
Rocky Enterprise Linux 9.2 Manual Pages on command 'mount.fuse.8'

$ man mount.fuse.8

fuse(8) System Manager's Manual fuse(8)

NAME

 fuse - configuration and mount options for FUSE file systems

DESCRIPTION

 FUSE (Filesystem in Userspace) is a simple interface for userspace programs to export a

 virtual filesystem to the Linux kernel. FUSE also aims to provide a secure method for non

 privileged users to create and mount their own filesystem implementations.

DEFINITIONS

 FUSE The in-kernel filesystem that forwards requests to a user-space process.

 filesystem

 The user-space process that responds to requests received from the kernel.

 libfuse

 The shared library that most (user-space) filesystems use to communicate with FUSE

 (the kernel filesystem). libfuse also provides the fusermount3 (or fusermount if

 you have older version of libfuse) helper to allow non-privileged users to mount

 filesystems.

 filesystem owner

 The user that starts the filesystem and instructs the kernel to associate it with a

 particular mountpoint. The latter is typically done by the filesystem itself on

 start-up. When using libfuse, this is done by calling the fusermount3 utility.

 client Any process that interacts with the mountpoint.

CONFIGURATION

 Some options regarding mount policy can be set in the file /etc/fuse.conf. Currently these Page 1/7

 options are:

 mount_max = NNN

 Set the maximum number of FUSE mounts allowed to non-root users. The default is

 1000.

 user_allow_other

 Allow non-root users to specify the allow_other or allow_root mount options (see

 below).

 These limits are enforced by the fusermount3 helper, so they can be avoided by filesystems

 that run as root.

OPTIONS

 Most of the generic mount options described in mount are supported (ro, rw, suid, nosuid,

 dev, nodev, exec, noexec, atime, noatime, sync, async, dirsync). Filesystems are mounted

 with nodev,nosuid by default, which can only be overridden by a privileged user.

 General mount options:

 These are FUSE specific mount options that can be specified for all filesystems:

 default_permissions

 This option instructs the kernel to perform its own permission check instead of de?

 ferring all permission checking to the filesystem. The check by the kernel is done

 in addition to any permission checks by the filesystem, and both have to succeed

 for an operation to be allowed. The kernel performs a standard UNIX permission

 check (based on mode bits and ownership of the directory entry, and uid/gid of the

 client).

 This mount option is activated implicitly if the filesystem enables ACL support

 during the initial feature negotiation when opening the device fd. In this case,

 the kernel performs both ACL and standard unix permission checking.

 Filesystems that do not implement any permission checking should generally add this

 option internally.

 allow_other

 This option overrides the security measure restricting file access to the filesys?

 tem owner, so that all users (including root) can access the files.

 rootmode=M

 Specifies the file mode of the filesystem's root (in octal representation).

 blkdev Mount a filesystem backed by a block device. This is a privileged option. The de? Page 2/7

 vice must be specified with the fsname=NAME option.

 blksize=N

 Set the block size for the filesystem. This option is only valid for 'fuseblk' type

 mounts. The default is 512.

 In most cases, this option should not be specified by the filesystem owner but set

 internally by the filesystem.

 max_read=N

 With this option the maximum size of read operations can be set. The default is in?

 finite, but typically the kernel enforces its own limit in addition to this one. A

 value of zero corresponds to no limit.

 This option should not be specified by the filesystem owner. The correct (or opti?

 mum) value depends on the filesystem implementation and should thus be set by the

 filesystem internally.

 This mount option is deprecated in favor of direct negotiation over the device fd

 (as done for e.g. the maximum size of write operations). For the time being, lib?

 fuse-using filesystems that want to limit the read size must therefore use this

 mount option and set the same value again in the init() handler.

 fd=N The file descriptor to use for communication between the userspace filesystem and

 the kernel. The file descriptor must have been obtained by opening the FUSE device

 (/dev/fuse).

 This option should not be specified by the filesystem owner. It is set by libfuse

 (or, if libfuse is not used, must be set by the filesystem itself).

 user_id=N

 group_id=N Specifies the numeric uid/gid of the mount owner.

 This option should not be specified by the filesystem owner. It is set by libfuse

 (or, if libfuse is not used, must be set by the filesystem itself).

 fsname=NAME

 Sets the filesystem source (first field in /etc/mtab). The default is the name of

 the filesystem process.

 subtype=TYPE

 Sets the filesystem type (third field in /etc/mtab). The default is the name of the

 filesystem process. If the kernel supports it, /etc/mtab and /proc/mounts will show

 the filesystem type as fuse.TYPE Page 3/7

 If the kernel doesn't support subtypes, the source field will be TYPE#NAME, or if

 fsname option is not specified, just TYPE.

 libfuse-specific mount options:

 These following options are not actually passed to the kernel but interpreted by libfuse.

 They can be specified for all filesystems that use libfuse:

 allow_root

 This option is similar to allow_other but file access is limited to the filesystem

 owner and root. This option and allow_other are mutually exclusive.

 auto_unmount

 This option enables automatic release of the mountpoint if filesystem terminates

 for any reason. Normally the filesystem is responsible for releasing the mount?

 point, which means that the mountpoint becomes inaccessible if the filesystem ter?

 minates without first unmounting.

