
Rocky Enterprise Linux 9.2 Manual Pages on command 'mysqlbinlog.1'

$ man mysqlbinlog.1

MYSQLBINLOG(1) MySQL Database System MYSQLBINLOG(1)

NAME

 mysqlbinlog - utility for processing binary log files

SYNOPSIS

 mysqlbinlog [options] log_file ...

DESCRIPTION

 The server's binary log consists of files containing ?events? that describe modifications

 to database contents. The server writes these files in binary format. To display their

 contents in text format, use the mysqlbinlog utility. You can also use mysqlbinlog to

 display the contents of relay log files written by a replica server in a replication setup

 because relay logs have the same format as binary logs. The binary log and relay log are

 discussed further in Section 5.4.4, ?The Binary Log?, and Section 17.2.4, ?Relay Log and

 Replication Metadata Repositories?.

 Invoke mysqlbinlog like this:

 mysqlbinlog [options] log_file ...

 For example, to display the contents of the binary log file named binlog.000003, use this

 command:

 mysqlbinlog binlog.000003

 The output includes events contained in binlog.000003. For statement-based logging, event

 information includes the SQL statement, the ID of the server on which it was executed, the

 timestamp when the statement was executed, how much time it took, and so forth. For

 row-based logging, the event indicates a row change rather than an SQL statement. See

 Section 17.2.1, ?Replication Formats?, for information about logging modes. Page 1/46

 Events are preceded by header comments that provide additional information. For example:

 # at 141

 #100309 9:28:36 server id 123 end_log_pos 245

 Query thread_id=3350 exec_time=11 error_code=0

 In the first line, the number following at indicates the file offset, or starting

 position, of the event in the binary log file.

 The second line starts with a date and time indicating when the statement started on the

 server where the event originated. For replication, this timestamp is propagated to

 replica servers. server id is the server_id value of the server where the event

 originated. end_log_pos indicates where the next event starts (that is, it is the end

 position of the current event + 1). thread_id indicates which thread executed the event.

 exec_time is the time spent executing the event, on a replication source server. On a

 replica, it is the difference of the end execution time on the replica minus the beginning

 execution time on the source. The difference serves as an indicator of how much

 replication lags behind the source. error_code indicates the result from executing the

 event. Zero means that no error occurred.

 Note

 When using event groups, the file offsets of events may be grouped together and the

 comments of events may be grouped together. Do not mistake these grouped events for

 blank file offsets.

 The output from mysqlbinlog can be re-executed (for example, by using it as input to

 mysql) to redo the statements in the log. This is useful for recovery operations after an

 unexpected server exit. For other usage examples, see the discussion later in this section

 and in Section 7.5, ?Point-in-Time (Incremental) Recovery?. To execute the internal-use

 BINLOG statements used by mysqlbinlog, the user requires the BINLOG_ADMIN privilege (or

 the deprecated SUPER privilege), or the REPLICATION_APPLIER privilege plus the appropriate

 privileges to execute each log event.

 You can use mysqlbinlog to read binary log files directly and apply them to the local

 MySQL server. You can also read binary logs from a remote server by using the

 --read-from-remote-server option. To read remote binary logs, the connection parameter

 options can be given to indicate how to connect to the server. These options are --host,

 --password, --port, --protocol, --socket, and --user.

 When binary log files have been encrypted, which can be done from MySQL 8.0.14 onwards, Page 2/46

 mysqlbinlog cannot read them directly, but can read them from the server using the

 --read-from-remote-server option. Binary log files are encrypted when the server's

 binlog_encryption system variable is set to ON. The SHOW BINARY LOGS statement shows

 whether a particular binary log file is encrypted or unencrypted. Encrypted and

 unencrypted binary log files can also be distinguished using the magic number at the start

 of the file header for encrypted log files (0xFD62696E), which differs from that used for

 unencrypted log files (0xFE62696E). Note that from MySQL 8.0.14, mysqlbinlog returns a

 suitable error if you attempt to read an encrypted binary log file directly, but older

 versions of mysqlbinlog do not recognise the file as a binary log file at all. For more

 information on binary log encryption, see Section 17.3.2, ?Encrypting Binary Log Files and

 Relay Log Files?.

