PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'mysql.1'
$ man mysql.1
MYSQL(1) MySQL Database System MYSQL(1)
NAME
mysq| - the MySQL command-line client
SYNOPSIS
mysq| [options] db_name
DESCRIPTION
mysq| is a simple SQL shell with input line editing capabilities. It supports interactive
and noninteractive use. When used interactively, query results are presented in an
ASClI-table format. When used noninteractively (for example, as a filter), the result is
presented in tab-separated format. The output format can be changed using command options.
If you have problems due to insufficient memory for large result sets, use the --quick
option. This forces mysq| to retrieve results from the server a row at a time rather than
retrieving the entire result set and buffering it in memory before displaying it. This is
done by returning the result set using the mysql_use_result() C API function in the
client/server library rather than mysqgl_store_result().
Note
Alternatively, MySQL Shell offers access to the X DevAPI. For details, see MySQL Shell
8.0[1].
Using mysql is very easy. Invoke it from the prompt of your command interpreter as
follows:
mysql db_name
Or:

mysql --user=user_name --password db_name

FPDF Library

Page 1/59

In this case, you'll need to enter your password in response to the prompt that mysq|
displays:

Enter password: your_password
Then type an SQL statement, end it with ;, \g, or \G and press Enter.
Typing Control+C interrupts the current statement if there is one, or cancels any partial
input line otherwise.
You can execute SQL statements in a script file (batch file) like this:

mysqgl db_name < script.sqgl > output.tab
On Unix, the mysql client logs statements executed interactively to a history file. See
the section called ?MYSQL CLIENT LOGGING?.

MYSQL CLIENT OPTIONS

mysql supports the following options, which can be specified on the command line or in the
[mysql] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, ?Using Option Files?.
? --help, -?

P07 ??7????7??????7??7?7??77?7?77

?Command-Line Format ? --help ?

P07 ??7?0??7?????77???7??77?7?77

Display a help message and exit.

? --auto-rehash

PPV ???7???7?7?7??7?7?7?7?77

?Command-Line Format ? --auto-rehash ?

PPV ??77??2?7?7?7??7?°7?7777

?Disabled by ? skip-auto-rehash ?

PPV ?7?77??2?7?77??7?7?7?7777

Enable automatic rehashing. This option is on by default, which enables database,
table, and column name completion. Use --disable-auto-rehash to disable rehashing.
That causes mysq|l to start faster, but you must issue the rehash command or its \#
shortcut if you want to use name completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous,
mysql completes it. Otherwise, you can press Tab again to see the possible names that
begin with what you have typed so far. Completion does not occur if there is no

default database. Page 2/59

Note
This feature requires a MySQL client that is compiled with the readline library.
Typically, the readline library is not available on Windows.

? --auto-vertical-output

PP ????7?????7????7??7??7?77

?Command-Line Format ? --auto-vertical-output ?

PP 7???????????7????7??7??7?77

Cause result sets to be displayed vertically if they are too wide for the current
window, and using normal tabular format otherwise. (This applies to statements
terminated by ; or \G.)

? --batch, -B

P27 ???7???7??77??277?7

?Command-Line Format ? --batch ?

P07 ???7???7??77??277?7

Print results using tab as the column separator, with each row on a new line. With

this option, mysql does not use the history file.

Batch mode results in nontabular output format and escaping of special characters.

Escaping may be disabled by using raw mode; see the description for the --raw option.
? --binary-as-hex

PP 7?7?????7?2??7?2??7??77??77?7?7?7?7??7?7?7?7?7??7?7?7

?Command-Line Format ? --binary-as-hex ?

PP ???7???7?7?????7?2??7???7??77??77?7??7?7??7?7?7?7?7??7?7?7

?Type ? Boolean ?

PPV 72?7?7?72?7?72?7??7??7??7?7??7?77

?Default Value (? 8.0.19) ? FALSE in noninteractive mode ?

PP 7?72?7?72?7??7??7???7??7?77

?Default Value (? 8.0.18) ? FALSE ?

PP 7?7?7??7??7??7?7??7?77

When this option is given, mysql displays binary data using hexadecimal notation
(Oxvalue). This occurs whether the overall output display format is tabular, vertical,
HTML, or XML.

--binary-as-hex when enabled affects display of all binary strings, including those

returned by functions such as CHAR() and UNHEX(). The following example demonstrates Page 3/59

this using the ASCII code for A (65 decimal, 41 hexadecimal):
? --binary-as-hex disabled:
mysql> SELECT CHAR(0x41), UNHEX('41";

+ + +

| CHAR(0x41) | UNHEX(41) |

+ + +
| A | A
+ + +

? --binary-as-hex enabled:

mysql> SELECT CHAR(0x41), UNHEX('41");

+ + +
| CHAR(0x41) | UNHEX('41")

+ + +
| 0x41 | 0x41

+ + +

To write a binary string expression so that it displays as a character string
regardless of whether --binary-as-hex is enabled, use these techniques:
? The CHAR() function has a USING charset clause:

mysql> SELECT CHAR(0x41 USING utf8mb4);

+ +

| CHAR(Ox41 USING utf8mb4) |

+ +
| A

+ +

? More generally, use CONVERT() to convert an expression to a given character set:

mysql> SELECT CONVERT(UNHEX('41') USING utf8mb4);

+ +

| CONVERT(UNHEX('41) USING utf8mb4) |

+ +

| A

+ +

As of MySQL 8.0.19, when mysqgl operates in interactive mode, this option is enabled by

default. In addition, output from the status (or \s) command includes this line when

Page 4/59

the option is enabled implicitly or explicitly:
Binary data as: Hexadecimal
To disable hexadecimal notation, use --skip-binary-as-hex

--binary-mode

PPV ??????7???7??7?7?7?77?7

?Command-Line Format ? --binary-mode ?

PPV ????7????7??7?7?7?77?7

This option helps when processing mysqglbinlog output that may contain BLOB values. By
default, mysql translates \r\n in statement strings to \n and interprets \0 as the

statement terminator. --binary-mode disables both features. It also disables all

mysqgl commands except charset and delimiter in noninteractive mode (for input piped to
mysql or loaded using the source command).

--bind-address=ip_address

P07 7??77?72??7??7?7???7??77??7?77?7?7?7

?Command-Line Format ? --bind-address=ip_address ?

P07 7??77?72?7?7??7?7???7??77?7?77?7?7?7

On a computer having multiple network interfaces, use this option to select which
interface to use for connecting to the MySQL server.

--character-sets-dir=dir_name

PP 7???7??7?7?27??7???7??77??7?7?7?77?7?7?7?7?77?7

?Command-Line Format ? --character-sets-dir=dir_name ?

PP 7??7?7?72??7???7??77??7?7?7?77?7?7?7?7?77?7

?Type ? Directory name ?

PPV 7?7?7?7?7?77?77?7?7

The directory where character sets are installed. See Section 10.15, ?Character Set
Configuration?.

--column-names

PP 7?7?77?7??77???7??7?7?72?7??7??7?7??7?7?7

?Command-Line Format ? --column-names ?

PPV 77???7??7??72???7??7?7??7?7?7

Write column names in results.
--column-type-info

PPV ??77?2?7?2???77?7??77??7?7?7?7?7?7?7? Page5ﬂ59

?Command-Line Format ? --column-type-info ?

P07 ???7?2???77?7?7?77??7?7?7?7?7?7?7?

Display result set metadata. This information corresponds to the contents of C API
MYSQL_FIELD data structures. See C API Basic Data Structures[2].

--comments, -c

P07 0????7????7??7?7?7?7?7?7?77?777?7

?Command-Line Format ? --comments ?

P77 ???7??7?7?7?2?7??7?7?777?7

?Type ? Boolean ?

P07 ???7??7?7?7??7?7?7?7?7?77?7

?Default Value ? FALSE ?

P07 7???7??77?7??7?7?77?777?7

Whether to strip or preserve comments in statements sent to the server. The default is
--skip-comments (strip comments), enable with --comments (preserve comments).
Note
The mysql client always passes optimizer hints to the server, regardless of
whether this option is given.
Comment stripping is deprecated. Expect this feature and the options to control it
to be removed in a future MySQL release.

--compress, -C

PPV ???7?2?7?77??72?7?7?7?7??7?777?

?Command-Line Format ? --compress[={OFF|ON}] ?

P02 ???7?2?7?77????7??7?7??7?777

?Deprecated ?8.0.18 ?

P02 ?7??7?2?7?72????7??7?7??7?777

?Type ? Boolean ?

P02 ?7??7?2?7?77???7?7?7?77?7??7?7?77

?Default Value ? OFF ?

P02 ?7??7?2?7?77??7?2?7?7??7?7??7?7?77

Compress all information sent between the client and the server if possible. See
Section 4.2.8, ?Connection Compression Control?.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future

version of MySQL. See the section called ?Configuring Legacy Connection Compression?.

Page 6/59

? --compression-algorithms=value

P02 2??7???7?7?7?7??7?7?7?777?7?7?

?Command-Line Format ? --compression-algorithms=value ?

P02 7?2??2?7?2?77???7?7?77??7?7?7?77?7?7?

?Introduced ?8.0.18 ?

P20 ???7???7?2????7?7?7?7???7?7?7?7??7?7?7?7?7?7?7

?Type ? Set ?

PPV ???7???7?2??2?7?7??7???7?7?77??7?7?7?77?7?7

?Default Value ? uncompressed ?

P27 ??7?7??77?72???77?7??7???7?7?7?7??7?7?7?77?7?7?

?Valid Values ? ?

? ? zlib ?

? ? ?

? ? zstd ?

? ? ?

? ? uncompressed ?

PPV 7??7??7??7?7?7?77?7

The permitted compression algorithms for connections to the server. The available
algorithms are the same as for the protocol_compression_algorithms system variable.
The default value is uncompressed.

For more information, see Section 4.2.8, ?Connection Compression Control?.

This option was added in MySQL 8.0.18.

? --connect-expired-password

PPV 7?7?7?7?77?77?7

?Command-Line Format ? --connect-expired-password ?

PPV 7?72?7?7?777?77?7

Indicate to the server that the client can handle sandbox mode if the account used to
connect has an expired password. This can be useful for noninteractive invocations of
mysql because normally the server disconnects noninteractive clients that attempt to
connect using an account with an expired password. (See Section 6.2.16, ?Server
Handling of Expired Passwords?.)

? --connect-timeout=value

P00 7?2?7?72??72??777?7??7?7?7?7?7277?7?77?7 Page'ﬂ59

?Command-Line Format ? --connect-timeout=value ?

P07 7???7?7???2??72??7??7?7?7?7?7??277?777?7

?Type ? Numeric ?

PP ???7???7?72?????72?7?7??7?7?7?7?7??277?7?77?7

?Default Value ?0 ?

PP ???7???7?72?????77?7?7??7?7?7?77??277?7?77?7

The number of seconds before connection timeout. (Default value is 0.)

