount command works with

 options from fstab. This means that mount does not read fstab (or mtab) only when both

 device and dir are specified.

 mount -o remount,rw /dev/foo /dir

 After this call all old mount options are replaced and arbitrary stuff from fstab (or

 mtab) is ignored, except the loop= option which is internally generated and maintained

 by the mount command.

 mount -o remount,rw /dir

 After this call, mount reads fstab and merges these options with the options from the

 command line (-o). If no mountpoint is found in fstab, then a remount with unspecified

 source is allowed.

 mount allows the use of --all to remount all already mounted filesystems which match a

 specified filter (-O and -t). For example:

 mount --all -o remount,ro -t vfat

 remounts all already mounted vfat filesystems in read-only mode. Each of the

 filesystems is remounted by mount -o remount,ro /dir semantic. This means the mount

 command reads fstab or mtab and merges these options with the options from the command

 line.

 ro

 Mount the filesystem read-only.

 rw

 Mount the filesystem read-write.

 sync

 All I/O to the filesystem should be done synchronously. In the case of media with a

 limited number of write cycles (e.g. some flash drives), sync may cause life-cycle Page 18/47

 shortening.

 user

 Allow an ordinary user to mount the filesystem. The name of the mounting user is

 written to the mtab file (or to the private libmount file in /run/mount on systems

 without a regular mtab) so that this same user can unmount the filesystem again. This

 option implies the options noexec, nosuid, and nodev (unless overridden by subsequent

 options, as in the option line user,exec,dev,suid).

 nouser

 Forbid an ordinary user to mount the filesystem. This is the default; it does not

 imply any other options.

 users

 Allow any user to mount and to unmount the filesystem, even when some other ordinary

 user mounted it. This option implies the options noexec, nosuid, and nodev (unless

 overridden by subsequent options, as in the option line users,exec,dev,suid).

 X-*

 All options prefixed with "X-" are interpreted as comments or as userspace

 application-specific options. These options are not stored in user space (e.g., mtab

 file), nor sent to the mount.type helpers nor to the mount(2) system call. The

 suggested format is X-appname.option.

 x-*

 The same as X-* options, but stored permanently in user space. This means the options

 are also available for umount(8) or other operations. Note that maintaining mount

 options in user space is tricky, because it?s necessary use libmount-based tools and

 there is no guarantee that the options will be always available (for example after a

 move mount operation or in unshared namespace).

 Note that before util-linux v2.30 the x-* options have not been maintained by libmount

 and stored in user space (functionality was the same as for X-* now), but due to the

 growing number of use-cases (in initrd, systemd etc.) the functionality has been

 extended to keep existing fstab configurations usable without a change.

 X-mount.mkdir[=mode]

 Allow to make a target directory (mountpoint) if it does not exit yet. The optional

 argument mode specifies the filesystem access mode used for mkdir(2) in octal

 notation. The default mode is 0755. This functionality is supported only for root Page 19/47

 users or when mount executed without suid permissions. The option is also supported as

 x-mount.mkdir, this notation is deprecated since v2.30.

 nosymfollow

 Do not follow symlinks when resolving paths. Symlinks can still be created, and

 readlink(1), readlink(2), realpath(1), and realpath(3) all still work properly.

FILESYSTEM-SPECIFIC MOUNT OPTIONS

 This section lists options that are specific to particular filesystems. Where possible,

 you should first consult filesystem-specific manual pages for details. Some of those pages

 are listed in the following table.

 ???????????????????????????????????

 ? ? ?

 ?Filesystem(s) ? Manual page ?

 ???????????????????????????????????

 ? ? ?

 ?btrfs ? btrfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?cifs ? mount.cifs(8) ?

 ???????????????????????????????????

 ? ? ?

 ?ext2, ext3, ext4 ? ext4(5) ?

 ???????????????????????????????????

 ? ? ?

 ?fuse ? fuse(8) ?

 ???????????????????????????????????

 ? ? ?

 ?nfs ? nfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?tmpfs ? tmpfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?xfs ? xfs(5) ? Page 20/47

 ???????????????????????????????????

 Note that some of the pages listed above might be available only after you install the

 respective userland tools.

 The following options apply only to certain filesystems. We sort them by filesystem. All

 options follow the -o flag.

 What options are supported depends a bit on the running kernel. Further information may be

 available in filesystem-specific files in the kernel source subdirectory

 Documentation/filesystems.

 Mount options for adfs

 uid=value and gid=value

 Set the owner and group of the files in the filesystem (default: uid=gid=0).

 ownmask=value and othmask=value

 Set the permission mask for ADFS 'owner' permissions and 'other' permissions,

 respectively (default: 0700 and 0077, respectively). See also

 /usr/src/linux/Documentation/filesystems/adfs.rst.

 Mount options for affs

 uid=value and gid=value

 Set the owner and group of the root of the filesystem (default: uid=gid=0, but with

 option uid or gid without specified value, the UID and GID of the current process are

 taken).

 setuid=value and setgid=value

 Set the owner and group of all files.

 mode=value

 Set the mode of all files to value & 0777 disregarding the original permissions. Add

 search permission to directories that have read permission. The value is given in

 octal.

 protect

 Do not allow any changes to the protection bits on the filesystem.

 usemp

 Set UID and GID of the root of the filesystem to the UID and GID of the mount point

 upon the first sync or umount, and then clear this option. Strange...

 verbose

 Print an informational message for each successful mount. Page 21/47

 prefix=string

 Prefix used before volume name, when following a link.

 volume=string

 Prefix (of length at most 30) used before '/' when following a symbolic link.

 reserved=value

 (Default: 2.) Number of unused blocks at the start of the device.

 root=value

 Give explicitly the location of the root block.

 bs=value

 Give blocksize. Allowed values are 512, 1024, 2048, 4096.

 grpquota|noquota|quota|usrquota

 These options are accepted but ignored. (However, quota utilities may react to such

 strings in /etc/fstab.)

