
Rocky Enterprise Linux 9.2 Manual Pages on command 'mtrace.3'

$ man mtrace.3

MTRACE(3) Linux Programmer's Manual MTRACE(3)

NAME

 mtrace, muntrace - malloc tracing

SYNOPSIS

 #include <mcheck.h>

 void mtrace(void);

 void muntrace(void);

DESCRIPTION

 The mtrace() function installs hook functions for the memory-allocation functions (mal?

 loc(3), realloc(3) memalign(3), free(3)). These hook functions record tracing information

 about memory allocation and deallocation. The tracing information can be used to discover

 memory leaks and attempts to free nonallocated memory in a program.

 The muntrace() function disables the hook functions installed by mtrace(), so that tracing

 information is no longer recorded for the memory-allocation functions. If no hook func?

 tions were successfully installed by mtrace(), muntrace() does nothing.

 When mtrace() is called, it checks the value of the environment variable MALLOC_TRACE,

 which should contain the pathname of a file in which the tracing information is to be

 recorded. If the pathname is successfully opened, it is truncated to zero length.

 If MALLOC_TRACE is not set, or the pathname it specifies is invalid or not writable, then

 no hook functions are installed, and mtrace() has no effect. In set-user-ID and set-

 group-ID programs, MALLOC_TRACE is ignored, and mtrace() has no effect.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7). Page 1/3

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?mtrace(), muntrace() ? Thread safety ? MT-Unsafe ?

 ???

CONFORMING TO

 These functions are GNU extensions.

NOTES

 In normal usage, mtrace() is called once at the start of execution of a program, and

 muntrace() is never called.

 The tracing output produced after a call to mtrace() is textual, but not designed to be

 human readable. The GNU C library provides a Perl script, mtrace(1), that interprets the

 trace log and produces human-readable output. For best results, the traced program should

 be compiled with debugging enabled, so that line-number information is recorded in the ex?

 ecutable.

 The tracing performed by mtrace() incurs a performance penalty (if MALLOC_TRACE points to

 a valid, writable pathname).

BUGS

 The line-number information produced by mtrace(1) is not always precise: the line number

 references may refer to the previous or following (nonblank) line of the source code.

EXAMPLES

 The shell session below demonstrates the use of the mtrace() function and the mtrace(1)

 command in a program that has memory leaks at two different locations. The demonstration

 uses the following program:

 $ cat t_mtrace.c

 #include <mcheck.h>

 #include <stdlib.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 mtrace();

 for (int j = 0; j < 2; j++) Page 2/3

 malloc(100); /* Never freed--a memory leak */

 calloc(16, 16); /* Never freed--a memory leak */

 exit(EXIT_SUCCESS);

 }

 When we run the program as follows, we see that mtrace() diagnosed memory leaks at two

 different locations in the program:

 $ cc -g t_mtrace.c -o t_mtrace

 $ export MALLOC_TRACE=/tmp/t

 $./t_mtrace

 $ mtrace ./t_mtrace $MALLOC_TRACE

 Memory not freed:

 Address Size Caller

 0x084c9378 0x64 at /home/cecilia/t_mtrace.c:12

 0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12

 0x084c9448 0x100 at /home/cecilia/t_mtrace.c:16

 The first two messages about unfreed memory correspond to the two malloc(3) calls inside

 the for loop. The final message corresponds to the call to calloc(3) (which in turn calls

 malloc(3)).

SEE ALSO

 mtrace(1), malloc(3), malloc_hook(3), mcheck(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 MTRACE(3)

Page 3/3