--database=db_name, -D db_name

QP70 ?????7??7??7??7??7??7??7?7?77?7?7

?Command-Line Format ? --database=dbname ?

QP07 ?????7??7??7??7??7??7?7?7?7?77?7?7

?Type ? String ?

PPV ?????7??7??7??7??7??7?7?7?777?7?7

The database to use. This is useful primarily in an option file.
--debug[=debug_options], -# [debug_options]

P07 ???7???7?7???7??7???7?7???7?7?7?7??277?777?7

?Command-Line Format ? --debug[=debug_options] ?

P07 7??7?7?7???2??7??7?7???7?7?7?7?7?77?7277?7

?Type ? String ?

P00 ???7??7?7?7???7???7??7?7??7?7?7?77?7?77?7?77?7

?Default Value ? d:t:o,/tmp/mysql.trace ?

P07 ???7??7?7?7???7???72?7?7???7?7?77??77?7?77?7

Write a debugging log. A typical debug_options string is d:t:0,file_name. The default
is d:t:o,/tmp/mysq|.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release
binaries provided by Oracle are not built using this option.

--debug-check

PPV 2???????????7?7?77?77?7

?Command-Line Format ? --debug-check ?

PPV 72?????????????77?77?7

?Type ? Boolean ?

PPV 72?????????????77?77?7

?Default Value ? FALSE ?

Page 8/59

PPV ??????7???7??7??7?77?7

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release
binaries provided by Oracle are not built using this option.

--debug-info, -T

P27 ??2??7???7???7??7?7?7?7?7?7?7?7

?Command-Line Format ? --debug-info ?

PPP0???77?0?7?2???????7???7???7??7?7?7?7?7?7?77

?Type ? Boolean ?

P07 7??????72??7?7??7???7??7?7?7?77?7?77

?Default Value ? FALSE ?

P07 7??77??7?7?7?77?7?77

Print debugging information and memory and CPU usage statistics when the program
exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release
binaries provided by Oracle are not built using this option.

--default-auth=plugin

P27 7???7???7?72?7??7?7?7?77?7??7?7?777

?Command-Line Format ? --default-auth=plugin ?

P00 7???7??77?7????7?7?7?7?7?7??7?7?77

?Type ? String ?

P07 7??7?7??77?7???7?7?7?7??7?7??7?7?77

A hint about which client-side authentication plugin to use. See Section 6.2.17,
?Pluggable Authentication?.

--default-character-set=charset_name

PP 7?7?7?777?77?7

?Command-Line Format ? --default-character- ?

? ? set=charset_name ?

PPV 7?7??7?7??7?72??7??7?7??7?7??27?7?7

?Type ? String ?

P00 ??77?2??7??7??2?7?72??7??7?7??7?7??7?7?7

Use charset_name as the default character set for the client and connection.

This option can be useful if the operating system uses one character set and the mysq|l

Page 9/59

client by default uses another. In this case, output may be formatted incorrectly. You

can usually fix such issues by using this option to force the client to use the system

character set instead.

For more information, see Section 10.4, ?Connection Character Sets and Collations?,

and Section 10.15, ?Character Set Configuration?.

--defaults-extra-file=file_name

PPV 7?7?7?7?7??7??7?7?7?7?7?7

?Command-Line Format ? --defaults-extra-file=file_name ?

PPV 7??7??7??7?7?7?7?7?7?7?7

?Type ? File name ?

PPV 7??7??7?7?7?7?7?7?7?7?7?7

Read this option file after the global option file but (on Unix) before the user
option file. If the file does not exist or is otherwise inaccessible, an error occurs.
If file_name is not an absolute path name, it is interpreted relative to the current
directory.

For additional information about this and other option-file options, see

Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--defaults-file=file_name

PPV 7?7???2?7?72??7??????7??7?7?7?7?7?7?7?7

?Command-Line Format ? --defaults-file=file_name ?

P02 ?7???2?7?72??7??????7???7?7?7?7?7?7?7

?Type ? File name ?

PPV ???7??7?7?7?7?7?7?7

Use only the given option file. If the file does not exist or is otherwise
inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see
Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--defaults-group-suffix=str

PPV ???7?2?7?70??2??2?77??7?7?77??7?77?7?27?7?7??7?77?77

?Command-Line Format ? --defaults-group-suffix=str ?

PPV ???7?2?7?0??2??77?77?2?7?7?72??7??7?7?277?7??7?77?77

Page 10/59

?Type ? String ?

PPV 7?2?7?70??2??7?77?77?2??7?72??7?77?7?77?7??7?7?7

Read not only the usual option groups, but also groups with the usual names and a
suffix of str. For example, mysqgl normally reads the [client] and [mysql] groups. If
this option is given as --defaults-group-suffix=_other, mysql also reads the
[client_other] and [mysql_other] groups.

For additional information about this and other option-file options, see

Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--delimiter=str

P07 ??7?0????????7???7?7????7?7?7?7?7?7??7?7?7?7

?Command-Line Format ? --delimiter=str ?

P07 7?7?77??7?7?7??7?7??7?7?777

?Type ? String ?

P07 ???7??77?7??7?7?7?7?7?7?7?7??7?7?777

?Default Value ?: ?

PP ???7???7?7??7??7?7?7?7?7?7??7?7?77?7

Set the statement delimiter. The default is the semicolon character (;).

--disable-named-commands Disable named commands. Use the * form only, or use named

commands only at the beginning of a line ending with a semicolon (;). mysql starts
with this option enabled by default. However, even with this option, long-format
commands still work from the first line. See the section called ?MYSQL CLIENT
COMMANDS?.

--dns-srv-name=name

QP77 77??00?7??7??0???7???????7??7?77?7

?Command-Line Format ? --dns-srv-name=name ?

PP 0?2?7??7??7????7??7?????7??7?77?7

?Introduced ?8.0.22 ?

PP 0?2?7??7??????7??7?????7??7?77?7

?Type ? String ?

PP 0??7????2???7??7?????7?77?77?7

Specifies the name of a DNS SRV record that determines the candidate hosts to use for
establishing a connection to a MySQL server. For information about DNS SRV support in

MySQL, see Section 4.2.6, ?Connecting to the Server Using DNS SRV Records?.

Page 11/59

Suppose that DNS is configured with this SRV information for the example.com domain:
Name TTL Class Priority Weight Port Target
_mysql._tcp.example.com. 86400 IN SRV 0 5 3306 hostl.example.com
_mysql._tcp.example.com. 86400 IN SRV 0 10 3306 host2.example.com
_mysql._tcp.example.com. 86400 IN SRV 10 5 3306 host3.example.com
_mysql._tcp.example.com. 86400 IN SRV 20 5 3306 host4.example.com

To use that DNS SRV record, invoke mysq|l like this:
mysql --dns-srv-name=_mysql._tcp.example.com

mysql then attempts a connection to each server in the group until a successful

connection is established. A failure to connect occurs only if a connection cannot be

established to any of the servers. The priority and weight values in the DNS SRV

record determine the order in which servers should be tried.

When invoked with --dns-srv-name, mysqgl attempts to establish TCP connections only.

The --dns-srv-name option takes precedence over the --host option if both are given.

--dns-srv-name causes connection establishment to use the mysqgl_real_connect_dns_srv()

C API function rather than mysql_real_connect(). However, if the connect command is

subsequently used at runtime and specifies a host name argument, that host name takes

precedence over any --dns-srv-name option given at mysql startup to specify a DNS SRV
record.

This option was added in MySQL 8.0.22.

--enable-cleartext-plugin

P07 7???7???7?72??72?7?7???7??7?7?7?77?7?7?7

?Command-Line Format ? --enable-cleartext-plugin ?

PPV 7?7?7?7??77?77?77?7?7

?Type ? Boolean ?

PPV 7?7?7?7??77?77?77?7?7?

?Default Value ? FALSE ?

PPV 7?7?7?7??7?77?77?7?7

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.4,
?Client-Side Cleartext Pluggable Authentication?.)

--execute=statement, -e statement

PP 0??7????2???7??7?????7?77?77?7

?Command-Line Format ? --execute=statement ? Page 12/59

PP 0???????????????7??7?77?77?77

?Type ? String ?

QP07 7??7?????????????7??7??7??7?7

Execute the statement and quit. The default output format is like that produced with
--batch. See Section 4.2.2.1, ?Using Options on the Command Line?, for some examples.
With this option, mysql does not use the history file.

--fido-register-factor=value

PP 7???7?7???7??7?2??7???7?7?77??7?7?7?7?7?7?7?7?7?777

?Command-Line Format ? --fido-register-factor=value ?

PP 7???7?7?????7?2??7???7?7?77??7?7?7?7?7?7?7?7?777

?Introduced ?8.0.27 ?

PP ???7?2??7?2??7?7?77??77?7?7?7?7?77?777

?Deprecated ?8.0.35 ?

PP 7???7?7?7???7?7??7???7??77??77?7?7?7?7?7?7?777

?Type ? String ?

P00 7???7?7???7??7?2??7???7?7?77??7?7?7?7?7?7?7?7?777

Note

As of MySQL 8.0.35, this option is deprecated and subject to removal in a future

MySQL release.
The factor or factors for which FIDO device registration must be performed. This
option value must be a single value, or two values separated by commas. Each value
must be 2 or 3, so the permitted option values are '2', '3', '2,3" and '3,2".
For example, an account that requires registration for a 3rd authentication factor
invokes the mysq| client as follows:

mysql --user=user_name --fido-register-factor=3
An account that requires registration for a 2nd and 3rd authentication factor invokes
the mysql client as follows:

mysql --user=user_name --fido-register-factor=2,3
If registration is successful, a connection is established. If there is an
authentication factor with a pending registration, a connection is placed into pending
registration mode when attempting to connect to the server. In this case, disconnect
and reconnect with the correct --fido-register-factor value to complete the

registration. Page 13/59

Registration is a two step process comprising initiate registration and finish
registration steps. The initiate registration step executes this statement:

ALTER USER user factor INITIATE REGISTRATION
The statement returns a result set containing a 32 byte challenge, the user name, and
the relying party ID (see authentication_fido_rp_id).

The finish registration step executes this statement:

ALTER USER user factor FINISH REGISTRATION SET CHALLENGE_RESPONSE AS "auth_string'

The statement completes the registration and sends the following information to the
server as part of the auth_string: authenticator data, an optional attestation
certificate in X.509 format, and a signature.

The initiate and registration steps must be performed in a single connection, as the
challenge received by the client during the initiate step is saved to the client
connection handler. Registration would fall if the registration step was performed by
a different connection. The --fido-register-factor option executes both the initiate
and registration steps, which avoids the failure scenario described above and prevents
having to execute the ALTER USER initiate and registration statements manually.
The --fido-register-factor option is only available for the mysql client and MySQL
Shell. Other MySQL client programs do not support it.

For related information, see the section called ?Using FIDO Authentication?.

--force, -f

PPV 2?????7???7?7?7?7??7?7?7

?Command-Line Format ? --force ?