 Mount options for debugfs

 The debugfs filesystem is a pseudo filesystem, traditionally mounted on /sys/kernel/debug.

 As of kernel version 3.4, debugfs has the following options:

 uid=n, gid=n

 Set the owner and group of the mountpoint.

 mode=value

 Sets the mode of the mountpoint.

 Mount options for devpts

 The devpts filesystem is a pseudo filesystem, traditionally mounted on /dev/pts. In order

 to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal

 is then made available to the process and the pseudo terminal slave can be accessed as

 /dev/pts/<number>.

 uid=value and gid=value

 This sets the owner or the group of newly created pseudo terminals to the specified

 values. When nothing is specified, they will be set to the UID and GID of the creating

 process. For example, if there is a tty group with GID 5, then gid=5 will cause newly

 created pseudo terminals to belong to the tty group.

 mode=value

 Set the mode of newly created pseudo terminals to the specified value. The default is

 0600. A value of mode=620 and gid=5 makes "mesg y" the default on newly created pseudo Page 22/47

 terminals.

 newinstance

 Create a private instance of the devpts filesystem, such that indices of pseudo

 terminals allocated in this new instance are independent of indices created in other

 instances of devpts.

 All mounts of devpts without this newinstance option share the same set of pseudo

 terminal indices (i.e., legacy mode). Each mount of devpts with the newinstance option

 has a private set of pseudo terminal indices.

 This option is mainly used to support containers in the Linux kernel. It is

 implemented in Linux kernel versions starting with 2.6.29. Further, this mount option

 is valid only if CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel

 configuration.

 To use this option effectively, /dev/ptmx must be a symbolic link to pts/ptmx. See

 Documentation/filesystems/devpts.txt in the Linux kernel source tree for details.

 ptmxmode=value

 Set the mode for the new ptmx device node in the devpts filesystem.

 With the support for multiple instances of devpts (see newinstance option above), each

 instance has a private ptmx node in the root of the devpts filesystem (typically

 /dev/pts/ptmx).

 For compatibility with older versions of the kernel, the default mode of the new ptmx

 node is 0000. ptmxmode=value specifies a more useful mode for the ptmx node and is

 highly recommended when the newinstance option is specified.

 This option is only implemented in Linux kernel versions starting with 2.6.29.

 Further, this option is valid only if CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in

 the kernel configuration.

 Mount options for fat

 (Note: fat is not a separate filesystem, but a common part of the msdos, umsdos and vfat

 filesystems.)

 blocksize={512|1024|2048}

 Set blocksize (default 512). This option is obsolete.

 uid=value and gid=value

 Set the owner and group of all files. (Default: the UID and GID of the current

 process.) Page 23/47

 umask=value

 Set the umask (the bitmask of the permissions that are not present). The default is

 the umask of the current process. The value is given in octal.

 dmask=value

 Set the umask applied to directories only. The default is the umask of the current

 process. The value is given in octal.

 fmask=value

 Set the umask applied to regular files only. The default is the umask of the current

 process. The value is given in octal.

 allow_utime=value

 This option controls the permission check of mtime/atime.

 20

 If current process is in group of file?s group ID, you can change timestamp.

 2

 Other users can change timestamp.

 The default is set from 'dmask' option. (If the directory is writable, utime(2) is also

 allowed. I.e. ~dmask & 022)

 Normally utime(2) checks that the current process is owner of the file, or that it has the

 CAP_FOWNER capability. But FAT filesystems don?t have UID/GID on disk, so the normal check

 is too inflexible. With this option you can relax it.

 check=value

 Three different levels of pickiness can be chosen:

 r[elaxed]

 Upper and lower case are accepted and equivalent, long name parts are truncated

 (e.g. verylongname.foobar becomes verylong.foo), leading and embedded spaces are

 accepted in each name part (name and extension).

 n[ormal]

 Like "relaxed", but many special characters (*, ?, <, spaces, etc.) are rejected.

 This is the default.

 s[trict]

 Like "normal", but names that contain long parts or special characters that are

 sometimes used on Linux but are not accepted by MS-DOS (+, =, etc.) are rejected.

 codepage=value Page 24/47

 Sets the codepage for converting to shortname characters on FAT and VFAT filesystems.

 By default, codepage 437 is used.

 conv=mode

 This option is obsolete and may fail or be ignored.

 cvf_format=module

 Forces the driver to use the CVF (Compressed Volume File) module cvf__module_ instead

 of auto-detection. If the kernel supports kmod, the cvf_format=xxx option also

 controls on-demand CVF module loading. This option is obsolete.

 cvf_option=option

 Option passed to the CVF module. This option is obsolete.

 debug

 Turn on the debug flag. A version string and a list of filesystem parameters will be

 printed (these data are also printed if the parameters appear to be inconsistent).

 discard

 If set, causes discard/TRIM commands to be issued to the block device when blocks are

 freed. This is useful for SSD devices and sparse/thinly-provisioned LUNs.

 dos1xfloppy

 If set, use a fallback default BIOS Parameter Block configuration, determined by

 backing device size. These static parameters match defaults assumed by DOS 1.x for 160

 kiB, 180 kiB, 320 kiB, and 360 kiB floppies and floppy images.

 errors={panic|continue|remount-ro}

 Specify FAT behavior on critical errors: panic, continue without doing anything, or

 remount the partition in read-only mode (default behavior).

 fat={12|16|32}

 Specify a 12, 16 or 32 bit fat. This overrides the automatic FAT type detection

 routine. Use with caution!

 iocharset=value

 Character set to use for converting between 8 bit characters and 16 bit Unicode

 characters. The default is iso8859-1. Long filenames are stored on disk in Unicode

 format.

 nfs={stale_rw|nostale_ro}

 Enable this only if you want to export the FAT filesystem over NFS.

 stale_rw: This option maintains an index (cache) of directory inodes which is used by Page 25/47

 the nfs-related code to improve look-ups. Full file operations (read/write) over NFS

 are supported but with cache eviction at NFS server, this could result in spurious

 ESTALE errors.

 nostale_ro: This option bases the inode number and file handle on the on-disk location

 of a file in the FAT directory entry. This ensures that ESTALE will not be returned

 after a file is evicted from the inode cache. However, it means that operations such

 as rename, create and unlink could cause file handles that previously pointed at one

 file to point at a different file, potentially causing data corruption. For this

 reason, this option also mounts the filesystem readonly.