 When binary log transaction payloads have been compressed, which can be done from MySQL

 8.0.20 onwards, mysqlbinlog versions from that release on automatically decompress and

 decode the transaction payloads, and print them as they would uncompressed events. Older

 versions of mysqlbinlog cannot read compressed transaction payloads. When the server's

 binlog_transaction_compression system variable is set to ON, transaction payloads are

 compressed and then written to the server's binary log file as a single event (a

 Transaction_payload_event). With the --verbose option, mysqlbinlog adds comments stating

 the compression algorithm used, the compressed payload size that was originally received,

 and the resulting payload size after decompression.

 Note

 The end position (end_log_pos) that mysqlbinlog states for an individual event that

 was part of a compressed transaction payload is the same as the end position of the

 original compressed payload. Multiple decompressed events can therefore have the same

 end position.

 mysqlbinlog's own connection compression does less if transaction payloads are already

 compressed, but still operates on uncompressed transactions and headers.

 For more information on binary log transaction compression, see Section 5.4.4.5, ?Binary

 Log Transaction Compression?.

 When running mysqlbinlog against a large binary log, be careful that the filesystem has

 enough space for the resulting files. To configure the directory that mysqlbinlog uses for

 temporary files, use the TMPDIR environment variable.

 mysqlbinlog sets the value of pseudo_replica_mode or pseudo_slave_mode to true before Page 3/46

 executing any SQL statements. This system variable affects the handling of XA

 transactions, the original_commit_timestamp replication delay timestamp and the

 original_server_version system variable, and unsupported SQL modes.

 mysqlbinlog supports the following options, which can be specified on the command line or

 in the [mysqlbinlog] and [client] groups of an option file. For information about option

 files used by MySQL programs, see Section 4.2.2.2, ?Using Option Files?.

 ? --help, -?

 ???????????????????????????????

 ?Command-Line Format ? --help ?

 ???????????????????????????????

 Display a help message and exit.

 ? --base64-output=value

 ???

 ?Command-Line Format ? --base64-output=value ?

 ???

 ?Type ? String ?

 ???

 ?Default Value ? AUTO ?

 ???

 ?Valid Values ? ?

 ? ? AUTO ?

 ? ? ?

 ? ? NEVER ?

 ? ? ?

 ? ? DECODE-ROWS ?

 ???

 This option determines when events should be displayed encoded as base-64 strings

 using BINLOG statements. The option has these permissible values (not case-sensitive):

 ? AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements

 automatically when necessary (that is, for format description events and row

 events). If no --base64-output option is given, the effect is the same as

 --base64-output=AUTO.

 Note Page 4/46

 Automatic BINLOG display is the only safe behavior if you intend to use the

 output of mysqlbinlog to re-execute binary log file contents. The other option

 values are intended only for debugging or testing purposes because they may

 produce output that does not include all events in executable form.

 ? NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an

 error if a row event is found that must be displayed using BINLOG.

 ? DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded

 and displayed as commented SQL statements by also specifying the --verbose option.

 Like NEVER, DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER,

 it does not exit with an error if a row event is found.

 For examples that show the effect of --base64-output and --verbose on row event

 output, see the section called ?MYSQLBINLOG ROW EVENT DISPLAY?.

 ? --bind-address=ip_address

 ??

 ?Command-Line Format ? --bind-address=ip_address ?

 ??

 On a computer having multiple network interfaces, use this option to select which

 interface to use for connecting to the MySQL server.

 ? --binlog-row-event-max-size=N

 ??

 ?Command-Line Format ? --binlog-row-event-max-size=# ?

 ??

 ?Type ? Numeric ?

 ??

 ?Default Value ? 4294967040 ?