PPV ??????7???7?7?7?7??7?7?7

Continue even if an SQL error occurs.
--get-server-public-key

PP 7?7?7?7?7?77?77?777?

?Command-Line Format ? --get-server-public-key ?

PP 7?7?7?77?77?

?Type ? Boolean ?

PP 7?7?7?77?77?77

Request from the server the public key required for RSA key pair-based password
exchange. This option applies to clients that authenticate with the

caching_sha2_ password authentication plugin. For that plugin, the server does not send

Page 14/59

the public key unless requested. This option is ignored for accounts that do not
authenticate with that plugin. It is also ignored if RSA-based password exchange is

not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file,

it takes precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 6.4.1.2, ?Caching
SHA-2 Pluggable Authentication?.

--histignore

P27 7??77?72??7??7?7??77??7?7?7?7?7?7?7?7

?Command-Line Format ? --histignore=pattern_list ?

P70 7??77?72??7??7?7???7??77?7?7?7?7?7?7

?Type ? String ?

P07 7??77?72??7??7?7???7??77??7?77?7?7?7

A list of one or more colon-separated patterns specifying statements to ignore for
logging purposes. These patterns are added to the default pattern list
("*IDENTIFIED*:*PASSWORD*"). The value specified for this option affects logging of
statements written to the history file, and to syslog if the --syslog option is given.

For more information, see the section called ?MYSQL CLIENT LOGGING?.

--host=host_name, -h host_name

PPV ???7???7?7?7??7?7?7?7?77

?Command-Line Format ? --host=host_name ?

PPV ??77??2?7?7?7??7?°7?7777

?Type ? String ?

PPV ?7?77??2?7?77??7?7?7?7777

?Default Value ? localhost ?

PPV ?7?77??27?7?7?7??7?°7?77?77

Connect to the MySQL server on the given host.

The --dns-srv-name option takes precedence over the --host option if both are given.
--dns-srv-name causes connection establishment to use the mysqgl_real_connect_dns_srv()
C API function rather than mysqgl_real_connect(). However, if the connect command is
subsequently used at runtime and specifies a host name argument, that host name takes

precedence over any --dns-srv-name option given at mysql startup to specify a DNS SRV

Page 15/59

record.

--html, -H

QP77 ??7??7??7?7?77?7?7

?Command-Line Format ? --html ?

QP77 7??7??7??7?7?7?7?7?7

Produce HTML output.
--ignore-spaces, -i

P27 ???7?7??7?7???7??7?7?7?7?7??7?7?77?7

?Command-Line Format ? --ignore-spaces ?

P07 ??7?0????????7???7?7????7?7?7?7?7?7??7?7?7?7

Ignore spaces after function names. The effect of this is described in the discussion
for the IGNORE_SPACE SQL mode (see Section 5.1.11, ?Server SQL Modes?).
--init-command=str

PPV ??77??77????7?7?7?7??77??77?7?77?7?7

?Command-Line Format ? --init-command=str ?

P00 7???7??77?72??7?7?7?7??77??7?7?7?77?7?7

SQL statement to execute after connecting to the server. If auto-reconnect is enabled,

the statement is executed again after reconnection occurs.

--line-numbers

PP 7???7??77?7?7?7??7?7?777?7?7?

?Command-Line Format ? --line-numbers ?

PP 7???7??7?7?7??7?7?7?7?7?77?7?7

?Disabled by ? skip-line-numbers ?

PPV 7??????7??7?7?7?77?77

Write line numbers for errors. Disable this with --skip-line-numbers.
--load-data-local-dir=dir_name

PPV ???7?7??7?72?????7??2??7?7?7?7?7?7?7?77?7?7?7?

?Command-Line Format ? --load-data-local-dir=dir_name ?

PPV ???7???7?72??2??7?72??7?7?7?7??7?7?77?7?7?7?

?Introduced ?8.0.21 ?

PPV ???7?2?7?72??2?7?2?????7?7?7?7??7?7?77?7?7?7?

?Type ? Directory name ?

PPV 7?77???7?7?7?7??7?7?777?7?7?

Page 16/59

?Default Value ? empty string ?

P02 2??7???7?7?7?7??7?7?7?777?7?7?

This option affects the client-side LOCAL capability for LOAD DATA operations. It
specifies the directory in which files named in LOAD DATA LOCAL statements must be
located. The effect of --load-data-local-dir depends on whether LOCAL data loading is
enabled or disabled:
? If LOCAL data loading is enabled, either by default in the MySQL client library or
by specifying --local-infile[=1], the --load-data-local-dir option is ignored.
? If LOCAL data loading is disabled, either by default in the MySQL client library
or by specifying --local-infile=0, the --load-data-local-dir option applies.
When --load-data-local-dir applies, the option value designates the directory in which
local data files must be located. Comparison of the directory path name and the path
name of files to be loaded is case-sensitive regardless of the case sensitivity of the
underlying file system. If the option value is the empty string, it names no
directory, with the result that no files are permitted for local data loading.
For example, to explicitly disable local data loading except for files located in the
/myllocal/data directory, invoke mysq|l like this:
mysql --local-infile=0 --load-data-local-dir=/my/local/data
When both --local-infile and --load-data-local-dir are given, the order in which they
are given does not matter.
Successful use of LOCAL load operations within mysql also requires that the server
permits local loading; see Section 6.1.6, ?Security Considerations for LOAD DATA
LOCAL?
The --load-data-local-dir option was added in MySQL 8.0.21.
--local-infile[={0|1}]

PP ??2???7????0???7??????7??7?7??7??7?777

?Command-Line Format ? --local-infile[={0|1}] ?

D777 72?7??7????0???7??????7??7???7?77?777

?Type ? Boolean ?

D777 7??2??7????????7??7????7??7???7??7?77

?Default Value ? FALSE ?

D777 7??2??7????????7??7????7??7???7??7?77

By default, LOCAL capability for LOAD DATA is determined by the default compiled into

Page 17/59

the MySQL client library. To enable or disable LOCAL data loading explicitly, use the
--local-infile option. When given with no value, the option enables LOCAL data
loading. When given as --local-infile=0 or --local-infile=1, the option disables or
enables LOCAL data loading.

If LOCAL capability is disabled, the --load-data-local-dir option can be used to

permit restricted local loading of files located in a designated directory.

Successful use of LOCAL load operations within mysql also requires that the server
permits local loading; see Section 6.1.6, ?Security Considerations for LOAD DATA
LOCAL?

--login-path=name

QP07 ?????7??7??7??7??7??7?7?7?7?77?7?7

?Command-Line Format ? --login-path=name ?

PPV ?????7??7??7??7??7??7?7?7?777?7?7

?Type ? String ?

PPV ?????7??7??7??7??7??7??7?7?7?7?77?7

Read options from the named login path in the .mylogin.cnf login path file. A ?login
path? is an option group containing options that specify which MySQL server to connect
to and which account to authenticate as. To create or modify a login path file, use

the mysql_config_editor utility. See mysql_config_editor(1).

For additional information about this and other option-file options, see

Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--max-allowed-packet=value

PPV 7?77??2?7?77??7???7?7?7?7??27?7?7

?Command-Line Format ? --max-allowed-packet=value ?

PPV 7?77??2?7?77??7???7??7?7??27?7?7

?Type ? Numeric ?

PPV 7?77??2?7?77??7???7??7?7??7?7?7

?Default Value ? 16777216 ?

PPV 7?77??2?7?77??7???7?7?7?7??7?7?7

The maximum size of the buffer for client/server communication. The default is 16MB,
the maximum is 1GB.
--max-join-size=value

PPV ?7??7??2?7?77????7??77?7??7?7?77

Page 18/59

?Command-Line Format ? --max-join-size=value ?

P22 7??7?7?2?7?72??7?7?7?7?77?7??7?7?77

?Type ? Numeric ?

P22 ??7?7??7?7?77??7?7?7?7?77?7??7?7?77

?Default Value ? 1000000 ?

P07 7?7?7?7?2?7?72???7?7?7?7?7?7??7?7?77

The automatic limit for rows in a join when using --safe-updates. (Default value is

1,000,000.)
--named-commands, -G

PP 7???7??7?7??7?7??7?7???7??7?7?7?77??77

?Command-Line Format ? --named-commands ?

PP 7??77?7???7?7?7?7?7??7??7?7?7?77??77

?Disabled by ? skip-named-commands ?

P00 7?7?7?7?7?7?77??7??7?7?7?77??77

Enable named mysqgl commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to

disable named commands. See the section called ?MYSQL CLIENT COMMANDS?.

--net-buffer-length=value

PPV 7?7???2?7?72??7??????7??7?7?7?7?7?7?7?7

?Command-Line Format ? --net-buffer-length=value ?

P02 ?7???2?7?72??7??????7???7?7?7?7?7?7?7

?Type ? Numeric ?

PPV ???7??7?7?7?7?7?7?7

?Default Value ? 16384 ?

PPV ???7??7?7?7?7?7?7?7?7

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

--network-namespace=name

PP 770??2?2???????????7???7??7?7?7?7?7??7777?7

?Command-Line Format ? --network-namespace=name ?

PP 22?????????7??7???7??7?7?7??7??77?77?7

?Introduced ?8.0.22 ?

PP 22?????????7??7???7??7?7?7??7??77?77?7

Page 19/59

QP70 ???????????7???7???7??7??7??7??7?7?777?7

The network namespace to use for TCP/IP connections. If omitted, the connection uses
the default (global) namespace. For information about network namespaces, see
Section 5.1.14, ?Network Namespace Support?.

This option was added in MySQL 8.0.22. It is available only on platforms that
implement network namespace support.

--no-auto-rehash, -A

P07 7??77?7?7?7?7???7?7?7?7777

?Command-Line Format ? --no-auto-rehash ?

P07 ??7???7???7??7?7??77?7???7?77?7777

?Deprecated ? Yes ?

PPV 7??77??77?7?7?7?7?7?7777

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.
--no-beep, -b

PPV ??7??7??7??7?7?7?77

?Command-Line Format ? --no-beep ?

PPV ????7????7??7??7??7?7?77?77

Do not beep when errors occur.

--no-defaults

PP 7??7??7?7????7???7?7?77??77

?Command-Line Format ? --no-defaults ?

PP 7???7??77??7?7?7???7???7??7?7??77

Do not read any option files. If program startup fails due to reading unknown options
from an option file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This

permits passwords to be specified in a safer way than on the command line even when
--no-defaults is used. To create .mylogin.cnf, use the mysql_config_editor utility.

See mysql_config_editor(1).

For additional information about this and other option-file options, see

Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--one-database, -0

PPV 77???7??7??72???7??7?7??7?7?7

?Command-Line Format ? --one-database ?