 To maintain backward compatibility, -o nfs is also accepted, defaulting to stale_rw.

 tz=UTC

 This option disables the conversion of timestamps between local time (as used by

 Windows on FAT) and UTC (which Linux uses internally). This is particularly useful

 when mounting devices (like digital cameras) that are set to UTC in order to avoid the

 pitfalls of local time.

 time_offset=minutes

 Set offset for conversion of timestamps from local time used by FAT to UTC. I.e.,

 minutes will be subtracted from each timestamp to convert it to UTC used internally by

 Linux. This is useful when the time zone set in the kernel via settimeofday(2) is not

 the time zone used by the filesystem. Note that this option still does not provide

 correct time stamps in all cases in presence of DST - time stamps in a different DST

 setting will be off by one hour.

 quiet

 Turn on the quiet flag. Attempts to chown or chmod files do not return errors,

 although they fail. Use with caution!

 rodir

 FAT has the ATTR_RO (read-only) attribute. On Windows, the ATTR_RO of the directory

 will just be ignored, and is used only by applications as a flag (e.g. it?s set for

 the customized folder).

 If you want to use ATTR_RO as read-only flag even for the directory, set this option.

 showexec

 If set, the execute permission bits of the file will be allowed only if the extension

 part of the name is .EXE, .COM, or .BAT. Not set by default. Page 26/47

 sys_immutable

 If set, ATTR_SYS attribute on FAT is handled as IMMUTABLE flag on Linux. Not set by

 default.

 flush

 If set, the filesystem will try to flush to disk more early than normal. Not set by

 default.

 usefree

 Use the "free clusters" value stored on FSINFO. It?ll be used to determine number of

 free clusters without scanning disk. But it?s not used by default, because recent

 Windows don?t update it correctly in some case. If you are sure the "free clusters" on

 FSINFO is correct, by this option you can avoid scanning disk.

 dots, nodots, dotsOK=[yes|no]

 Various misguided attempts to force Unix or DOS conventions onto a FAT filesystem.

 Mount options for hfs

 creator=cccc, type=cccc

 Set the creator/type values as shown by the MacOS finder used for creating new files.

 Default values: '????'.

 uid=n, gid=n

 Set the owner and group of all files. (Default: the UID and GID of the current

 process.)

 dir_umask=n, file_umask=n, umask=n

 Set the umask used for all directories, all regular files, or all files and

 directories. Defaults to the umask of the current process.

 session=n

 Select the CDROM session to mount. Defaults to leaving that decision to the CDROM

 driver. This option will fail with anything but a CDROM as underlying device.

 part=n

 Select partition number n from the device. Only makes sense for CDROMs. Defaults to

 not parsing the partition table at all.

 quiet

 Don?t complain about invalid mount options.

 Mount options for hpfs

 uid=value and gid=value Page 27/47

 Set the owner and group of all files. (Default: the UID and GID of the current

 process.)

 umask=value

 Set the umask (the bitmask of the permissions that are not present). The default is

 the umask of the current process. The value is given in octal.

 case={lower|asis}

 Convert all files names to lower case, or leave them. (Default: case=lower.)

 conv=mode

 This option is obsolete and may fail or being ignored.

 nocheck

 Do not abort mounting when certain consistency checks fail.

 Mount options for iso9660

 ISO 9660 is a standard describing a filesystem structure to be used on CD-ROMs. (This

 filesystem type is also seen on some DVDs. See also the udf filesystem.)

 Normal iso9660 filenames appear in an 8.3 format (i.e., DOS-like restrictions on filename

 length), and in addition all characters are in upper case. Also there is no field for file

 ownership, protection, number of links, provision for block/character devices, etc.

 Rock Ridge is an extension to iso9660 that provides all of these UNIX-like features.

 Basically there are extensions to each directory record that supply all of the additional

 information, and when Rock Ridge is in use, the filesystem is indistinguishable from a

 normal UNIX filesystem (except that it is read-only, of course).

 norock

 Disable the use of Rock Ridge extensions, even if available. Cf. map.

 nojoliet

 Disable the use of Microsoft Joliet extensions, even if available. Cf. map.

 check={r[elaxed]|s[trict]}

 With check=relaxed, a filename is first converted to lower case before doing the

 lookup. This is probably only meaningful together with norock and map=normal.

 (Default: check=strict.)

 uid=value and gid=value

 Give all files in the filesystem the indicated user or group id, possibly overriding

 the information found in the Rock Ridge extensions. (Default: uid=0,gid=0.)

 map={n[ormal]|o[ff]|a[corn]} Page 28/47

 For non-Rock Ridge volumes, normal name translation maps upper to lower case ASCII,

 drops a trailing ';1', and converts ';' to '.'. With map=off no name translation is

 done. See norock. (Default: map=normal.) map=acorn is like map=normal but also apply

 Acorn extensions if present.

 mode=value

 For non-Rock Ridge volumes, give all files the indicated mode. (Default: read and

 execute permission for everybody.) Octal mode values require a leading 0.

 unhide

 Also show hidden and associated files. (If the ordinary files and the associated or

 hidden files have the same filenames, this may make the ordinary files inaccessible.)

 block={512|1024|2048}

 Set the block size to the indicated value. (Default: block=1024.)

 conv=mode

 This option is obsolete and may fail or being ignored.

 cruft

 If the high byte of the file length contains other garbage, set this mount option to

 ignore the high order bits of the file length. This implies that a file cannot be

 larger than 16 MB.

 session=x

 Select number of session on a multisession CD.

 sbsector=xxx

 Session begins from sector xxx.

