PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'mtrace.3'
$ man mtrace.3
MTRACE(3) Linux Programmer's Manual MTRACE(3)
NAME
mtrace, muntrace - malloc tracing
SYNOPSIS
#include <mcheck.h>
void mtrace(void);
void muntrace(void);
DESCRIPTION
The mtrace() function installs hook functions for the memory-allocation functions (mal?
loc(3), realloc(3) memalign(3), free(3)). These hook functions record tracing information
about memory allocation and deallocation. The tracing information can be used to discover
memory leaks and attempts to free nonallocated memory in a program.
The muntrace() function disables the hook functions installed by mtrace(), so that tracing
information is no longer recorded for the memory-allocation functions. If no hook func?
tions were successfully installed by mtrace(), muntrace() does nothing.
When mtrace() is called, it checks the value of the environment variable MALLOC_TRACE,
which should contain the pathname of a file in which the tracing information is to be
recorded. If the pathname is successfully opened, it is truncated to zero length.
If MALLOC_TRACE is not set, or the pathname it specifies is invalid or not writable, then
no hook functions are installed, and mtrace() has no effect. In set-user-ID and set-
group-ID programs, MALLOC_ TRACE is ignored, and mtrace() has no effect.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7). Page 1/3

PP ??7??7??7??7??7?77?77?7

?Interface ? Attribute ? Value ?

PP 7??7??7??7?77?77?77?7

?mtrace(), muntrace() ? Thread safety ? MT-Unsafe ?

PPV 7??7??7?7?7??7?77?77?7

CONFORMING TO
These functions are GNU extensions.
NOTES
In normal usage, mtrace() is called once at the start of execution of a program, and
muntrace() is never called.
The tracing output produced after a call to mtrace() is textual, but not designed to be
human readable. The GNU C library provides a Perl script, mtrace(1), that interprets the
trace log and produces human-readable output. For best results, the traced program should
be compiled with debugging enabled, so that line-number information is recorded in the ex?
ecutable.
The tracing performed by mtrace() incurs a performance penalty (if MALLOC_TRACE points to
a valid, writable pathname).
BUGS
The line-number information produced by mtrace(1) is not always precise: the line number
references may refer to the previous or following (nonblank) line of the source code.
EXAMPLES
The shell session below demonstrates the use of the mtrace() function and the mtrace(1)
command in a program that has memory leaks at two different locations. The demonstration
uses the following program:
$ catt_mtrace.c
#include <mcheck.h>
#include <stdlib.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
mtrace();

for (intj=0;] <2; j++) Page 2/3

malloc(100); /* Never freed--a memory leak */
calloc(16, 16); /* Never freed--a memory leak */
exit(EXIT_SUCCESS);
}
When we run the program as follows, we see that mtrace() diagnosed memory leaks at two
different locations in the program:
$cc-gt _mtrace.c -ot_mtrace
$ export MALLOC _TRACE=/tmp/t
$./t_mtrace
$ mtrace ./t_mtrace SMALLOC_TRACE
Memory not freed:
Address Size Caller
0x084c9378 0x64 at/home/cecilia/t_mtrace.c:12
0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12
0x084c9448 0x100 at/home/cecilia/t_mtrace.c:16
The first two messages about unfreed memory correspond to the two malloc(3) calls inside
the for loop. The final message corresponds to the call to calloc(3) (which in turn calls
malloc(3)).
SEE ALSO
mtrace(1), malloc(3), malloc_hook(3), mcheck(3)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 MTRACE(3)

Page 3/3