Page 20/59

PPV ??7??7??????7??7?7?7?7?7?7

Ignore statements except those that occur while the default database is the one named
on the command line. This option is rudimentary and should be used with care.
Statement filtering is based only on USE statements.
Initially, mysql executes statements in the input because specifying a database
db_name on the command line is equivalent to inserting USE db_name at the beginning of
the input. Then, for each USE statement encountered, mysql accepts or rejects
following statements depending on whether the database named is the one on the command
line. The content of the statements is immaterial.
Suppose that mysql is invoked to process this set of statements:
DELETE FROM db2.12;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);
If the command line is mysql --force --one-database dbl, mysql handles the input as
follows:
? The DELETE statement is executed because the default database is dbl, even though
the statement names a table in a different database.
? The DROP TABLE and CREATE TABLE statements are not executed because the default
database is not db1, even though the statements name a table in dbl.
? The INSERT and CREATE TABLE statements are executed because the default database
is dbl, even though the CREATE TABLE statement names a table in a different
database.
--pager[=command]

PPV 7??7????7??7?77?77?77?77

?Command-Line Format ? --pager[=command] ?

PPV 7??7????7??7?7?77?77?77?

?Disabled by ? skip-pager ?

PPV 7??7????7??7?7?77?77?77?

Page 21/59

PPV 7??7??7??77?77?77?7

Use the given command for paging query output. If the command is omitted, the default
pager is the value of your PAGER environment variable. Valid pagers are less, more,
cat [> filename], and so forth. This option works only on Unix and only in interactive
mode. To disable paging, use --skip-pager. the section called ?MYSQL CLIENT
COMMANDS?, discusses output paging further.

--password[=password], -p[password]

P27 7??7?7?2?7?72?7??7?7?7?77?7??7?7?777

?Command-Line Format ? --password[=password] ?

P77 ???7???7???7?27?7?7??7??7?7?7?77?7??7?7?77

?Type ? String ?

P07 7???7??77?7??7?7?7?7?7?7?7??7?7?77

The password of the MySQL account used for connecting to the server. The password
value is optional. If not given, mysqgl prompts for one. If given, there must be no

space between --password= or -p and the password following it. If no password option
is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid
giving the password on the command line, use an option file. See Section 6.1.2.1,
?End-User Guidelines for Password Security?.

To explicitly specify that there is no password and that mysql should not prompt for
one, use the --skip-password option.

--passwordl[=pass_val] The password for multifactor authentication factor 1 of the
MySQL account used for connecting to the server. The password value is optional. If
not given, mysqgl prompts for one. If given, there must be no space between
--password1= and the password following it. If no password option is specified, the
default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid
giving the password on the command line, use an option file. See Section 6.1.2.1,
?End-User Guidelines for Password Security?.

To explicitly specify that there is no password and that mysql should not prompt for
one, use the --skip-password1l option.

--passwordl and --password are synonymous, as are --skip-passwordl and

--skip-password.

Page 22/59

? --password2[=pass_val] The password for multifactor authentication factor 2 of the
MySQL account used for connecting to the server. The semantics of this option are
similar to the semantics for --passwordl; see the description of that option for
details.

? --password3[=pass_val] The password for multifactor authentication factor 3 of the
MySQL account used for connecting to the server. The semantics of this option are
similar to the semantics for --passwordl; see the description of that option for
details.

? --pipe, -W

P07 ??7??????????7??7?7??77?7?77

?Command-Line Format ? --pipe ?

P77 7???7??7?7??77?7?77

?Type ? String ?

P07 2?7?0?????7???7??7?7??77?7?77

On Windows, connect to the server using a named pipe. This option applies only if the
server was started with the named_pipe system variable enabled to support named-pipe
connections. In addition, the user making the connection must be a member of the
Windows group specified by the named_pipe_full_access_group system variable.

? --plugin-authentication-kerberos-client-mode=value

P00 ??77???7??????7??7??7???7?7?7?7??7?7??77?7?7

?Command-Line Format ? --plugin-authentication- ?

? ? kerberos-client-mode ?

PPV 7?72??2?7?2??7???7?7?7?7??7?7?7?7?7?7?7?

?Introduced ?8.0.32 ?

PPV 7??7?7??7?7?77?7?7?7

?Type ? String ?

PPV 7?72??2?7?2??7???7??7?7??7?7?7?7?7?7?7?

?Default Value ? SSPI ?

P02 ??7?7??7?7?7?7?7?7?77

?Valid Values ? ?
? ? GSSAPI ?
? ? ?

? ? SSPI ?

Page 23/59

QP70 ???????????7???7???7??7??7??7??7?7?777?7

On Windows, the authentication_kerberos_client authentication plugin supports this
plugin option. It provides two possible values that the client user can set at

runtime: SSPI and GSSAPI.

The default value for the client-side plugin option uses Security Support Provider
Interface (SSPI), which is capable of acquiring credentials from the Windows in-memory
cache. Alternatively, the client user can select a mode that supports Generic Security
Service Application Program Interface (GSSAPI) through the MIT Kerberos library on
Windows. GSSAPI is capable of acquiring cached credentials previously generated by
using the kinit command.

For more information, see Commands for Windows Clients in GSSAPI Mode.
--plugin-dir=dir_name

PPV ?7????7???7??7?7???7??7??7??7?7?77?77?

?Command-Line Format ? --plugin-dir=dir_name ?

PPV 7??7?7???7??7??7??7?77?77?7?

?Type ? Directory name ?

PP ??7??7??7??7?7?77?7?

The directory in which to look for plugins. Specify this option if the --default-auth
option is used to specify an authentication plugin but mysql does not find it. See
Section 6.2.17, ?Pluggable Authentication?.

--port=port_num, -P port_num

P07 ???7???7?7??7??27?7?7?7?7?7??7?7?77?7

?Command-Line Format ? --port=port_num ?

PPV 70??????????7???7??7?7?7?7?777

?Type ? Numeric ?

PPV 0?????????7??7???7??7?7?7??7?777?

?Default Value ? 3306 ?

PPV 0????????????7???7??7?7?7??77?77?

For TCP/IP connections, the port number to use.

--print-defaults

PPV ????7?77??2?7?7???7??7?7?7?77

?Command-Line Format ? --print-defaults ?

PPV 7?7?77??7?7?7???7?7?7?7777

Page 24/59

Print the program name and all options that it gets from option files.
For additional information about this and other option-file options, see
Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

--prompt=format_str

PPV ???7??????????7??7?77?77?7

?Command-Line Format ? --prompt=format_str ?

PPV ??7?????????????7??7??7?77?77

?Type ? String ?

PPV ???????????????7??7??7??7?7

?Default Value ? mysql> ?

PPV ??7??7??7?????????7??7??7??7?7

Set the prompt to the specified format. The default is mysql>. The special sequences
that the prompt can contain are described in the section called ?MYSQL CLIENT
COMMANDS?.

--protocol={TCP|SOCKET|PIPE[MEMORY}

PP 7???7???7?7??7?7?7?7?777?7?7?

?Command-Line Format ? --protocol=type ?

P07 ???7??7?7?7??7??7?7?7?77?7?7?

?Type ? String ?

PP 7???7??77?7?7?7??7?7?777?7?7?

?Default Value ? [see text] ?

PP 7???7??7?7?7??7?7?7?7?7?77?7?7

?Valid Values ? ?
? ? TCcP 2

? ? ?

? ? SOCKET ?
? ? ?

? ? PIPE 7

? ? ?

? ? MEMORY ?

P00 ??????7??7?7?7??7??2°?7?7?77?7?7?

The transport protocol to use for connecting to the server. It is useful when the

other connection parameters normally result in use of a protocol other than the one Page 25/59

you want. For details on the permissible values, see Section 4.2.7, ?Connection
Transport Protocols?.
--quick, -q

P27 ??????7??7?7??77??27?7?7

?Command-Line Format ? --quick ?

P27 ???7???7?7?77??27?77?7

Do not cache each query result, print each row as it is received. This may slow down
the server if the output is suspended. With this option, mysqgl does not use the
history file.

--raw, -r

PPV ???????7????7??777

?Command-Line Format ? --raw ?

PPV ??7??7???7????7??7?7

For tabular output, the ?boxing? around columns enables one column value to be
distinguished from another. For nontabular output (such as is produced in batch mode
or when the --batch or --silent option is given), special characters are escaped in
the output so they can be identified easily. Newline, tab, NUL, and backslash are
written as \n, \t, \0, and \\. The --raw option disables this character escaping.
The following example demonstrates tabular versus nontabular output and the use of raw
mode to disable escaping:
% mysq|l

mysql> SELECT CHAR(92);

% mysql -s

mysql> SELECT CHAR(92);
CHAR(92)

\\

% mysql -s -r

mysql> SELECT CHAR(92);

Page 26/59

?

CHAR(92)
\

--reconnect

PPV ???7??2?7?27?7?7?7?7??7?7??7?77?7

?Command-Line Format ? --reconnect ?

PPV ???7??2?7?72?7?7?7?7?7??7?7??7?7?77

?Disabled by ? skip-reconnect ?

PPV ???7?2?7?72?7?7?77?7??7?7??7?77?7

If the connection to the server is lost, automatically try to reconnect. A single
reconnect attempt is made each time the connection is lost. To suppress reconnection
behavior, use --skip-reconnect.

--safe-updates, --i-am-a-dummy, -U

QP00 7?7??7?7?7?7?7?7?7?7

?Command-Line Format ? ?
? ? --safe-updates ?

? ? ?

? ? --i-am-a-dummy ?

P77 7???7??77?72??7??7?7??7?7??77?7?77?7?7?7

?Type ? Boolean ?

P07 7???7???7?72??7??7?7???7??77??7?7?7?7?7

?Default Value ? FALSE ?

P07 7???7???7?72??72?7?7???7??7?7?7?77?7?7?7

If this option is enabled, UPDATE and DELETE statements that do not use a key in the

WHERE clause or a LIMIT clause produce an error. In addition, restrictions are placed
on SELECT statements that produce (or are estimated to produce) very large result
sets. If you have set this option in an option file, you can use --skip-safe-updates

on the command line to override it. For more information about this option, see Using
Safe-Updates Mode (--safe-updates).

--select-limit=value

PPV 7?7?7?77?7?77?7

?Command-Line Format ? --select-limit=value ?

PPV 7?7?7?77?7?77?7

?Type ? Numeric ?

Page 27/59

PPV 7??7??7??77?7?7?77?7

?Default Value ? 1000 ?

PPV 7?7?7?77?7?77?7

The automatic limit for SELECT statements when using --safe-updates. (Default value is
1,000.)
--server-public-key-path=file_name

PPV 7??77?7?7?77?7

?Command-Line Format ? --server-public-key- ?
? ? path=file_name ?

P27 ???7???7?7??7?7??7?72??7??7?7?7?7?7??27?77?7

?Type ? File name ?

P27 7?7?77???7?77??7??7?7??7?7??277?77

The path name to a file in PEM format containing a client-side copy of the public key
required by the server for RSA key pair-based password exchange. This option applies
to clients that authenticate with the sha256_password or caching_sha2_password
authentication plugin. This option is ignored for accounts that do not authenticate

with one of those plugins. It is also ignored if RSA-based password exchange is not
used, as is the case when the client connects to the server using a secure connection.
If --server-public-key-path=file_name is given and specifies a valid public key file,

it takes precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.
For information about the sha256_password and caching_sha2_password plugins, see
Section 6.4.1.3, ?SHA-256 Pluggable Authentication?, and Section 6.4.1.2, ?Caching
SHA-2 Pluggable Authentication?.