 The following options are the same as for vfat and specifying them only makes sense when

 using discs encoded using Microsoft?s Joliet extensions.

 iocharset=value

 Character set to use for converting 16 bit Unicode characters on CD to 8 bit

 characters. The default is iso8859-1.

 utf8

 Convert 16 bit Unicode characters on CD to UTF-8.

 Mount options for jfs

 iocharset=name

 Character set to use for converting from Unicode to ASCII. The default is to do no

 conversion. Use iocharset=utf8 for UTF8 translations. This requires CONFIG_NLS_UTF8 to Page 29/47

 be set in the kernel .config file.

 resize=value

 Resize the volume to value blocks. JFS only supports growing a volume, not shrinking

 it. This option is only valid during a remount, when the volume is mounted read-write.

 The resize keyword with no value will grow the volume to the full size of the

 partition.

 nointegrity

 Do not write to the journal. The primary use of this option is to allow for higher

 performance when restoring a volume from backup media. The integrity of the volume is

 not guaranteed if the system abnormally ends.

 integrity

 Default. Commit metadata changes to the journal. Use this option to remount a volume

 where the nointegrity option was previously specified in order to restore normal

 behavior.

 errors={continue|remount-ro|panic}

 Define the behavior when an error is encountered. (Either ignore errors and just mark

 the filesystem erroneous and continue, or remount the filesystem read-only, or panic

 and halt the system.)

 noquota|quota|usrquota|grpquota

 These options are accepted but ignored.

 Mount options for msdos

 See mount options for fat. If the msdos filesystem detects an inconsistency, it reports an

 error and sets the file system read-only. The filesystem can be made writable again by

 remounting it.

 Mount options for ncpfs

 Just like nfs, the ncpfs implementation expects a binary argument (a struct

 ncp_mount_data) to the mount system call. This argument is constructed by ncpmount(8) and

 the current version of mount (2.12) does not know anything about ncpfs.

 Mount options for ntfs

 iocharset=name

 Character set to use when returning file names. Unlike VFAT, NTFS suppresses names

 that contain nonconvertible characters. Deprecated.

 nls=name Page 30/47

 New name for the option earlier called iocharset.

 utf8

 Use UTF-8 for converting file names.

 uni_xlate={0|1|2}

 For 0 (or 'no' or 'false'), do not use escape sequences for unknown Unicode

 characters. For 1 (or 'yes' or 'true') or 2, use vfat-style 4-byte escape sequences

 starting with ":". Here 2 gives a little-endian encoding and 1 a byteswapped bigendian

 encoding.

 posix=[0|1]

 If enabled (posix=1), the filesystem distinguishes between upper and lower case. The

 8.3 alias names are presented as hard links instead of being suppressed. This option

 is obsolete.

 uid=value, gid=value and umask=value

 Set the file permission on the filesystem. The umask value is given in octal. By

 default, the files are owned by root and not readable by somebody else.

 Mount options for overlay

 Since Linux 3.18 the overlay pseudo filesystem implements a union mount for other

 filesystems.

 An overlay filesystem combines two filesystems - an upper filesystem and a lower

 filesystem. When a name exists in both filesystems, the object in the upper filesystem is

 visible while the object in the lower filesystem is either hidden or, in the case of

 directories, merged with the upper object.

 The lower filesystem can be any filesystem supported by Linux and does not need to be

 writable. The lower filesystem can even be another overlayfs. The upper filesystem will

 normally be writable and if it is it must support the creation of trusted.* extended

 attributes, and must provide a valid d_type in readdir responses, so NFS is not suitable.

 A read-only overlay of two read-only filesystems may use any filesystem type. The options

 lowerdir and upperdir are combined into a merged directory by using:

 mount -t overlay overlay \

 -olowerdir=/lower,upperdir=/upper,workdir=/work /merged

 lowerdir=directory

 Any filesystem, does not need to be on a writable filesystem.

 upperdir=directory Page 31/47

 The upperdir is normally on a writable filesystem.

 workdir=directory

 The workdir needs to be an empty directory on the same filesystem as upperdir.

 userxattr

 Use the "user.overlay." xattr namespace instead of "trusted.overlay.". This is useful

 for unprivileged mounting of overlayfs.

 redirect_dir={on|off|follow|nofollow}

 If the redirect_dir feature is enabled, then the directory will be copied up (but not

 the contents). Then the "{trusted|user}.overlay.redirect" extended attribute is set to

 the path of the original location from the root of the overlay. Finally the directory

 is moved to the new location.

 on

 Redirects are enabled.

 off

 Redirects are not created and only followed if "redirect_always_follow" feature is

 enabled in the kernel/module config.

 follow

 Redirects are not created, but followed.

 nofollow

 Redirects are not created and not followed (equivalent to "redirect_dir=off" if

 "redirect_always_follow" feature is not enabled).

 index={on|off}

 Inode index. If this feature is disabled and a file with multiple hard links is copied

 up, then this will "break" the link. Changes will not be propagated to other names

 referring to the same inode.

 uuid={on|off}

 Can be used to replace UUID of the underlying filesystem in file handles with null,

 and effectively disable UUID checks. This can be useful in case the underlying disk is

 copied and the UUID of this copy is changed. This is only applicable if all

 lower/upper/work directories are on the same filesystem, otherwise it will fallback to

 normal behaviour.

 nfs_export={on|off}

 When the underlying filesystems supports NFS export and the "nfs_export" feature is Page 32/47

 enabled, an overlay filesystem may be exported to NFS.

