
Rocky Enterprise Linux 9.2 Manual Pages on command 'mq_overview.7'

$ man mq_overview.7

MQ_OVERVIEW(7) Linux Programmer's Manual MQ_OVERVIEW(7)

NAME

 mq_overview - overview of POSIX message queues

DESCRIPTION

 POSIX message queues allow processes to exchange data in the form of messages. This API

 is distinct from that provided by System V message queues (msgget(2), msgsnd(2), ms?

 grcv(2), etc.), but provides similar functionality.

 Message queues are created and opened using mq_open(3); this function returns a message

 queue descriptor (mqd_t), which is used to refer to the open message queue in later calls.

 Each message queue is identified by a name of the form /somename; that is, a null-termi?

 nated string of up to NAME_MAX (i.e., 255) characters consisting of an initial slash, fol?

 lowed by one or more characters, none of which are slashes. Two processes can operate on

 the same queue by passing the same name to mq_open(3).

 Messages are transferred to and from a queue using mq_send(3) and mq_receive(3). When a

 process has finished using the queue, it closes it using mq_close(3), and when the queue

 is no longer required, it can be deleted using mq_unlink(3). Queue attributes can be re?

 trieved and (in some cases) modified using mq_getattr(3) and mq_setattr(3). A process can

 request asynchronous notification of the arrival of a message on a previously empty queue

 using mq_notify(3).

 A message queue descriptor is a reference to an open message queue description (see

 open(2)). After a fork(2), a child inherits copies of its parent's message queue descrip?

 tors, and these descriptors refer to the same open message queue descriptions as the cor?

 responding message queue descriptors in the parent. Corresponding message queue descrip? Page 1/6

 tors in the two processes share the flags (mq_flags) that are associated with the open

 message queue description.

 Each message has an associated priority, and messages are always delivered to the receiv?

 ing process highest priority first. Message priorities range from 0 (low) to

 sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On Linux, sysconf(_SC_MQ_PRIO_MAX) returns 32768,

 but POSIX.1 requires only that an implementation support at least priorities in the range

 0 to 31; some implementations provide only this range.

 The remainder of this section describes some specific details of the Linux implementation

 of POSIX message queues.

 Library interfaces and system calls

 In most cases the mq_*() library interfaces listed above are implemented on top of under?

 lying system calls of the same name. Deviations from this scheme are indicated in the

 following table:

 Library interface System call

 mq_close(3) close(2)

 mq_getattr(3) mq_getsetattr(2)

 mq_notify(3) mq_notify(2)

 mq_open(3) mq_open(2)

 mq_receive(3) mq_timedreceive(2)

 mq_send(3) mq_timedsend(2)

 mq_setattr(3) mq_getsetattr(2)

 mq_timedreceive(3) mq_timedreceive(2)

 mq_timedsend(3) mq_timedsend(2)

 mq_unlink(3) mq_unlink(2)

 Versions

 POSIX message queues have been supported on Linux since kernel 2.6.6. Glibc support has

 been provided since version 2.3.4.

 Kernel configuration

 Support for POSIX message queues is configurable via the CONFIG_POSIX_MQUEUE kernel con?

 figuration option. This option is enabled by default.

 Persistence

 POSIX message queues have kernel persistence: if not removed by mq_unlink(3), a message

 queue will exist until the system is shut down. Page 2/6

 Linking

 Programs using the POSIX message queue API must be compiled with cc -lrt to link against

 the real-time library, librt.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel memory consumed by

 POSIX message queues and to set the default attributes for new message queues:

 /proc/sys/fs/mqueue/msg_default (since Linux 3.5)

 This file defines the value used for a new queue's mq_maxmsg setting when the queue

 is created with a call to mq_open(3) where attr is specified as NULL. The default

 value for this file is 10. The minimum and maximum are as for

 /proc/sys/fs/mqueue/msg_max. A new queue's default mq_maxmsg value will be the

 smaller of msg_default and msg_max. Up until Linux 2.6.28, the default mq_maxmsg

 was 10; from Linux 2.6.28 to Linux 3.4, the default was the value defined for the

 msg_max limit.

 /proc/sys/fs/mqueue/msg_max

 This file can be used to view and change the ceiling value for the maximum number

 of messages in a queue. This value acts as a ceiling on the attr->mq_maxmsg argu?

 ment given to mq_open(3). The default value for msg_max is 10. The minimum value

 is 1 (10 in kernels before 2.6.28). The upper limit is HARD_MSGMAX. The msg_max

 limit is ignored for privileged processes (CAP_SYS_RESOURCE), but the HARD_MSGMAX

 ceiling is nevertheless imposed.