--shared-memory-base-name=name

PPV ?????????7?7?7?7?7?7?7777?77?7

?Command-Line Format ? --shared-memory-base-name=name ?

PPV ???7???7??7??7?7?7777?77?7

?Platform Specific ? Windows ?

PPV 7??7??7??7??7?777?7

On Windows, the shared-memory name to use for connections made using shared memory to
a local server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system Page 28/59

variable enabled to support shared-memory connections.

--show-warnings

PPV ????????7???7??7??7??7?7?7?77

?Command-Line Format ? --show-warnings ?

PPV ???7???7??7??7??7?7?77?77

Cause warnings to be shown after each statement if there are any. This option applies

to interactive and batch mode.
--sigint-ignore

PPV ???????????7???7??7??7??7?7?7?77?

?Command-Line Format ? --sigint-ignore ?

PPV ???????????7???7??7??7??7??7?77?

Ignore SIGINT signals (typically the result of typing Control+C).

Without this option, typing Control+C interrupts the current statement if there is
one, or cancels any partial input line otherwise.

--silent, -s

P07 ???7??????7????7???7??7?7??27?77?7?7

?Command-Line Format ? --silent ?

P07 ????????????7???7??7?7??277?7?7

Silent mode. Produce less output. This option can be given multiple times to produce

less and less output.

This option results in nontabular output format and escaping of special characters.

Escaping may be disabled by using raw mode; see the description for the --raw option.

--skip-column-names, -N

QP77 77??00?7??7??0???7???????7??7?77?7

?Command-Line Format ? --skip-column-names ?

PP 0?2?7??7??7????7??7?????7??7?77?7

Do not write column names in results.
--skip-line-numbers, -L

P00 7?70??7??7?72??7??7?7?7?77??7?7

?Command-Line Format ? --skip-line-numbers ?

P00 ???7?2?7?72??7??7?77?77??7?7?7?77?7?7?7

Do not write line numbers for errors. Useful when you want to compare result files

that include error messages.

Page 29/59

? --socket=path, -S path

P02 2??7???7?7?7?7??7?7?7?777?7?7?

?Command-Line Format ? --socket={file_name|pipe_name} ?

P02 7?2??2?7?2?77???7?7?77??7?7?7?77?7?7?

?Type ? String ?

P20 ???7???7?2????7?7?7?7???7?7?7?7??7?7?7?7?7?7?7

For connections to localhost, the Unix socket file to use, or, on Windows, the name of
the named pipe to use.

On Windows, this option applies only if the server was started with the named_pipe
system variable enabled to support named-pipe connections. In addition, the user
making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

--ssl* Options that begin with --ssl specify whether to connect to the server using
encryption and indicate where to find SSL keys and certificates. See the section
called ?Command Options for Encrypted Connections?.
--ssl-fips-mode={OFF|ON|STRICT}

PPV 7??7??7?7?7?7?7?7?7?7

?Command-Line Format ? --ssl-fips-mode={OFF|ON|STRICT} ?

PPV 277?7???7?7?7?7?7?7?

?Deprecated ?8.0.34 ?

PPV 7?72??7???277?7??7?7?77?7?7?7?

?Type ? Enumeration ?

PPV 2?7?7??7?7?777?7?7?

?Default Value ? OFF ?

PPV 7?72??7?72??7???2?7?7??7?7?77?7?7?7?

?Valid Values ? ?
? ? OFF ?

? ? ?

? ? ON ?

? ? ?

? ? STRICT ?

PPV 7?77?7?7?7??7?77?7?7?7?7?

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option

Page 30/59

differs from other --ssl-xxx options in that it is not used to establish encrypted
connections, but rather to affect which cryptographic operations to permit. See
Section 6.8, ?FIPS Support?.
These --ssl-fips-mode values are permitted:
? OFF: Disable FIPS mode.
? ON: Enable FIPS mode.
? STRICT: Enable ?strict? FIPS mode.
Note
If the OpenSSL FIPS Object Module is not available, the only permitted value for
--ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON or STRICT
causes the client to produce a warning at startup and to operate in non-FIPS mode.
As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future
version of MySQL.
? --syslog, -

PPV 7??7?7???7?7?7?7??7?7?7

?Command-Line Format ? --syslog ?

PPV 7??7?7?7??7?7?7?7??7?7?7

This option causes mysql to send interactive statements to the system logging
facility. On Unix, this is syslog; on Windows, it is the Windows Event Log. The
destination where logged messages appear is system dependent. On Linux, the
destination is often the /var/log/messages file.
Here is a sample of output generated on Linux by using --syslog. This output is
formatted for readability; each logged message actually takes a single line.
Mar 7 12:39:25 myhost MysqIClient[20824]:
SYSTEM_USER:'oscar’, MYSQL_USER:'my_oscar’, CONNECTION_ID:23,
DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqIClient[20824]:
SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
DB_SERVER:'127.0.0.1', DB:'test’, QUERY:'SHOW TABLES;'
For more information, see the section called ?MYSQL CLIENT LOGGING?.
? --table, -t

PPV 0??7????????7??77?77?7

?Command-Line Format ? --table ? Page 31/59

PPV 7?????????7??7??7??7?7

Display output in table format. This is the default for interactive use, but can be
used to produce table output in batch mode.
--tee=file_name

PPV ???7???7??7??7??7?7?77?77

?Command-Line Format ? --tee=file_name ?

PPV ???7???7??7??7??7?7?77

?Type ? File name ?

PPV ???????????7???7??7??7??7?7?7?77?

Append a copy of output to the given file. This option works only in interactive mode.
the section called ?MYSQL CLIENT COMMANDS?, discusses tee files further.
--tIs-ciphersuites=ciphersuite_list

PPV 7?7?7?7?7?77?7

?Command-Line Format ? --tls- ?
? ? ciphersuites=ciphersuite_list ?

PPV 7???7?72??7???7??77???7?7?7?7?7?7?7?7?77?7

?Introduced ?8.0.16 ?

PPV 7??7?7?72??7?2??7??77???7?7?77?7?7?7?7?77?7

?Type ? String ?

PP 7???7??7?7?27??7???7??77??7?7?7?77?7?7?7?7?77?7

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is
a list of one or more colon-separated ciphersuite names. The ciphersuites that can be
named for this option depend on the SSL library used to compile MySQL. For details,
see Section 6.3.2, ?Encrypted Connection TLS Protocols and Ciphers?.

This option was added in MySQL 8.0.16.

--tls-version=protocol_list

PPV ???7?272?7?7?7°7?7?7?7?7?77

?Command-Line Format ? --tls-version=protocol_list ?

PPV 7?77?7??7?272?7?72°?7?7?7?7?77

?Type ? String ?

PPV ?2?7?2??2?0?72??7?70??2?7?2?77???7?7?7?7?7?7?72?7?7?2?7?7?7?7?7?77

?Default Value (? 8.0.16) ? ?

? ? TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 ? Page 32/59

? ? (OpenSSL 1.1.1 or ?

? ? higher) ?

? ? ?

? ? TLSv1,TLSv1.1,TLSv1.2 ?
? ? (otherwise) ?

PPV 7?77?7?7?7?7?7?7?7?7??7?7?7?7?7?7?7

?Default Value (? 8.0.15) ? TLSv1,TLSv1.1,TLSv1.2 ?

P07 7?7?77?7?7?7?7??7?7??7?7?7?7?7?7?7

The permissible TLS protocols for encrypted connections. The value is a list of one or
more comma-separated protocol names. The protocols that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 6.3.2,
?Encrypted Connection TLS Protocols and Ciphers?.

--unbuffered, -n

P07 7??77??7?7?7?77?7?77

?Command-Line Format ? --unbuffered ?

P07 ????????????7??????7??7?7?7?7?7?7?77

Flush the buffer after each query.

--user=user_name, -u user_name

PPV ?7????2?7?7??7?7?7?7777

?Command-Line Format ? --user=user_name ?

PPV ???7???7?7?7??7?7?7?7?77

?Type ? String ?

PPV ??77??2?7?7?7??7?°7?7777

The user name of the MySQL account to use for connecting to the server.

--verbose, -v

PPV ??7??7??7??7777?77

?Command-Line Format ? --verbose ?

PP ?7?????????7??7??7??777?77

Verbose mode. Produce more output about what the program does. This option can be
given multiple times to produce more and more output. (For example, -v -v -v produces
table output format even in batch mode.)

--version, -V

P L b P P Ll Page 33/59

?Command-Line Format ? --version ?

PP ???????7??7??7?7?7?7??7?77?7?77?7

Display version information and exit.
? --vertical, -E

PPV ???7??????7??7?77??7

?Command-Line Format ? --vertical ?

PPV ????????7?7??7?77?7?7

Print query output rows vertically (one line per column value). Without this option,
you can specify vertical output for individual statements by terminating them with \G.
? --wait, -w

PPV 7??7?7?7??7?7?7?7?7?7

?Command-Line Format ? --wait ?

PPV 7??7?7?7??7?7?7?7?7?7

If the connection cannot be established, wait and retry instead of aborting.
? --xml, -X

P07 ??7?7??7?7?7?77?7?7?

?Command-Line Format ? --xml ?

P07 ??????7???7???7??27?7?7?77?7?7?

Produce XML output.

<field name="column_name">NULL</field>
The output when --xml is used with mysgl matches that of mysqgldump --xml. See
mysqldump(1), for details.
The XML output also uses an XML namespace, as shown here:

$> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%"

<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<row>

<field name="Variable_name">version</field>

<field name="Value">5.0.40-debug</field>

</row>

<row>

<field name="Variable_name">version_comment</field>

LIKE

'version%

Page 34/59

<field name="Value">Source distribution</field>

</row>

<row>

<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>

</row>

<row>

<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>

</row>

</resultset>

? --zstd-compression-level=level

QP02 7??7??7??7?7?7?7?7?7?7

?Command-Line Format ? --zstd-compression-level=# ?

PPV 7??7??7?7?7??7?7?7?7?7?7

?Introduced ?8.0.18 ?

PP 7??7?7?7?7?7?7?7

?Type ? Integer ?