 With the ?nfs_export? feature, on copy_up of any lower object, an index entry is

 created under the index directory. The index entry name is the hexadecimal

 representation of the copy up origin file handle. For a non-directory object, the

 index entry is a hard link to the upper inode. For a directory object, the index entry

 has an extended attribute "{trusted|user}.overlay.upper" with an encoded file handle

 of the upper directory inode.

 When encoding a file handle from an overlay filesystem object, the following rules

 apply

 ? For a non-upper object, encode a lower file handle from lower inode

 ? For an indexed object, encode a lower file handle from copy_up origin

 ? For a pure-upper object and for an existing non-indexed upper object, encode

 an upper file handle from upper inode

 The encoded overlay file handle includes

 ? Header including path type information (e.g. lower/upper)

 ? UUID of the underlying filesystem

 ? Underlying filesystem encoding of underlying inode

 This encoding format is identical to the encoding format file handles that are stored

 in extended attribute "{trusted|user}.overlay.origin". When decoding an overlay file

 handle, the following steps are followed

 ? Find underlying layer by UUID and path type information.

 ? Decode the underlying filesystem file handle to underlying dentry.

 ? For a lower file handle, lookup the handle in index directory by name.

 ? If a whiteout is found in index, return ESTALE. This represents an overlay

 object that was deleted after its file handle was encoded.

 ? For a non-directory, instantiate a disconnected overlay dentry from the

 decoded underlying dentry, the path type and index inode, if found.

 ? For a directory, use the connected underlying decoded dentry, path type and

 index, to lookup a connected overlay dentry.

 Decoding a non-directory file handle may return a disconnected dentry. copy_up of that

 disconnected dentry will create an upper index entry with no upper alias.

 When overlay filesystem has multiple lower layers, a middle layer directory may have a

 "redirect" to lower directory. Because middle layer "redirects" are not indexed, a Page 33/47

 lower file handle that was encoded from the "redirect" origin directory, cannot be

 used to find the middle or upper layer directory. Similarly, a lower file handle that

 was encoded from a descendant of the "redirect" origin directory, cannot be used to

 reconstruct a connected overlay path. To mitigate the cases of directories that cannot

 be decoded from a lower file handle, these directories are copied up on encode and

 encoded as an upper file handle. On an overlay filesystem with no upper layer this

 mitigation cannot be used NFS export in this setup requires turning off redirect

 follow (e.g. "redirect_dir=nofollow").

 The overlay filesystem does not support non-directory connectable file handles, so

 exporting with the subtree_check exportfs configuration will cause failures to lookup

 files over NFS.

 When the NFS export feature is enabled, all directory index entries are verified on

 mount time to check that upper file handles are not stale. This verification may cause

 significant overhead in some cases.

 Note: the mount options index=off,nfs_export=on are conflicting for a read-write mount

 and will result in an error.

 xinfo={on|off|auto}

 The "xino" feature composes a unique object identifier from the real object st_ino and

 an underlying fsid index. The "xino" feature uses the high inode number bits for fsid,

 because the underlying filesystems rarely use the high inode number bits. In case the

 underlying inode number does overflow into the high xino bits, overlay filesystem will

 fall back to the non xino behavior for that inode.

 For a detailed description of the effect of this option please refer to

 https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html?highlight=overlayfs

 metacopy={on|off}

 When metadata only copy up feature is enabled, overlayfs will only copy up metadata

 (as opposed to whole file), when a metadata specific operation like chown/chmod is

 performed. Full file will be copied up later when file is opened for WRITE operation.

 In other words, this is delayed data copy up operation and data is copied up when

 there is a need to actually modify data.

 volatile

 Volatile mounts are not guaranteed to survive a crash. It is strongly recommended that

 volatile mounts are only used if data written to the overlay can be recreated without Page 34/47

 significant effort.

 The advantage of mounting with the "volatile" option is that all forms of sync calls

 to the upper filesystem are omitted.

 In order to avoid a giving a false sense of safety, the syncfs (and fsync) semantics

 of volatile mounts are slightly different than that of the rest of VFS. If any

 writeback error occurs on the upperdir?s filesystem after a volatile mount takes

 place, all sync functions will return an error. Once this condition is reached, the

 filesystem will not recover, and every subsequent sync call will return an error, even

 if the upperdir has not experience a new error since the last sync call.

 When overlay is mounted with "volatile" option, the directory

 "$workdir/work/incompat/volatile" is created. During next mount, overlay checks for

 this directory and refuses to mount if present. This is a strong indicator that user

 should throw away upper and work directories and create fresh one. In very limited

 cases where the user knows that the system has not crashed and contents of upperdir

 are intact, The "volatile" directory can be removed.

 Mount options for reiserfs

 Reiserfs is a journaling filesystem.

 conv

 Instructs version 3.6 reiserfs software to mount a version 3.5 filesystem, using the

 3.6 format for newly created objects. This filesystem will no longer be compatible

 with reiserfs 3.5 tools.

 hash={rupasov|tea|r5|detect}

 Choose which hash function reiserfs will use to find files within directories.

 rupasov

 A hash invented by Yury Yu. Rupasov. It is fast and preserves locality, mapping

 lexicographically close file names to close hash values. This option should not be

 used, as it causes a high probability of hash collisions.

 tea

 A Davis-Meyer function implemented by Jeremy Fitzhardinge. It uses hash permuting

 bits in the name. It gets high randomness and, therefore, low probability of hash

 collisions at some CPU cost. This may be used if EHASHCOLLISION errors are

 experienced with the r5 hash.

 r5 Page 35/47

 A modified version of the rupasov hash. It is used by default and is the best

 choice unless the filesystem has huge directories and unusual file-name patterns.

 detect

 Instructs mount to detect which hash function is in use by examining the

 filesystem being mounted, and to write this information into the reiserfs

 superblock. This is only useful on the first mount of an old format filesystem.

 hashed_relocation

 Tunes the block allocator. This may provide performance improvements in some

 situations.

 no_unhashed_relocation

 Tunes the block allocator. This may provide performance improvements in some

 situations.

