
Rocky Enterprise Linux 9.2 Manual Pages on command 'msgrcv.2'

$ man msgrcv.2

MSGOP(2) Linux Programmer's Manual MSGOP(2)

NAME

 msgrcv, msgsnd - System V message queue operations

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/msg.h>

 int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

 ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

 int msgflg);

DESCRIPTION

 The msgsnd() and msgrcv() system calls are used to send messages to, and receive messages

 from, a System V message queue. The calling process must have write permission on the

 message queue in order to send a message, and read permission to receive a message.

 The msgp argument is a pointer to a caller-defined structure of the following general

 form:

 struct msgbuf {

 long mtype; /* message type, must be > 0 */

 char mtext[1]; /* message data */

 };

 The mtext field is an array (or other structure) whose size is specified by msgsz, a non?

 negative integer value. Messages of zero length (i.e., no mtext field) are permitted.

 The mtype field must have a strictly positive integer value. This value can be used by Page 1/9

 the receiving process for message selection (see the description of msgrcv() below).

 msgsnd()

 The msgsnd() system call appends a copy of the message pointed to by msgp to the message

 queue whose identifier is specified by msqid.

 If sufficient space is available in the queue, msgsnd() succeeds immediately. The queue

 capacity is governed by the msg_qbytes field in the associated data structure for the mes?

 sage queue. During queue creation this field is initialized to MSGMNB bytes, but this

 limit can be modified using msgctl(2). A message queue is considered to be full if either

 of the following conditions is true:

 ? Adding a new message to the queue would cause the total number of bytes in the queue to

 exceed the queue's maximum size (the msg_qbytes field).

 ? Adding another message to the queue would cause the total number of messages in the

 queue to exceed the queue's maximum size (the msg_qbytes field). This check is neces?

 sary to prevent an unlimited number of zero-length messages being placed on the queue.

 Although such messages contain no data, they nevertheless consume (locked) kernel mem?

 ory.

 If insufficient space is available in the queue, then the default behavior of msgsnd() is

 to block until space becomes available. If IPC_NOWAIT is specified in msgflg, then the

 call instead fails with the error EAGAIN.

 A blocked msgsnd() call may also fail if:

 ? the queue is removed, in which case the system call fails with errno set to EIDRM; or

 ? a signal is caught, in which case the system call fails with errno set to EINTR;see sig?

 nal(7). (msgsnd() is never automatically restarted after being interrupted by a signal

 handler, regardless of the setting of the SA_RESTART flag when establishing a signal

 handler.)

 Upon successful completion the message queue data structure is updated as follows:

 ? msg_lspid is set to the process ID of the calling process.

 ? msg_qnum is incremented by 1.

 ? msg_stime is set to the current time.

 msgrcv()

 The msgrcv() system call removes a message from the queue specified by msqid and places it

 in the buffer pointed to by msgp.

 The argument msgsz specifies the maximum size in bytes for the member mtext of the struc? Page 2/9

 ture pointed to by the msgp argument. If the message text has length greater than msgsz,

 then the behavior depends on whether MSG_NOERROR is specified in msgflg. If MSG_NOERROR

 is specified, then the message text will be truncated (and the truncated part will be

 lost); if MSG_NOERROR is not specified, then the message isn't removed from the queue and

 the system call fails returning -1 with errno set to E2BIG.

 Unless MSG_COPY is specified in msgflg (see below), the msgtyp argument specifies the type

 of message requested, as follows:

 ? If msgtyp is 0, then the first message in the queue is read.

 ? If msgtyp is greater than 0, then the first message in the queue of type msgtyp is read,

 unless MSG_EXCEPT was specified in msgflg, in which case the first message in the queue

 of type not equal to msgtyp will be read.

 ? If msgtyp is less than 0, then the first message in the queue with the lowest type less

 than or equal to the absolute value of msgtyp will be read.

 The msgflg argument is a bit mask constructed by ORing together zero or more of the fol?

 lowing flags:

 IPC_NOWAIT

 Return immediately if no message of the requested type is in the queue. The system

 call fails with errno set to ENOMSG.

 MSG_COPY (since Linux 3.8)

 Nondestructively fetch a copy of the message at the ordinal position in the queue

 specified by msgtyp (messages are considered to be numbered starting at 0).

 This flag must be specified in conjunction with IPC_NOWAIT, with the result that,

 if there is no message available at the given position, the call fails immediately

 with the error ENOMSG. Because they alter the meaning of msgtyp in orthogonal

 ways, MSG_COPY and MSG_EXCEPT may not both be specified in msgflg.