PPV 7?72??2?7?7??7???7??7?7??27?7?7

The compression level to use for connections to the server that use the zstd
compression algorithm. The permitted levels are from 1 to 22, with larger values
indicating increasing levels of compression. The default zstd compression level is 3.
The compression level setting has no effect on connections that do not use zstd
compression.
For more information, see Section 4.2.8, ?Connection Compression Control?.
This option was added in MySQL 8.0.18.
MYSQL CLIENT COMMANDS
mysql sends each SQL statement that you issue to the server to be executed. There is also
a set of commands that mysq|l itself interprets. For a list of these commands, type help or
\h at the mysql> prompt:
mysql> help
List of all MySQL commands:

Note that all text commands must be first on line and end with *;' Page 35/59

? (\?) Synonym for “help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\g) Exit mysqgl. Same as quit.
go (\g) Send command to mysq|l server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysq|.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
resetconnection(\x) Clean session context.
query_attributes Sets string parameters (namel valuel name2 value2 ...)
for the next query to pick up.
ssl_session_data_print Serializes the current SSL session data to stdout
or file.
For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except Page 36/59

charset and delimiter in noninteractive mode (for input piped to mysql or loaded using the
source command).
Each command has both a long and short form. The long form is not case-sensitive; the
short form is. The long form can be followed by an optional semicolon terminator, but the
short form should not.
The use of short-form commands within multiple-line /* ... */ comments is not supported.
Short-form commands do work within single-line /*! ... */ version comments, as do /*+ ...
*/ optimizer-hint comments, which are stored in object definitions. If there is a concern
that optimizer-hint comments may be stored in object definitions so that dump files when
reloaded with mysql would result in execution of such commands, either invoke mysql with
the --binary-mode option or use a reload client other than mysq|l.
? help [arg], \h [arg], \? [arg], ? [arg]
Display a help message listing the available mysgl commands.
If you provide an argument to the help command, mysql uses it as a search string to
access server-side help from the contents of the MySQL Reference Manual. For more
information, see the section called ?MYSQL CLIENT SERVER-SIDE HELP?.
? charset charset_name, \C charset_name
Change the default character set and issue a SET NAMES statement. This enables the
character set to remain synchronized on the client and server if mysql is run with
auto-reconnect enabled (which is not recommended), because the specified character set
is used for reconnects.
? clear, \c
Clear the current input. Use this if you change your mind about executing the
statement that you are entering.
? connect [db_name [host_name]], \r [db_name [host_name]]
Reconnect to the server. The optional database nhame and host name arguments may be
given to specify the default database or the host where the server is running. If
omitted, the current values are used.
If the connect command specifies a host name argument, that host takes precedence over
any --dns-srv-name option given at mysql startup to specify a DNS SRV record.
? delimiter str, \d str
Change the string that mysq| interprets as the separator between SQL statements. The

default is the semicolon character (;).

Page 37/59

The delimiter string can be specified as an unquoted or quoted argument on the
delimiter command line. Quoting can be done with either single quote ('), double quote
("), or backtick (°) characters. To include a quote within a quoted string, either
quote the string with a different quote character or escape the quote with a backslash
(\) character. Backslash should be avoided outside of quoted strings because it is the
escape character for MySQL. For an unquoted argument, the delimiter is read up to the
first space or end of line. For a quoted argument, the delimiter is read up to the
matching quote on the line.
mysq| interprets instances of the delimiter string as a statement delimiter anywhere
it occurs, except within quoted strings. Be careful about defining a delimiter that
might occur within other words. For example, if you define the delimiter as X, it is
not possible to use the word INDEX in statements. mysql interprets this as INDE
followed by the delimiter X.
When the delimiter recognized by mysql is set to something other than the default of
;, instances of that character are sent to the server without interpretation. However,
the server itself still interprets ; as a statement delimiter and processes statements
accordingly. This behavior on the server side comes into play for multiple-statement
execution (see Multiple Statement Execution Support[3]), and for parsing the body of
stored procedures and functions, triggers, and events (see Section 25.1, ?Defining
Stored Programs?).

? edit, \e
Edit the current input statement. mysqgl checks the values of the EDITOR and VISUAL
environment variables to determine which editor to use. The default editor is vi if
neither variable is set.
The edit command works only in Unix.

? ego, \G
Send the current statement to the server to be executed and display the result using
vertical format.

? exit, \q
Exit mysq|l.

? go,\g
Send the current statement to the server to be executed.

? nopager, \n Page 38/59

Disable output paging. See the description for pager.
The nopager command works only in Unix.

notee, \t

Disable output copying to the tee file. See the description for tee.

nowarning, \w

Disable display of warnings after each statement.

pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysq|, it is
possible to browse or search query results in interactive mode with Unix programs such
as less, more, or any other similar program. If you specify no value for the option,
mysql checks the value of the PAGER environment variable and sets the pager to that.
Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with
nopager. The command takes an optional argument; if given, the paging program is set
to that. With no argument, the pager is set to the pager that was set on the command
line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not
exist on Windows. For Windows, the tee option can be used instead to save query
output, although it is not as convenient as pager for browsing output in some
situations.

print, \p

Print the current input statement without executing it.

prompt [str], \R [str]

Reconfigure the mysqgl prompt to the given string. The special character sequences that
can be used in the prompt are described later in this section.

If you specify the prompt command with no argument, mysqgl resets the prompt to the
default of mysql>.

query_attributes name value [name value ...]

Define query attributes that apply to the next query sent to the server. For

discussion of the purpose and use of query attributes, see Section 9.6, ?Query
Attributes?.

The query_attributes command follows these rules:

? The format and quoting rules for attribute names and values are the same as for Page 39/59

the delimiter command.
? The command permits up to 32 attribute name/value pairs. Names and values may be
up to 1024 characters long. If a name is given without a value, an error occurs.
? If multiple query_attributes commands are issued prior to query execution, only
the last command applies. After sending the query, mysql clears the attribute set.
? If multiple attributes are defined with the same name, attempts to retrieve the
attribute value have an undefined result.
? An attribute defined with an empty hame cannot be retrieved by name.
? If areconnect occurs while mysql executes the query, mysql restores the
attributes after reconnecting so the query can be executed again with the same
attributes.
quit, \q
Exit mysq|.
rehash, \#
Rebuild the completion hash that enables database, table, and column name completion
while you are entering statements. (See the description for the --auto-rehash option.)
resetconnection, \x
Reset the connection to clear the session state. This includes clearing any current
query attributes defined using the query_attributes command.
Resetting a connection has effects similar to mysqgl_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and re-authentication is not
done. See mysql_change_user()[4], and Automatic Reconnection Control[5].
This example shows how resetconnection clears a value maintained in the session state:

mysql> SELECT LAST_INSERT_ID(3);

Page 40/59

mysql> resetconnection;

mysql> SELECT LAST_INSERT_ID();

? source file_name, \. file_name
Read the named file and executes the statements contained therein. On Windows, specify
path name separators as / or \\.
Quote characters are taken as part of the file name itself. For best results, the name
should not include space characters.

? ssl_session_data_print [file_name]
Fetches, serializes, and optionally stores the session data of a successful
connection. The optional file name and arguments may be given to specify the file to
store serialized session data. If omitted, the session data is printed to stdout.
If the MySQL session is configured for reuse, session data from the file is
deserialized and supplied to the connect command to reconnect. When the session is
reused successfully, the status command contains a row showing SSL session reused:
true while the client remains reconnected to the server.

? status, \s
Provide status information about the connection and the server you are using. If you
are running with --safe-updates enabled, status also prints the values for the mysq|l
variables that affect your queries.

? system command, \! command
Execute the given command using your default command interpreter.
Prior to MySQL 8.0.19, the system command works only in Unix. As of 8.0.19, it also
works on Windows.

? tee [file_name], \T [file_name]
By using the --tee option when you invoke mysql, you can log statements and their

output. All the data displayed on the screen is appended into a given file. This can Page 41/59

be very useful for debugging purposes also. mysql flushes results to the file after
each statement, just before it prints its next prompt. Tee functionality works only in
interactive mode.
You can enable this feature interactively with the tee command. Without a parameter,
the previous file is used. The tee file can be disabled with the notee command.
Executing tee again re-enables logging.
? use db_name, \u db_name
Use db_name as the default database.
? warnings, \W
Enable display of warnings after each statement (if there are any).
Here are a few tips about the pager command:
? You can use it to write to a file and the results go only to the file:
mysql> pager cat > /tmp/log.txt
You can also pass any options for the program that you want to use as your pager:
mysql> pager less -n -i -S
? In the preceding example, note the -S option. You may find it very useful for browsing
wide query results. Sometimes a very wide result set is difficult to read on the
screen. The -S option to less can make the result set much more readable because you
can scroll it horizontally using the left-arrow and right-arrow keys. You can also use
-S interactively within less to switch the horizontal-browse mode on and off. For more
information, read the less manual page:
man less
? The -F and -X options may be used with less to cause it to exit if output fits on one
screen, which is convenient when no scrolling is necessary:
mysql> pager less -n -i -S -F -X
? You can specify very complex pager commands for handling query output:
mysql> pager cat | tee /drl/tmp/res.txt \
| tee /dr2/tmp/res2.ixt | less -n -i -S
In this example, the command would send query results to two files in two different
directories on two different file systems mounted on /drl and /dr2, yet still display
the results onscreen using less.
You can also combine the tee and pager functions. Have a tee file enabled and pager set to

less, and you are able to browse the results using the less program and still have Page 42/59

.br

.br

72

everything appended into a file the same time. The difference between the Unix tee used
with the pager command and the mysql built-in tee command is that the built-in tee works
even if you do not have the Unix tee available. The built-in tee also logs everything that
is printed on the screen, whereas the Unix tee used with pager does not log quite that
much. Additionally, tee file logging can be turned on and off interactively from within
mysql. This is useful when you want to log some queries to a file, but not others.

The prompt command reconfigures the default mysql> prompt. The string for defining the

prompt can contain the following special sequences.

PPV 7??7??7??7??7?7?7?7?7?7?7?7?7?7

?0ption ? Description ?

PPV 7??7??7??7?7?7??7?7?7?7?7?7?7?7?7?7

? ? The current connection ?
? ? identifier ?

PPV 7???7?7?7?7?7??7?2?7?77??7??7?7??7?7??277?7

? ? A counter that increments for ?

? ? each statement you issue ?

PPV 7?72??2??7???7???7??7?7?7?7?7?7

? ? The full current date ?

PPV ???7?272?7?72?7?2?7?7??7??7?7?7?7?7?7?7?7?7

? ? The default database ?

PPV ???7?72?7?72?7?2?7?77?77???7?7?7?7?7?7?7?7

? ? The server host ?

PPV 7???7772??72?7?2?7?7?77??7?7?7?7?7?7?7?7?7

? ? The current delimiter ?

PPV ???7?72?7?7??7?2?7?7??7??7?7?7?7?7?7?7?7?7

? ? Minutes of the current time ?

PP ???7?72?7?7??7?2?7?7???7??7?7?7?7?7?7?7?7?7

? ? A newline character ?

PPV ?27?7???7?7277?7??7?2?7?77?77??7?7?7?7?7??7?7?7

Page 43/59

? ? The current month in three- ?

? ? letter format (Jan, Feb, ...) ?

PPV 7?7?7??77?77?7??7?7?7??77?7?7?7?7

? ? The current month in numeric ?

? ? format ?

PPV 7???7?7277?7??7?2?7?72??7??7?7?7?7?7??277?7

?P ? am/pm ?