 noborder

 Disable the border allocator algorithm invented by Yury Yu. Rupasov. This may provide

 performance improvements in some situations.

 nolog

 Disable journaling. This will provide slight performance improvements in some

 situations at the cost of losing reiserfs?s fast recovery from crashes. Even with this

 option turned on, reiserfs still performs all journaling operations, save for actual

 writes into its journaling area. Implementation of nolog is a work in progress.

 notail

 By default, reiserfs stores small files and 'file tails' directly into its tree. This

 confuses some utilities such as lilo(8). This option is used to disable packing of

 files into the tree.

 replayonly

 Replay the transactions which are in the journal, but do not actually mount the

 filesystem. Mainly used by reiserfsck.

 resize=number

 A remount option which permits online expansion of reiserfs partitions. Instructs

 reiserfs to assume that the device has number blocks. This option is designed for use

 with devices which are under logical volume management (LVM). There is a special

 resizer utility which can be obtained from ftp://ftp.namesys.com/pub/reiserfsprogs.

 user_xattr Page 36/47

 Enable Extended User Attributes. See the attr(1) manual page.

 acl

 Enable POSIX Access Control Lists. See the acl(5) manual page.

 barrier=none / barrier=flush

 This disables / enables the use of write barriers in the journaling code. barrier=none

 disables, barrier=flush enables (default). This also requires an IO stack which can

 support barriers, and if reiserfs gets an error on a barrier write, it will disable

 barriers again with a warning. Write barriers enforce proper on-disk ordering of

 journal commits, making volatile disk write caches safe to use, at some performance

 penalty. If your disks are battery-backed in one way or another, disabling barriers

 may safely improve performance.

 Mount options for ubifs

 UBIFS is a flash filesystem which works on top of UBI volumes. Note that atime is not

 supported and is always turned off.

 The device name may be specified as

 ubiX_Y

 UBI device number X, volume number Y

 ubiY

 UBI device number 0, volume number Y

 ubiX:NAME

 UBI device number X, volume with name NAME

 ubi:NAME

 UBI device number 0, volume with name NAME

 Alternative ! separator may be used instead of :.

 The following mount options are available:

 bulk_read

 Enable bulk-read. VFS read-ahead is disabled because it slows down the filesystem.

 Bulk-Read is an internal optimization. Some flashes may read faster if the data are

 read at one go, rather than at several read requests. For example, OneNAND can do

 "read-while-load" if it reads more than one NAND page.

 no_bulk_read

 Do not bulk-read. This is the default.

 chk_data_crc Page 37/47

 Check data CRC-32 checksums. This is the default.

 no_chk_data_crc

 Do not check data CRC-32 checksums. With this option, the filesystem does not check

 CRC-32 checksum for data, but it does check it for the internal indexing information.

 This option only affects reading, not writing. CRC-32 is always calculated when

 writing the data.

 compr={none|lzo|zlib}

 Select the default compressor which is used when new files are written. It is still

 possible to read compressed files if mounted with the none option.

 Mount options for udf

 UDF is the "Universal Disk Format" filesystem defined by OSTA, the Optical Storage

 Technology Association, and is often used for DVD-ROM, frequently in the form of a hybrid

 UDF/ISO-9660 filesystem. It is, however, perfectly usable by itself on disk drives, flash

 drives and other block devices. See also iso9660.

 uid=

 Make all files in the filesystem belong to the given user. uid=forget can be specified

 independently of (or usually in addition to) uid=<user> and results in UDF not storing

 uids to the media. In fact the recorded uid is the 32-bit overflow uid -1 as defined

 by the UDF standard. The value is given as either <user> which is a valid user name or

 the corresponding decimal user id, or the special string "forget".

 gid=

 Make all files in the filesystem belong to the given group. gid=forget can be

 specified independently of (or usually in addition to) gid=<group> and results in UDF

 not storing gids to the media. In fact the recorded gid is the 32-bit overflow gid -1

 as defined by the UDF standard. The value is given as either <group> which is a valid

 group name or the corresponding decimal group id, or the special string "forget".

 umask=

 Mask out the given permissions from all inodes read from the filesystem. The value is

 given in octal.

 mode=

 If mode= is set the permissions of all non-directory inodes read from the filesystem

 will be set to the given mode. The value is given in octal.

 dmode= Page 38/47

 If dmode= is set the permissions of all directory inodes read from the filesystem will

 be set to the given dmode. The value is given in octal.

 bs=

 Set the block size. Default value prior to kernel version 2.6.30 was 2048. Since

 2.6.30 and prior to 4.11 it was logical device block size with fallback to 2048. Since

 4.11 it is logical block size with fallback to any valid block size between logical

 device block size and 4096.

 For other details see the mkudffs(8) 2.0+ manpage, sections COMPATIBILITY and BLOCK

 SIZE.

 unhide

 Show otherwise hidden files.

 undelete

 Show deleted files in lists.

 adinicb

 Embed data in the inode. (default)

 noadinicb

 Don?t embed data in the inode.

 shortad

 Use short UDF address descriptors.

 longad

 Use long UDF address descriptors. (default)

 nostrict

 Unset strict conformance.

 iocharset=

 Set the NLS character set. This requires kernel compiled with CONFIG_UDF_NLS option.

 utf8

 Set the UTF-8 character set.

 Mount options for debugging and disaster recovery

 novrs

 Ignore the Volume Recognition Sequence and attempt to mount anyway.

 session=

 Select the session number for multi-session recorded optical media. (default= last

 session) Page 39/47

 anchor=

 Override standard anchor location. (default= 256)

 lastblock=

 Set the last block of the filesystem.

 Unused historical mount options that may be encountered and should be removed

 uid=ignore

 Ignored, use uid=<user> instead.

 gid=ignore

 Ignored, use gid=<group> instead.

 volume=

 Unimplemented and ignored.

 partition=

 Unimplemented and ignored.

 fileset=

 Unimplemented and ignored.

 rootdir=

 Unimplemented and ignored.