 At the moment, this option implies that the filesystem will also be mounted with

 nodev and nosuid (even when mounted by root). This restriction may be lifted in the

 future.

 High-level mount options:

 These following options are not actually passed to the kernel but interpreted by libfuse.

 They can only be specified for filesystems that use the high-level libfuse API:

 kernel_cache

 This option disables flushing the cache of the file contents on every open(2).

 This should only be enabled on filesystems, where the file data is never changed

 externally (not through the mounted FUSE filesystem). Thus it is not suitable for

 network filesystems and other "intermediate" filesystems.

 NOTE: if this option is not specified (and neither direct_io) data is still cached

 after the open(2), so a read(2) system call will not always initiate a read opera?

 tion.

 auto_cache

 This option is an alternative to kernel_cache. Instead of unconditionally keeping

 cached data, the cached data is invalidated on open(2) if the modification time or

 the size of the file has changed since it was last opened.

 umask=M

 Override the permission bits in st_mode set by the filesystem. The resulting per? Page 4/7

 mission bits are the ones missing from the given umask value. The value is given

 in octal representation.

 uid=N Override the st_uid field set by the filesystem (N is numeric).

 gid=N Override the st_gid field set by the filesystem (N is numeric).

 entry_timeout=T

 The timeout in seconds for which name lookups will be cached. The default is 1.0

 second. For all the timeout options, it is possible to give fractions of a second

 as well (e.g. entry_timeout=2.8)

 negative_timeout=T

 The timeout in seconds for which a negative lookup will be cached. This means, that

 if file did not exist (lookup returned ENOENT), the lookup will only be redone af?

 ter the timeout, and the file/directory will be assumed to not exist until then.

 The default is 0.0 second, meaning that caching negative lookups are disabled.

 attr_timeout=T

 The timeout in seconds for which file/directory attributes are cached. The default

 is 1.0 second.

 ac_attr_timeout=T

 The timeout in seconds for which file attributes are cached for the purpose of

 checking if auto_cache should flush the file data on open. The default is the

 value of attr_timeout

 noforget

 remember=T

 Normally, libfuse assigns inodes to paths only for as long as the kernel is aware

 of them. With this option inodes are instead assigned for at least T seconds (or,

 in the case of noforget, the life-time of the filesystem). This will require more

 memory, but may be necessary when using applications that make use of inode num?

 bers.

 modules=M1[:M2...]

 Add modules to the filesystem stack. Modules are pushed in the order they are

 specified, with the original filesystem being on the bottom of the stack.

 mount.fuse3 options:

 These options are interpreted by mount.fuse3 and are thus only available when mounting a

 file system via mount.fuse3 (such as when mounting via the generic mount(1) command or Page 5/7

 /etc/fstab). Supported options are:

 setuid=USER

 Switch to USER and its primary group before launching the FUSE file system process.

 mount.fuse3 must be run as root or with CAP_SETUID and CAP_SETGID for this to work.

 drop_privileges

 Perform setup of the FUSE file descriptor and mounting the file system before

 launching the FUSE file system process. mount.fuse3 requires privilege to do so,

 i.e. must be run as root or at least with CAP_SYS_ADMIN and CAP_SETPCAP. It will

 launch the file system process fully unprivileged, i.e. without capabilities(7) and

 prctl(2) flags set up such that privileges can't be reacquired (e.g. via setuid or

 fscaps binaries). This reduces risk in the event of the FUSE file system process

 getting compromised by malicious file system data.

FUSE MODULES (STACKING)

 Modules are filesystem stacking support to high level API. Filesystem modules can be built

 into libfuse or loaded from shared object

 iconv

 Perform file name character set conversion. Options are:

 from_code=CHARSET

 Character set to convert from (see iconv -l for a list of possible values). Default

 is UTF-8.

 to_code=CHARSET

 Character set to convert to. Default is determined by the current locale.

 subdir

 Prepend a given directory to each path. Options are:

 subdir=DIR

 Directory to prepend to all paths. This option is mandatory.

 rellinks

 Transform absolute symlinks into relative

 norellinks

 Do not transform absolute symlinks into relative. This is the default.

SECURITY

 The fusermount3 program is installed set-user-gid to fuse. This is done to allow users

 from fuse group to mount their own filesystem implementations. There must however be some Page 6/7

 limitations, in order to prevent Bad User from doing nasty things. Currently those limi?

 tations are:

 1. The user can only mount on a mountpoint, for which it has write permission

 2. The mountpoint is not a sticky directory which isn't owned by the user (like /tmp

 usually is)

 3. No other user (including root) can access the contents of the mounted filesystem.

NOTE

 FUSE filesystems are unmounted using the fusermount3(1) command (fusermount3 -u mount?

 point).

AUTHORS

 FUSE is currently maintained by Nikolaus Rath <Nikolaus@rath.org>

 The original author of FUSE is Miklos Szeredi <mszeredi@inf.bme.hu>.

 This man page was originally written by Bastien Roucaries <roucaries.bastien+de?

 bian@gmail.com> for the Debian GNU/Linux distribution.

SEE ALSO

 fusermount3(1) fusermount(1) mount(8) fuse(4)

 fuse(8)

Page 7/7