 The MSG_COPY flag was added for the implementation of the kernel checkpoint-restore

 facility and is available only if the kernel was built with the CONFIG_CHECK?

 POINT_RESTORE option.

 MSG_EXCEPT

 Used with msgtyp greater than 0 to read the first message in the queue with message

 type that differs from msgtyp.

 MSG_NOERROR

 To truncate the message text if longer than msgsz bytes. Page 3/9

 If no message of the requested type is available and IPC_NOWAIT isn't specified in msgflg,

 the calling process is blocked until one of the following conditions occurs:

 ? A message of the desired type is placed in the queue.

 ? The message queue is removed from the system. In this case, the system call fails with

 errno set to EIDRM.

 ? The calling process catches a signal. In this case, the system call fails with errno

 set to EINTR. (msgrcv() is never automatically restarted after being interrupted by a

 signal handler, regardless of the setting of the SA_RESTART flag when establishing a

 signal handler.)

 Upon successful completion the message queue data structure is updated as follows:

 msg_lrpid is set to the process ID of the calling process.

 msg_qnum is decremented by 1.

 msg_rtime is set to the current time.

RETURN VALUE

 On failure both functions return -1 with errno indicating the error, otherwise msgsnd()

 returns 0 and msgrcv() returns the number of bytes actually copied into the mtext array.

ERRORS

 When msgsnd() fails, errno will be set to one among the following values:

 EACCES The calling process does not have write permission on the message queue, and does

 not have the CAP_IPC_OWNER capability in the user namespace that governs its IPC

 namespace.

 EAGAIN The message can't be sent due to the msg_qbytes limit for the queue and IPC_NOWAIT

 was specified in msgflg.

 EFAULT The address pointed to by msgp isn't accessible.

 EIDRM The message queue was removed.

 EINTR Sleeping on a full message queue condition, the process caught a signal.

 EINVAL Invalid msqid value, or nonpositive mtype value, or invalid msgsz value (less than

 0 or greater than the system value MSGMAX).

 ENOMEM The system does not have enough memory to make a copy of the message pointed to by

 msgp.

 When msgrcv() fails, errno will be set to one among the following values:

 E2BIG The message text length is greater than msgsz and MSG_NOERROR isn't specified in

 msgflg. Page 4/9

 EACCES The calling process does not have read permission on the message queue, and does

 not have the CAP_IPC_OWNER capability in the user namespace that governs its IPC

 namespace.

 EFAULT The address pointed to by msgp isn't accessible.

 EIDRM While the process was sleeping to receive a message, the message queue was removed.

 EINTR While the process was sleeping to receive a message, the process caught a signal;

 see signal(7).

 EINVAL msqid was invalid, or msgsz was less than 0.

 EINVAL (since Linux 3.14)

 msgflg specified MSG_COPY, but not IPC_NOWAIT.

 EINVAL (since Linux 3.14)

 msgflg specified both MSG_COPY and MSG_EXCEPT.

 ENOMSG IPC_NOWAIT was specified in msgflg and no message of the requested type existed on

 the message queue.

 ENOMSG IPC_NOWAIT and MSG_COPY were specified in msgflg and the queue contains less than

 msgtyp messages.

 ENOSYS (since Linux 3.8)

 Both MSG_COPY and IPC_NOWAIT were specified in msgflg, and this kernel was config?

 ured without CONFIG_CHECKPOINT_RESTORE.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

 The MSG_EXCEPT and MSG_COPY flags are Linux-specific; their definitions can be obtained by

 defining the _GNU_SOURCE feature test macro.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux or by any version

 of POSIX. However, some old implementations required the inclusion of these header files,

 and the SVID also documented their inclusion. Applications intended to be portable to

 such old systems may need to include these header files.

 The msgp argument is declared as struct msgbuf * in glibc 2.0 and 2.1. It is declared as

 void * in glibc 2.2 and later, as required by SUSv2 and SUSv3.

 The following limits on message queue resources affect the msgsnd() call:

 MSGMAX Maximum size of a message text, in bytes (default value: 8192 bytes). On Linux,

 this limit can be read and modified via /proc/sys/kernel/msgmax. Page 5/9

 MSGMNB Maximum number of bytes that can be held in a message queue (default value: 16384

 bytes). On Linux, this limit can be read and modified via /proc/sys/kernel/msgmnb.