 Mount options for ufs

 ufstype=value

 UFS is a filesystem widely used in different operating systems. The problem are

 differences among implementations. Features of some implementations are undocumented,

 so its hard to recognize the type of ufs automatically. That?s why the user must

 specify the type of ufs by mount option. Possible values are:

 old

 Old format of ufs, this is the default, read only. (Don?t forget to give the -r

 option.)

 44bsd

 For filesystems created by a BSD-like system (NetBSD, FreeBSD, OpenBSD).

 ufs2

 Used in FreeBSD 5.x supported as read-write.

 5xbsd

 Synonym for ufs2.

 sun Page 40/47

 For filesystems created by SunOS or Solaris on Sparc.

 sunx86

 For filesystems created by Solaris on x86.

 hp

 For filesystems created by HP-UX, read-only.

 nextstep

 For filesystems created by NeXTStep (on NeXT station) (currently read only).

 nextstep-cd

 For NextStep CDROMs (block_size == 2048), read-only.

 openstep

 For filesystems created by OpenStep (currently read only). The same filesystem

 type is also used by Mac OS X.

 onerror=value

 Set behavior on error:

 panic

 If an error is encountered, cause a kernel panic.

 [lock|umount|repair]

 These mount options don?t do anything at present; when an error is encountered

 only a console message is printed.

 Mount options for umsdos

 See mount options for msdos. The dotsOK option is explicitly killed by umsdos.

 Mount options for vfat

 First of all, the mount options for fat are recognized. The dotsOK option is explicitly

 killed by vfat. Furthermore, there are

 uni_xlate

 Translate unhandled Unicode characters to special escaped sequences. This lets you

 backup and restore filenames that are created with any Unicode characters. Without

 this option, a '?' is used when no translation is possible. The escape character is

 ':' because it is otherwise invalid on the vfat filesystem. The escape sequence that

 gets used, where u is the Unicode character, is: ':', (u & 0x3f), ((u>>6) & 0x3f),

 (u>>12).

 posix

 Allow two files with names that only differ in case. This option is obsolete. Page 41/47

 nonumtail

 First try to make a short name without sequence number, before trying name~num.ext.

 utf8

 UTF8 is the filesystem safe 8-bit encoding of Unicode that is used by the console. It

 can be enabled for the filesystem with this option or disabled with utf8=0, utf8=no or

 utf8=false. If uni_xlate gets set, UTF8 gets disabled.

 shortname=mode

 Defines the behavior for creation and display of filenames which fit into 8.3

 characters. If a long name for a file exists, it will always be the preferred one for

 display. There are four modes:

 lower

 Force the short name to lower case upon display; store a long name when the short

 name is not all upper case.

 win95

 Force the short name to upper case upon display; store a long name when the short

 name is not all upper case.

 winnt

 Display the short name as is; store a long name when the short name is not all

 lower case or all upper case.

 mixed

 Display the short name as is; store a long name when the short name is not all

 upper case. This mode is the default since Linux 2.6.32.

 Mount options for usbfs

 devuid=uid and devgid=gid and devmode=mode

 Set the owner and group and mode of the device files in the usbfs filesystem (default:

 uid=gid=0, mode=0644). The mode is given in octal.

 busuid=uid and busgid=gid and busmode=mode

 Set the owner and group and mode of the bus directories in the usbfs filesystem

 (default: uid=gid=0, mode=0555). The mode is given in octal.

 listuid=uid and listgid=gid and listmode=mode

 Set the owner and group and mode of the file devices (default: uid=gid=0, mode=0444).

 The mode is given in octal.

DM-VERITY SUPPORT (EXPERIMENTAL) Page 42/47

 The device-mapper verity target provides read-only transparent integrity checking of block

 devices using kernel crypto API. The mount command can open the dm-verity device and do

 the integrity verification before on the device filesystem is mounted. Requires

 libcryptsetup with in libmount (optionally via dlopen(3)). If libcryptsetup supports

 extracting the root hash of an already mounted device, existing devices will be

 automatically reused in case of a match. Mount options for dm-verity:

 verity.hashdevice=path

 Path to the hash tree device associated with the source volume to pass to dm-verity.

 verity.roothash=hex

 Hex-encoded hash of the root of verity.hashdevice. Mutually exclusive with

 verity.roothashfile.

 verity.roothashfile=path

 Path to file containing the hex-encoded hash of the root of verity.hashdevice.

 Mutually exclusive with verity.roothash.

 verity.hashoffset=offset

 If the hash tree device is embedded in the source volume, offset (default: 0) is used

 by dm-verity to get to the tree.

 verity.fecdevice=path

 Path to the Forward Error Correction (FEC) device associated with the source volume to

 pass to dm-verity. Optional. Requires kernel built with CONFIG_DM_VERITY_FEC.

 verity.fecoffset=offset

 If the FEC device is embedded in the source volume, offset (default: 0) is used by

 dm-verity to get to the FEC area. Optional.

 verity.fecroots=value

 Parity bytes for FEC (default: 2). Optional.

 verity.roothashsig=path

 Path to pkcs7(1ssl) signature of root hash hex string. Requires

 crypt_activate_by_signed_key() from cryptsetup and kernel built with

 CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG. For device reuse, signatures have to be either

 used by all mounts of a device or by none. Optional.

 Supported since util-linux v2.35.

 For example commands:

 mksquashfs /etc /tmp/etc.squashfs Page 43/47

 dd if=/dev/zero of=/tmp/etc.hash bs=1M count=10

 veritysetup format /tmp/etc.squashfs /tmp/etc.hash

 openssl smime -sign -in <hash> -nocerts -inkey private.key \

 -signer private.crt -noattr -binary -outform der -out /tmp/etc.roothash.p7s

 mount -o verity.hashdevice=/tmp/etc.hash,verity.roothash=<hash>,\

 verity.roothashsig=/tmp/etc.roothash.p7s /tmp/etc.squashfs /mnt

 create squashfs image from /etc directory, verity hash device and mount verified

 filesystem image to /mnt. The kernel will verify that the root hash is signed by a key

 from the kernel keyring if roothashsig is used.