 ??

 ?Minimum Value ? 256 ?

 ??

 ?Maximum Value ? 18446744073709547520 ?

 ??

 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped

 into events smaller than this size if possible. The value should be a multiple of 256.

 The default is 4GB. Page 5/46

 ? --character-sets-dir=dir_name

 ??

 ?Command-Line Format ? --character-sets-dir=dir_name ?

 ??

 ?Type ? Directory name ?

 ??

 The directory where character sets are installed. See Section 10.15, ?Character Set

 Configuration?.

 ? --compress

 ??

 ?Command-Line Format ? --compress[={OFF|ON}] ?

 ??

 ?Introduced ? 8.0.17 ?

 ??

 ?Deprecated ? 8.0.18 ?

 ??

 ?Type ? Boolean ?

 ??

 ?Default Value ? OFF ?

 ??

 Compress all information sent between the client and the server if possible. See

 Section 4.2.8, ?Connection Compression Control?.

 This option was added in MySQL 8.0.17. As of MySQL 8.0.18 it is deprecated. Expect it

 to be removed in a future version of MySQL. See the section called ?Configuring Legacy

 Connection Compression?.

 ? --compression-algorithms=value

 ???

 ?Command-Line Format ? --compression-algorithms=value ?

 ???

 ?Introduced ? 8.0.18 ?

 ???

 ?Type ? Set ?

 ??? Page 6/46

 ?Default Value ? uncompressed ?

 ???

 ?Valid Values ? ?

 ? ? zlib ?

 ? ? ?

 ? ? zstd ?

 ? ? ?

 ? ? uncompressed ?

 ???

 The permitted compression algorithms for connections to the server. The available

 algorithms are the same as for the protocol_compression_algorithms system variable.

 The default value is uncompressed.

 For more information, see Section 4.2.8, ?Connection Compression Control?.

 This option was added in MySQL 8.0.18.

 ? --connection-server-id=server_id

 ??

 ?Command-Line Format ? --connection-server-id=#] ?

 ??

 ?Type ? Integer ?

 ??

 ?Default Value ? 0 (1) ?

 ??

 ?Minimum Value ? 0 (1) ?

 ??

 ?Maximum Value ? 4294967295 ?

 ??

 --connection-server-id specifies the server ID that mysqlbinlog reports when it

 connects to the server. It can be used to avoid a conflict with the ID of a replica

 server or another mysqlbinlog process.

 If the --read-from-remote-server option is specified, mysqlbinlog reports a server ID

 of 0, which tells the server to disconnect after sending the last log file

 (nonblocking behavior). If the --stop-never option is also specified to maintain the

 connection to the server, mysqlbinlog reports a server ID of 1 by default instead of Page 7/46

 0, and --connection-server-id can be used to replace that server ID if required. See

 the section called ?SPECIFYING THE MYSQLBINLOG SERVER ID?.

 ? --database=db_name, -d db_name

 ???

 ?Command-Line Format ? --database=db_name ?

 ???

 ?Type ? String ?

 ???

 This option causes mysqlbinlog to output entries from the binary log (local log only)

 that occur while db_name is been selected as the default database by USE.

 The --database option for mysqlbinlog is similar to the --binlog-do-db option for

 mysqld, but can be used to specify only one database. If --database is given multiple

 times, only the last instance is used.

 The effects of this option depend on whether the statement-based or row-based logging

 format is in use, in the same way that the effects of --binlog-do-db depend on whether

 statement-based or row-based logging is in use.

 Statement-based logging. The --database option works as follows:

 ? While db_name is the default database, statements are output whether they modify

 tables in db_name or a different database.

 ? Unless db_name is selected as the default database, statements are not output,

 even if they modify tables in db_name.

 ? There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The

 database being created, altered, or dropped is considered to be the default

 database when determining whether to output the statement.