 The definition of HARD_MSGMAX has changed across kernel versions:

 * Up to Linux 2.6.32: 131072 / sizeof(void *)

 * Linux 2.6.33 to 3.4: (32768 * sizeof(void *) / 4)

 * Since Linux 3.5: 65,536

 /proc/sys/fs/mqueue/msgsize_default (since Linux 3.5)

 This file defines the value used for a new queue's mq_msgsize setting when the

 queue is created with a call to mq_open(3) where attr is specified as NULL. The

 default value for this file is 8192 (bytes). The minimum and maximum are as for

 /proc/sys/fs/mqueue/msgsize_max. If msgsize_default exceeds msgsize_max, a new

 queue's default mq_msgsize value is capped to the msgsize_max limit. Up until

 Linux 2.6.28, the default mq_msgsize was 8192; from Linux 2.6.28 to Linux 3.4, the

 default was the value defined for the msgsize_max limit. Page 3/6

 /proc/sys/fs/mqueue/msgsize_max

 This file can be used to view and change the ceiling on the maximum message size.

 This value acts as a ceiling on the attr->mq_msgsize argument given to mq_open(3).

 The default value for msgsize_max is 8192 bytes. The minimum value is 128 (8192 in

 kernels before 2.6.28). The upper limit for msgsize_max has varied across kernel

 versions:

 * Before Linux 2.6.28, the upper limit is INT_MAX.

 * From Linux 2.6.28 to 3.4, the limit is 1,048,576.

 * Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).

 The msgsize_max limit is ignored for privileged process (CAP_SYS_RESOURCE), but,

 since Linux 3.5, the HARD_MSGSIZEMAX ceiling is enforced for privileged processes.

 /proc/sys/fs/mqueue/queues_max

 This file can be used to view and change the system-wide limit on the number of

 message queues that can be created. The default value for queues_max is 256. No

 ceiling is imposed on the queues_max limit; privileged processes (CAP_SYS_RESOURCE)

 can exceed the limit (but see BUGS).

 Resource limit

 The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount of space that can

 be consumed by all of the message queues belonging to a process's real user ID, is de?

 scribed in getrlimit(2).

 Mounting the message queue filesystem

 On Linux, message queues are created in a virtual filesystem. (Other implementations may

 also provide such a feature, but the details are likely to differ.) This filesystem can

 be mounted (by the superuser) using the following commands:

 # mkdir /dev/mqueue

 # mount -t mqueue none /dev/mqueue

 The sticky bit is automatically enabled on the mount directory.

 After the filesystem has been mounted, the message queues on the system can be viewed and

 manipulated using the commands usually used for files (e.g., ls(1) and rm(1)).

 The contents of each file in the directory consist of a single line containing information

 about the queue:

 $ cat /dev/mqueue/mymq

 QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260 Page 4/6

 These fields are as follows:

 QSIZE Number of bytes of data in all messages in the queue (but see BUGS).

 NOTIFY_PID

 If this is nonzero, then the process with this PID has used mq_notify(3) to regis?

 ter for asynchronous message notification, and the remaining fields describe how

 notification occurs.

 NOTIFY Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2 is SIGEV_THREAD.

 SIGNO Signal number to be used for SIGEV_SIGNAL.

 Linux implementation of message queue descriptors

 On Linux, a message queue descriptor is actually a file descriptor. (POSIX does not re?

 quire such an implementation.) This means that a message queue descriptor can be moni?

 tored using select(2), poll(2), or epoll(7). This is not portable.

 The close-on-exec flag (see open(2)) is automatically set on the file descriptor returned

 by mq_open(2).

 IPC namespaces

 For a discussion of the interaction of POSIX message queue objects and IPC namespaces, see

 ipc_namespaces(7).

NOTES

 System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an older API for ex?

 changing messages between processes. POSIX message queues provide a better designed in?

 terface than System V message queues; on the other hand POSIX message queues are less

 widely available (especially on older systems) than System V message queues.

 Linux does not currently (2.6.26) support the use of access control lists (ACLs) for POSIX

 message queues.

BUGS

 In Linux versions 3.5 to 3.14, the kernel imposed a ceiling of 1024 (HARD_QUEUESMAX) on

 the value to which the queues_max limit could be raised, and the ceiling was enforced even

 for privileged processes. This ceiling value was removed in Linux 3.14, and patches to

 stable kernels 3.5.x to 3.13.x also removed the ceiling.

 As originally implemented (and documented), the QSIZE field displayed the total number of

 (user-supplied) bytes in all messages in the message queue. Some changes in Linux 3.5 in?

 advertently changed the behavior, so that this field also included a count of kernel over?

 head bytes used to store the messages in the queue. This behavioral regression was recti? Page 5/6

 fied in Linux 4.2 (and earlier stable kernel series), so that the count once more included

 just the bytes of user data in messages in the queue.

EXAMPLES

 An example of the use of various message queue functions is shown in mq_notify(3).

SEE ALSO

 getrlimit(2), mq_getsetattr(2), poll(2), select(2), mq_close(3), mq_getattr(3), mq_no?

 tify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), epoll(7), namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MQ_OVERVIEW(7)

Page 6/6