PPV 7???7?7277?7?2?7?2?7?72??7??7?7?7?7?7??27?7?7

? ? The current TCP/IP port or ?

? ? socket file ?

PPV 7??7??7?7?7??7?7?7??7?7?7?7?7?7

? ? The current time, in 24-hour ?
? ? military time (0?23) ?

PPV 7???7?7??7?7?77?277?72??7??7?7??7?7??2777

? ? The current time, standard ?
? ? 12-hour time (1?712) ?

PPV 7??7??7?7?7?7?7?7?7?7

? ? Semicolon ?

PPV 2?????7?72??72?7?2?7?7??7???7??7?7?7?7?7?7

? ? Seconds of the current time ?

PPV 7?72??2??7???7???7??7?7?7?7?7?7

T ? Print an asterisk (*) if the ?

? ? current session is ?

? ? inside a ?

? ? transaction block (from MySQL ?
? ?8.0.28) ?

PPV 7???7772??72?7?2?7?7?77??7?7?7?7?7?7?7?7?7

? ? A tab character ?

PPV ???7?72?7?7??7?2?7?7??7??7?7?7?7?7?7?7?7?7

?U ? ?
? ? Your full ?

? ? user_name@host_name ?
? ? account name ?

Page 44/59

QP00 7??7?7?77?77?7??7?7?7?7?7?7?7?7

? ? Your user name ?

PPV 7?7?7??77?77?7??7?7?7??77?7?7?7?7

? ? The server version ?

PPV 77?77?7??7?7?77?7?7?7?7

? ? The current day of the week in ?
? ? three-letter format (Mon, Tue, ?
? ?..) ?

PPV 7??7?77?7?7?77?7??7?7?7?7?7?7?7?7

? ? The current year, four digits ~ ?

PPV 7??7??7?7?7??7?7?7??7?7?7?7?7?7

?y ? The current year, two digits ~ ?

PPV 7??7??7??7??7?7?7?7?7?7?7?7?7?7

? ? A space ?

PPV 7??7??7??7?7?7??7?7?7?7?7?7?7?7?7?7

A ? A space (a space follows the ?

? ? backslash) ?

PPV 7???7?7?7?7?7??7?2?7?77??7??7?7??7?7??277?7

?? ? Single quote ?

PPV 7???7?7?77?7?77???7?7???7??7?7??7?77??77?7

? ? Double quote ?

PPV 7???7?7?77?7?77???7?7???7??7?7??7?7??77?7

?T}:T{ A literal backslash ? ?

?character ? ?

PPV ???7?72?7?72?7?2?7?77?77???7?7?7?7?7?7?7?7

2\flx ? 2
? ? X, for any ?x? not listed ?
? ? above ?

PPV ???7?72?7?7??7?2?7?7??7??7?7?7?7?7?7?7?7?7

You can set the prompt in several ways:

? Use an environment variable. You can set the MYSQL_PS1 environment variable to a

prompt string. For example:

export MYSQL_PS1="(\u@\h) \d]>"

Page 45/59

? Use a command-line option. You can set the --prompt option on the command line to
mysql. For example:
$> mysql --prompt="(\u@\h) \d]> "
(user@host) [database]>
? Use an option file. You can set the prompt option in the [mysql] group of any MySQL
option file, such as /etc/my.cnf or the .my.cnf file in your home directory. For
example:
[mysal]
prompt=\u@\\h) (\d]>\\
In this example, note that the backslashes are doubled. If you set the prompt using
the prompt option in an option file, it is advisable to double the backslashes when
using the special prompt options. There is some overlap in the set of permissible
prompt options and the set of special escape sequences that are recognized in option
files. (The rules for escape sequences in option files are listed in Section 4.2.2.2,
?Using Option Files?.) The overlap may cause you problems if you use single
backslashes. For example, \s is interpreted as a space rather than as the current
seconds value. The following example shows how to define a prompt within an option
file to include the current time in hh:mm:ss> format:
[mysql]
prompt="\\r:\\m:\s> "
? Set the prompt interactively. You can change your prompt interactively by using the
prompt (or \R) command. For example:
mysql> prompt \u@\h) \d]>_
PROMPT set to '(\u@\h) Nd]>\
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>
MYSQL CLIENT LOGGING
The mysql client can do these types of logging for statements executed interactively:
? On Unix, mysql writes the statements to a history file. By default, this file is named
.mysqgl_history in your home directory. To specify a different file, set the value of

the MYSQL_HISTFILE environment variable.

Page 46/59

? On all platforms, if the --syslog option is given, mysqgl writes the statements to the
system logging facility. On Unix, this is syslog; on Windows, it is the Windows Event
Log. The destination where logged messages appear is system dependent. On Linux, the
destination is often the /var/log/messages file.

The following discussion describes characteristics that apply to all logging types and

provides information specific to each logging type.

? How Logging Occurs

? Controlling the History File

? syslog Logging Characteristics

How Logging Occurs

For each enabled logging destination, statement logging occurs as follows:

? Statements are logged only when executed interactively. Statements are noninteractive,
for example, when read from a file or a pipe. It is also possible to suppress
statement logging by using the --batch or --execute option.

? Statements are ignored and not logged if they match any pattern in the ?ignore? list.
This list is described later.

? mysql logs each nonignored, nonempty statement line individually.

? If a nonignored statement spans multiple lines (not including the terminating
delimiter), mysql concatenates the lines to form the complete statement, maps newlines
to spaces, and logs the result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider

this input:
mysql> SELECT

-> 'Today is'
>

-> CURDATE()
>

In this case, mysql logs the ?SELECT?, ?'Today is'?, ?,?, 2CURDATE()?, and ?;? lines as it

reads them. It also logs the complete statement, after mapping SELECT\n'Today

is'\n\nCURDATE() to SELECT 'Today is', CURDATE(), plus a delimiter. Thus, these lines
appear in logged output:

SELECT

‘Today is'

Page 47/59

CURDATE()

SELECT 'Today is' , CURDATE();

mysq| ignores for logging purposes statements that match any pattern in the ?ignore? list.

By default, the pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer

to passwords. Pattern matching is not case-sensitive. Within patterns, two characters are
special:
? ? matches any single character.

? *matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE

environment variable. (If both are specified, the option value takes precedence.) The
value should be a list of one or more colon-separated patterns, which are appended to the

default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your

command interpreter from treating them specially. For example, to suppress logging for

UPDATE and DELETE statements in addition to statements that refer to passwords, invoke

mysq| like this:

mysq| --histignore="*UPDATE*:*DELETE*"
Controlling the History File
The .mysql_history file should be protected with a restrictive access mode because
sensitive information might be written to it, such as the text of SQL statements that
contain passwords. See Section 6.1.2.1, ?End-User Guidelines for Password Security?.
Statements in the file are accessible from the mysql client when the up-arrow key is used
to recall the history. See Disabling Interactive History.
If you do not want to maintain a history file, first remove .mysql_history if it exists.
Then use either of the following techniques to prevent it from being created again:
? Setthe MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to

take effect each time you log in, put it in one of your shell's startup files.
? Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

In -s /dev/null SHOME/.mysqgl_history

syslog Logging Characteristics

If the --syslog option is given, mysql writes interactive statements to the system logging

Page 48/59

facility. Message logging has the following characteristics.
Logging occurs at the ?information? level. This corresponds to the LOG_INFO priority for
syslog on Unix/Linux syslog capability and to EVENTLOG_INFORMATION_TYPE for the Windows
Event Log. Consult your system documentation for configuration of your logging capability.
Message size is limited to 1024 bytes.
Messages consist of the identifier MysqlClient followed by these values:
? SYSTEM_USER
The operating system user name (login name) or -- if the user is unknown.
? MYSQL_USER
The MySQL user name (specified with the --user option) or -- if the user is unknown.
? CONNECTION_ID:
The client connection identifier. This is the same as the CONNECTION_ID() function
value within the session.
? DB_SERVER
The server host or -- if the host is unknown.
? DB
The default database or -- if no database has been selected.
? QUERY
The text of the logged statement.
Here is a sample of output generated on Linux by using --syslog. This output is formatted
for readability; each logged message actually takes a single line.
Mar 7 12:39:25 myhost MysqIClient[20824]:
SYSTEM_USER:'oscar’, MYSQL_USER:'my_oscar’, CONNECTION_ID:23,
DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'
MYSQL CLIENT SERVER-SIDE HELP
mysql> help search_string
If you provide an argument to the help command, mysqgl uses it as a search string to access
server-side help from the contents of the MySQL Reference Manual. The proper operation of
this command requires that the help tables in the mysql database be initialized with help

topic information (see Section 5.1.17, ?Server-Side Help Support?). Page 49/59

If there is no match for the search string, the search fails:
mysql> help me
Nothing found
Please try to run 'help contents' for a list of all accessible topics
Use help contents to see a list of the help categories:
mysql> help contents
You asked for help about help category: "Contents”
For more information, type 'help <item>', where <item> is one of the
following categories:
Account Management
Administration
Data Definition
Data Manipulation
Data Types
Functions
Functions and Modifiers for Use with GROUP BY
Geographic Features
Language Structure
Plugins
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers
If the search string matches multiple items, mysql shows a list of matching topics:
mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
SHOW
SHOW BINARY LOGS
SHOW ENGINE

SHOW LOGS Page 50/59

Use a topic as the search string to see the help entry for that topic:
mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS
Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;

+ + + +
| Log_name | File_size | Encrypted |
+ + + +

| binlog.000015 | 724935 | Yes |
| binlog.000016 | 733481 |Yes |

+ + + +

The search string can contain the wildcard characters % and _. These have the same meaning
as for pattern-matching operations performed with the LIKE operator. For example, HELP
rep% returns a list of topics that begin with rep:
mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
REPAIR TABLE
REPEAT FUNCTION
REPEAT LOOP
REPLACE
REPLACE FUNCTION
EXECUTING SQL STATEMENTS FROM A TEXT FILE
The mysql client typically is used interactively, like this:

mysql db_name Page 51/59

However, it is also possible to put your SQL statements in a file and then tell mysql to
read its input from that file. To do so, create a text file text_file that contains the
statements you wish to execute. Then invoke mysqgl as shown here:

mysqgl db_name < text_file
If you place a USE db_name statement as the first statement in the file, it is unnecessary
to specify the database name on the command line:

mysql < text_file
If you are already running mysql, you can execute an SQL script file using the source
command or \. command:

mysql> source file_name

mysql> \. file_name
Sometimes you may want your script to display progress information to the user. For this
you can insert statements like this:

SELECT '<info_to_display>' AS "',
The statement shown outputs <info_to_display>.
You can also invoke mysgl with the --verbose option, which causes each statement to be
displayed before the result that it produces.
mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files.
Previously, it read them and sent them to the server, resulting in a syntax error.
Presence of a BOM does not cause mysqgl to change its default character set. To do that,
invoke mysqgl with an option such as --default-character-set=utf8mb4.
For more information about batch mode, see Section 3.5, ?Using mysql in Batch Mode?.