LOOP-DEVICE SUPPORT

 One further possible type is a mount via the loop device. For example, the command

 mount /tmp/disk.img /mnt -t vfat -o loop=/dev/loop3

 will set up the loop device /dev/loop3 to correspond to the file /tmp/disk.img, and then

 mount this device on /mnt.

 If no explicit loop device is mentioned (but just an option '-o loop' is given), then

 mount will try to find some unused loop device and use that, for example

 mount /tmp/disk.img /mnt -o loop

 The mount command automatically creates a loop device from a regular file if a filesystem

 type is not specified or the filesystem is known for libblkid, for example:

 mount /tmp/disk.img /mnt

 mount -t ext4 /tmp/disk.img /mnt

 This type of mount knows about three options, namely loop, offset and sizelimit, that are

 really options to losetup(8). (These options can be used in addition to those specific to

 the filesystem type.)

 Since Linux 2.6.25 auto-destruction of loop devices is supported, meaning that any loop

 device allocated by mount will be freed by umount independently of /etc/mtab.

 You can also free a loop device by hand, using losetup -d or umount -d.

 Since util-linux v2.29, mount re-uses the loop device rather than initializing a new

 device if the same backing file is already used for some loop device with the same offset

 and sizelimit. This is necessary to avoid a filesystem corruption.

EXIT STATUS

 mount has the following exit status values (the bits can be ORed):

 0 Page 44/47

 success

 1

 incorrect invocation or permissions

 2

 system error (out of memory, cannot fork, no more loop devices)

 4

 internal mount bug

 8

 user interrupt

 16

 problems writing or locking /etc/mtab

 32

 mount failure

 64

 some mount succeeded

 The command mount -a returns 0 (all succeeded), 32 (all failed), or 64 (some failed,

 some succeeded).

EXTERNAL HELPERS

 The syntax of external mount helpers is:

 /sbin/mount.suffix spec dir [-sfnv] [-N namespace] [-o options] [-t type.subtype]

 where the suffix is the filesystem type and the -sfnvoN options have the same meaning as

 the normal mount options. The -t option is used for filesystems with subtypes support (for

 example /sbin/mount.fuse -t fuse.sshfs).

 The command mount does not pass the mount options unbindable, runbindable, private,

 rprivate, slave, rslave, shared, rshared, auto, noauto, comment, x-*, loop, offset and

 sizelimit to the mount.<suffix> helpers. All other options are used in a comma-separated

 list as an argument to the -o option.

ENVIRONMENT

 LIBMOUNT_FSTAB=<path>

 overrides the default location of the fstab file (ignored for suid)

 LIBMOUNT_MTAB=<path>

 overrides the default location of the mtab file (ignored for suid)

 LIBMOUNT_DEBUG=all Page 45/47

 enables libmount debug output

 LIBBLKID_DEBUG=all

 enables libblkid debug output

 LOOPDEV_DEBUG=all

 enables loop device setup debug output

FILES

 See also "The files /etc/fstab, /etc/mtab and /proc/mounts" section above.

 /etc/fstab

 filesystem table

 /run/mount

 libmount private runtime directory

 /etc/mtab

 table of mounted filesystems or symlink to /proc/mounts

 /etc/mtab~

 lock file (unused on systems with mtab symlink)

 /etc/mtab.tmp

 temporary file (unused on systems with mtab symlink)

 /etc/filesystems

 a list of filesystem types to try

HISTORY

 A mount command existed in Version 5 AT&T UNIX.

BUGS

 It is possible for a corrupted filesystem to cause a crash.

 Some Linux filesystems don?t support -o sync and -o dirsync (the ext2, ext3, ext4, fat and

 vfat filesystems do support synchronous updates (a la BSD) when mounted with the sync

 option).

 The -o remount may not be able to change mount parameters (all ext2fs-specific parameters,

 except sb, are changeable with a remount, for example, but you can?t change gid or umask

 for the fatfs).

 It is possible that the files /etc/mtab and /proc/mounts don?t match on systems with a

 regular mtab file. The first file is based only on the mount command options, but the

 content of the second file also depends on the kernel and others settings (e.g. on a

 remote NFS server ? in certain cases the mount command may report unreliable information Page 46/47

 about an NFS mount point and the /proc/mount file usually contains more reliable

 information.) This is another reason to replace the mtab file with a symlink to the

 /proc/mounts file.

 Checking files on NFS filesystems referenced by file descriptors (i.e. the fcntl and ioctl

 families of functions) may lead to inconsistent results due to the lack of a consistency

 check in the kernel even if the noac mount option is used.

 The loop option with the offset or sizelimit options used may fail when using older

 kernels if the mount command can?t confirm that the size of the block device has been

 configured as requested. This situation can be worked around by using the losetup(8)

 command manually before calling mount with the configured loop device.

AUTHORS

 Karel Zak <kzak@redhat.com>

SEE ALSO

 mount(2), umount(2), filesystems(5), fstab(5), nfs(5), xfs(5), mount_namespaces(7),

 xattr(7), e2label(8), findmnt(8), losetup(8), lsblk(8), mke2fs(8), mountd(8), nfsd(8),

 swapon(8), tune2fs(8), umount(8), xfs_admin(8)

REPORTING BUGS

 For bug reports, use the issue tracker at https://github.com/karelzak/util-linux/issues.

AVAILABILITY

 The mount command is part of the util-linux package which can be downloaded from Linux

 Kernel Archive <https://www.kernel.org/pub/linux/utils/util-linux/>.

util-linux 2.37.2 2021-08-16 MOUNT(8)

Page 47/47