 A privileged process (Linux: a process with the CAP_SYS_RESOURCE capability) can

 increase the size of a message queue beyond MSGMNB using the msgctl(2) IPC_SET op?

 eration.

 The implementation has no intrinsic system-wide limits on the number of message headers

 (MSGTQL) and the number of bytes in the message pool (MSGPOOL).

BUGS

 In Linux 3.13 and earlier, if msgrcv() was called with the MSG_COPY flag, but without

 IPC_NOWAIT, and the message queue contained less than msgtyp messages, then the call would

 block until the next message is written to the queue. At that point, the call would re?

 turn a copy of the message, regardless of whether that message was at the ordinal position

 msgtyp. This bug is fixed in Linux 3.14.

 Specifying both MSG_COPY and MSC_EXCEPT in msgflg is a logical error (since these flags

 impose different interpretations on msgtyp). In Linux 3.13 and earlier, this error was

 not diagnosed by msgrcv(). This bug is fixed in Linux 3.14.

EXAMPLES

 The program below demonstrates the use of msgsnd() and msgrcv().

 The example program is first run with the -s option to send a message and then run again

 with the -r option to receive a message.

 The following shell session shows a sample run of the program:

 $./a.out -s

 sent: a message at Wed Mar 4 16:25:45 2015

 $./a.out -r

 message received: a message at Wed Mar 4 16:25:45 2015

 Program source

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <time.h>

 #include <unistd.h>

 #include <errno.h>

 #include <sys/types.h> Page 6/9

 #include <sys/ipc.h>

 #include <sys/msg.h>

 struct msgbuf {

 long mtype;

 char mtext[80];

 };

 static void

 usage(char *prog_name, char *msg)

 {

 if (msg != NULL)

 fputs(msg, stderr);

 fprintf(stderr, "Usage: %s [options]\n", prog_name);

 fprintf(stderr, "Options are:\n");

 fprintf(stderr, "-s send message using msgsnd()\n");

 fprintf(stderr, "-r read message using msgrcv()\n");

 fprintf(stderr, "-t message type (default is 1)\n");

 fprintf(stderr, "-k message queue key (default is 1234)\n");

 exit(EXIT_FAILURE);

 }

 static void

 send_msg(int qid, int msgtype)

 {

 struct msgbuf msg;

 time_t t;

 msg.mtype = msgtype;

 time(&t);

 snprintf(msg.mtext, sizeof(msg.mtext), "a message at %s",

 ctime(&t));

 if (msgsnd(qid, &msg, sizeof(msg.mtext),

 IPC_NOWAIT) == -1) {

 perror("msgsnd error");

 exit(EXIT_FAILURE);

 } Page 7/9

 printf("sent: %s\n", msg.mtext);

 }

 static void

 get_msg(int qid, int msgtype)

 {

 struct msgbuf msg;

 if (msgrcv(qid, &msg, sizeof(msg.mtext), msgtype,

 MSG_NOERROR | IPC_NOWAIT) == -1) {

 if (errno != ENOMSG) {

 perror("msgrcv");

 exit(EXIT_FAILURE);

 }

 printf("No message available for msgrcv()\n");

 } else

 printf("message received: %s\n", msg.mtext);

 }

 int

 main(int argc, char *argv[])

 {

 int qid, opt;

 int mode = 0; /* 1 = send, 2 = receive */

 int msgtype = 1;

 int msgkey = 1234;

 while ((opt = getopt(argc, argv, "srt:k:")) != -1) {

 switch (opt) {

 case 's':

 mode = 1;

 break;

 case 'r':

 mode = 2;

 break;

 case 't':

 msgtype = atoi(optarg); Page 8/9

 if (msgtype <= 0)

 usage(argv[0], "-t option must be greater than 0\n");

 break;

 case 'k':

 msgkey = atoi(optarg);

 break;

 default:

 usage(argv[0], "Unrecognized option\n");

 }

 }

 if (mode == 0)

 usage(argv[0], "must use either -s or -r option\n");

 qid = msgget(msgkey, IPC_CREAT | 0666);

 if (qid == -1) {

 perror("msgget");

 exit(EXIT_FAILURE);

 }

 if (mode == 2)

 get_msg(qid, msgtype);

 else

 send_msg(qid, msgtype);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 msgctl(2), msgget(2), capabilities(7), mq_overview(7), sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MSGOP(2)

Page 9/9