MYSQL CLIENT TIPS

This section provides information about techniques for more effective use of mysql and
about mysql operational behavior.
? Input-Line Editing
? Disabling Interactive History
? Unicode Support on Windows
? Displaying Query Results Vertically
? Using Safe-Updates Mode (--safe-updates)
? Disabling mysqgl Auto-Reconnect
? mysql Client Parser Versus Server Parser

Input-Line Editing Page 52/59

mysql supports input-line editing, which enables you to modify the current input line in
place or recall previous input lines. For example, the left-arrow and right-arrow keys
move horizontally within the current input line, and the up-arrow and down-arrow keys move
up and down through the set of previously entered lines. Backspace deletes the character
before the cursor and typing new characters enters them at the cursor position. To enter
the line, press Enter.
On Windows, the editing key sequences are the same as supported for command editing in
console windows. On Unix, the key sequences depend on the input library used to build
mysq| (for example, the libedit or readline library).
Documentation for the libedit and readline libraries is available online. To change the
set of key sequences permitted by a given input library, define key bindings in the
library startup file. This is a file in your home directory: .editrc for libedit and
.inputrc for readline.
For example, in libedit, Control+W deletes everything before the current cursor position
and Control+U deletes the entire line. In readline, Control+W deletes the word before the
cursor and Control+U deletes everything before the current cursor position. If mysgl was
built using libedit, a user who prefers the readline behavior for these two keys can put
the following lines in the .editrc file (creating the file if necessary):

bind ""W" ed-delete-prev-word

bind "rU" vi-kill-line-prev
To see the current set of key bindings, temporarily put a line that says only bind at the
end of .editrc. mysqgl shows the bindings when it starts. Disabling Interactive History
The up-arrow key enables you to recall input lines from current and previous sessions. In
cases where a console is shared, this behavior may be unsuitable. mysql supports
disabling the interactive history partially or fully, depending on the host platform.
On Windows, the history is stored in memory. Alt+F7 deletes all input lines stored in
memory for the current history buffer. It also deletes the list of sequential numbers in
front of the input lines displayed with F7 and recalled (by number) with F9. New input
lines entered after you press Alt+F7 repopulate the current history buffer. Clearing the
buffer does not prevent logging to the Windows Event Viewer, if the --syslog option was
used to start mysql. Closing the console window also clears the current history buffer.
To disable interactive history on Unix, first delete the .mysql_history file, if it exists

(previous entries are recalled otherwise). Then start mysql with the --histignore="*" Page 53/59

option to ignore all new input lines. To re-enable the recall (and logging) behavior,

restart mysql without the option.

If you prevent the .mysql_history file from being created (see Controlling the History

File) and use --histignore="*" to start the mysq|l client, the interactive history recall

facility is disabled fully. Alternatively, if you omit the --histignore option, you can

recall the input lines entered during the current session. Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the
mysql client for Windows is able to use these APIs. The Windows installer creates an item

in the MySQL menu named MySQL command line client - Unicode. This item invokes the mysq|

client with properties set to communicate through the console to the MySQL server using

Unicode.

To take advantage of this support manually, run mysql within a console that uses a
compatible Unicode font and set the default character set to a Unicode character set that

is supported for communication with the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or
some other compatible Unicode font. This is necessary because console windows start by
default using a DOS raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8mb4 (or utf8mb3) option. This
option is necessary because utfl6le is one of the character sets that cannot be used
as the client character set. See the section called ?Impermissible Client Character
Sets?.

With those changes, mysql uses the Windows APIs to communicate with the console using

UTF-16LE, and communicate with the server using UTF-8. (The menu item mentioned previously

sets the font and character set as just described.)
To avoid those steps each time you run mysq|, you can create a shortcut that invokes
mysql.exe. The shortcut should set the console font to Lucida Console or some other
compatible Unicode font, and pass the --default-character-set=utf8mb4 (or utf8mb3) option
to mysql.exe.
Alternatively, create a shortcut that only sets the console font, and set the character
set in the [mysql] group of your my.ini file:

[mysql]

default-character-set=utf8mb4 # or utf8mb3 Page 54/59

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the
usual horizontal table format. Queries can be displayed vertically by terminating the
qguery with \G instead of a semicolon. For example, longer text values that include
newlines often are much easier to read with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G

*kkkkkkkkhkkkkkkkkkkkkkkhhkikx 1 rOW ***Fkkkkdddkkik ** **

msg_nro: 3068
date: 2000-03-01 23:29:50
time_zone: +0200
mail_from:; Jones
reply: jones@example.com
mail_to: "John Smith" <smith@example.com>
sbj: UTF-8
txt: >>>>> "John" == John Smith writes:
John> Hi. | think this is a good idea. Is anyone familiar
John> with UTF-8 or Unicode? Otherwise, I'll put this on my
John> TODO list and see what happens.
Yes, please do that.
Regards,
Jones
file: inbox-jani-1
hash: 190402944
1 row in set (0.09 sec)
Using Safe-Updates Mode (--safe-updates)
For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the
same effect). Safe-updates mode is helpful for cases when you might have issued an UPDATE
or DELETE statement but forgotten the WHERE clause indicating which rows to modify.
Normally, such statements update or delete all rows in the table. With --safe-updates, you
can modify rows only by specifying the key values that identify them, or a LIMIT clause,
or both. This helps prevent accidents. Safe-updates mode also restricts SELECT statements
that produce (or are estimated to produce) very large result sets.

The --safe-updates option causes mysql to execute the following statement when it connects

Page 55/59

to the MySQL server, to set the session values of the sqgl_safe_updates, sql_select_limit,

and max_join_size system variables:
SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

The SET statement affects statement processing as follows:

? Enabling sql_safe_updates causes UPDATE and DELETE statements to produce an error if
they do not specify a key constraint in the WHERE clause, or provide a LIMIT clause,
or both. For example:

UPDATE tbl_name SET not_key column=val WHERE key_column=val;
UPDATE thl_name SET not_key_ column=val LIMIT 1;

? Setting sql_select_limit to 1,000 causes the server to limit all SELECT result sets to
1,000 rows unless the statement includes a LIMIT clause.

? Setting max_join_size to 1,000,000 causes multiple-table SELECT statements to produce
an error if the server estimates it must examine more than 1,000,000 row combinations.

To specify result set limits different from 1,000 and 1,000,000, you can override the

defaults by using the --select-limit and --max-join-size options when you invoke mysql:
mysql --safe-updates --select-limit=500 --max-join-size=10000

It is possible for UPDATE and DELETE statements to produce an error in safe-updates mode

even with a key specified in the WHERE clause, if the optimizer decides not to use the

index on the key column;

? Range access on the index cannot be used if memory usage exceeds that permitted by the
range_optimizer_max_mem_size system variable. The optimizer then falls back to a table
scan. See the section called ?Limiting Memory Use for Range Optimization?.

? If key comparisons require type conversion, the index may not be used (see
Section 8.3.1, ?How MySQL Uses Indexes?). Suppose that an indexed string column c1 is
compared to a numeric value using WHERE c1 = 2222. For such comparisons, the string
value is converted to a number and the operands are compared numerically (see
Section 12.3, ?Type Conversion in Expression Evaluation?), preventing use of the
index. If safe-updates mode is enabled, an error occurs.

As of MySQL 8.0.13, safe-updates mode also includes these behaviors:

? EXPLAIN with UPDATE and DELETE statements does not produce safe-updates errors. This
enables use of EXPLAIN plus SHOW WARNINGS to see why an index is not used, which can
be helpful in cases such as when a range_optimizer_max_mem_size violation or type

conversion occurs and the optimizer does not use an index even though a key column was

Page 56/59

specified in the WHERE clause.

? When a safe-updates error occurs, the error message includes the first diagnostic that
was produced, to provide information about the reason for failure. For example, the
message may indicate that the range_optimizer_max_mem_size value was exceeded or type
conversion occurred, either of which can preclude use of an index.

? For multiple-table deletes and updates, an error is produced with safe updates enabled
only if any target table uses a table scan.

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it

immediately and automatically tries to reconnect once to the server and send the statement

again. However, even if mysql succeeds in reconnecting, your first connection has ended
and all your previous session objects and settings are lost: temporary tables, the
autocommit mode, and user-defined and session variables. Also, any current transaction
rolls back. This behavior may be dangerous for you, as in the following example where the
server was shut down and restarted between the first and second statements without you
knowing it:

mysql> SET @a=1;

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);

ERROR 2006: MySQL server has gone away

No connection. Trying to reconnect...

Connectionid: 1

Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;

S — +
la |

S — +

| NULL |
S —— +

1 row in set (0.05 sec)
The @a user variable has been lost with the connection, and after the reconnection it is

undefined. If it is important to have mysqgl terminate with an error if the connection has

Page 57/59

been lost, you can start the mysq|l client with the --skip-reconnect option.
For more information about auto-reconnect and its effect on state information when a
reconnection occurs, see Automatic Reconnection Control[5]. mysqgl Client Parser Versus
Server Parser
The mysql client uses a parser on the client side that is not a duplicate of the complete
parser used by the mysqld server on the server side. This can lead to differences in
treatment of certain constructs. Examples:
? The server parser treats strings delimited by " characters as identifiers rather than
as plain strings if the ANSI_QUOTES SQL mode is enabled.
The mysq| client parser does not take the ANSI_QUOTES SQL mode into account. It treats
strings delimited by ", ', and " characters the same, regardless of whether
ANSI_QUOTES is enabled.
? Within /*! ... */ and /*+ ... */ comments, the mysq| client parser interprets
short-form mysqgl commands. The server parser does not interpret them because these
commands have no meaning on the server side.
If it is desirable for mysqgl not to interpret short-form commands within comments, a
partial workaround is to use the --binary-mode option, which causes all mysql commands
to be disabled except \C and \d in noninteractive mode (for input piped to mysql or
loaded using the source command).
COPYRIGHT
Copyright ? 1997, 2023, Oracle and/or its affiliates.
This documentation is free software; you can redistribute it and/or modify it only under
the terms of the GNU General Public License as published by the Free Software Foundation;
version 2 of the License.
This documentation is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with the program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA or see http://www.gnu.org/licenses/.
NOTES
1. MySQL Shell 8.0

https://dev.mysql.com/doc/mysql-shell/8.0/en/ Page 58/59

2. C API Basic Data Structures
https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html
3. Multiple Statement Execution Support
https://dev.mysql.com/doc/c-api/8.0/en/c-api-multiple-queries.html
4. mysql_change_user()
https://dev.mysqgl.com/doc/c-api/8.0/en/mysql-change-user.html
5. Automatic Reconnection Control
https://dev.mysql.com/doc/c-api/8.0/en/c-api-auto-reconnect.html
SEE ALSO
For more information, please refer to the MySQL Reference Manual, which may already be
installed locally and which is also available online at http://dev.mysqgl.com/doc/.
AUTHOR
Oracle Corporation (http://dev.mysqgl.com/).

MySQL 8.0 11/27/2023 MYSQL(1)

Page 59/59