 Suppose that the binary log was created by executing these statements using

 statement-based-logging:

 INSERT INTO test.t1 (i) VALUES(100);

 INSERT INTO db2.t2 (j) VALUES(200);

 USE test;

 INSERT INTO test.t1 (i) VALUES(101);

 INSERT INTO t1 (i) VALUES(102);

 INSERT INTO db2.t2 (j) VALUES(201);

 USE db2; Page 8/46

 INSERT INTO test.t1 (i) VALUES(103);

 INSERT INTO db2.t2 (j) VALUES(202);

 INSERT INTO t2 (j) VALUES(203);

 mysqlbinlog --database=test does not output the first two INSERT statements because

 there is no default database. It outputs the three INSERT statements following USE

 test, but not the three INSERT statements following USE db2.

 mysqlbinlog --database=db2 does not output the first two INSERT statements because

 there is no default database. It does not output the three INSERT statements following

 USE test, but does output the three INSERT statements following USE db2.

 Row-based logging. mysqlbinlog outputs only entries that change tables belonging to

 db_name. The default database has no effect on this. Suppose that the binary log just

 described was created using row-based logging rather than statement-based logging.

 mysqlbinlog --database=test outputs only those entries that modify t1 in the test

 database, regardless of whether USE was issued or what the default database is. If a

 server is running with binlog_format set to MIXED and you want it to be possible to

 use mysqlbinlog with the --database option, you must ensure that tables that are

 modified are in the database selected by USE. (In particular, no cross-database

 updates should be used.)

 When used together with the --rewrite-db option, the --rewrite-db option is applied

 first; then the --database option is applied, using the rewritten database name. The

 order in which the options are provided makes no difference in this regard.

 ? --debug[=debug_options], -# [debug_options]

 ???

 ?Command-Line Format ? --debug[=debug_options] ?

 ???

 ?Type ? String ?

 ???

 ?Default Value ? d:t:o,/tmp/mysqlbinlog.trace ?

 ???

 Write a debugging log. A typical debug_options string is d:t:o,file_name. The default

 is d:t:o,/tmp/mysqlbinlog.trace.

 This option is available only if MySQL was built using WITH_DEBUG. MySQL release

 binaries provided by Oracle are not built using this option. Page 9/46

 ? --debug-check

 ??????????????????????????????????????

 ?Command-Line Format ? --debug-check ?

 ??????????????????????????????????????

 ?Type ? Boolean ?

 ??????????????????????????????????????

 ?Default Value ? FALSE ?

 ??????????????????????????????????????

 Print some debugging information when the program exits.

 This option is available only if MySQL was built using WITH_DEBUG. MySQL release

 binaries provided by Oracle are not built using this option.

 ? --debug-info

 ?????????????????????????????????????

 ?Command-Line Format ? --debug-info ?

 ?????????????????????????????????????

 ?Type ? Boolean ?

 ?????????????????????????????????????

 ?Default Value ? FALSE ?

 ?????????????????????????????????????

 Print debugging information and memory and CPU usage statistics when the program

 exits.

 This option is available only if MySQL was built using WITH_DEBUG. MySQL release

 binaries provided by Oracle are not built using this option.

 ? --default-auth=plugin

 ??

 ?Command-Line Format ? --default-auth=plugin ?

 ??

 ?Type ? String ?

 ??

 A hint about which client-side authentication plugin to use. See Section 6.2.17,

 ?Pluggable Authentication?.

 ? --defaults-extra-file=file_name

 ?? Page 10/46

 ?Command-Line Format ? --defaults-extra-file=file_name ?

 ??

 ?Type ? File name ?

 ??

 Read this option file after the global option file but (on Unix) before the user

 option file. If the file does not exist or is otherwise inaccessible, an error occurs.

 If file_name is not an absolute path name, it is interpreted relative to the current

 directory.

 For additional information about this and other option-file options, see

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

 ? --defaults-file=file_name

 ??

 ?Command-Line Format ? --defaults-file=file_name ?

 ??

 ?Type ? File name ?

 ??

 Use only the given option file. If the file does not exist or is otherwise

 inaccessible, an error occurs. If file_name is not an absolute path name, it is

 interpreted relative to the current directory.

 Exception: Even with --defaults-file, client programs read .mylogin.cnf.

 For additional information about this and other option-file options, see

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

 ? --defaults-group-suffix=str

 ??

 ?Command-Line Format ? --defaults-group-suffix=str ?

 ??

 ?Type ? String ?

 ??

 Read not only the usual option groups, but also groups with the usual names and a

 suffix of str. For example, mysqlbinlog normally reads the [client] and [mysqlbinlog]

 groups. If this option is given as --defaults-group-suffix=_other, mysqlbinlog also

 reads the [client_other] and [mysqlbinlog_other] groups.

 For additional information about this and other option-file options, see Page 11/46

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

 ? --disable-log-bin, -D

 ??

 ?Command-Line Format ? --disable-log-bin ?

 ??

 Disable binary logging. This is useful for avoiding an endless loop if you use the

 --to-last-log option and are sending the output to the same MySQL server. This option

 also is useful when restoring after an unexpected exit to avoid duplication of the

 statements you have logged.

 This option causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its

 output to disable binary logging of the remaining output. Manipulating the session

 value of the sql_log_bin system variable is a restricted operation, so this option

 requires that you have privileges sufficient to set restricted session variables. See

 Section 5.1.9.1, ?System Variable Privileges?.

 ? --exclude-gtids=gtid_set

 ???

 ?Command-Line Format ? --exclude-gtids=gtid_set ?

 ???

 ?Type ? String ?

 ???

 ?Default Value ? ?

 ???

 Do not display any of the groups listed in the gtid_set.

 ? --force-if-open, -F

 ??

 ?Command-Line Format ? --force-if-open ?

 ??

 Read binary log files even if they are open or were not closed properly (IN_USE flag

 is set); do not fail if the file ends with a truncated event.

 The IN_USE flag is set only for the binary log that is currently written by the

 server; if the server has crashed, the flag remains set until the server is started up

 again and recovers the binary log. Without this option, mysqlbinlog refuses to process

 a file with this flag set. Since the server may be in the process of writing the file, Page 12/46

 truncation of the last event is considered normal.

 ? --force-read, -f

 ?????????????????????????????????????

 ?Command-Line Format ? --force-read ?

 ?????????????????????????????????????

 With this option, if mysqlbinlog reads a binary log event that it does not recognize,

 it prints a warning, ignores the event, and continues. Without this option,

 mysqlbinlog stops if it reads such an event.

 ? --get-server-public-key

 ??

 ?Command-Line Format ? --get-server-public-key ?

 ??

 ?Type ? Boolean ?

 ??

 Request from the server the public key required for RSA key pair-based password

 exchange. This option applies to clients that authenticate with the

 caching_sha2_password authentication plugin. For that plugin, the server does not send

 the public key unless requested. This option is ignored for accounts that do not

 authenticate with that plugin. It is also ignored if RSA-based password exchange is

 not used, as is the case when the client connects to the server using a secure

 connection.

 If --server-public-key-path=file_name is given and specifies a valid public key file,

 it takes precedence over --get-server-public-key.

 For information about the caching_sha2_password plugin, see Section 6.4.1.2, ?Caching

 SHA-2 Pluggable Authentication?.

 ? --hexdump, -H

 ??????????????????????????????????

 ?Command-Line Format ? --hexdump ?

 ??????????????????????????????????

 Display a hex dump of the log in comments, as described in the section called

 ?MYSQLBINLOG HEX DUMP FORMAT?. The hex output can be helpful for replication

 debugging.

 ? --host=host_name, -h host_name Page 13/46

 ???

 ?Command-Line Format ? --host=host_name ?

 ???

 ?Type ? String ?

 ???

 ?Default Value ? localhost ?

 ???

 Get the binary log from the MySQL server on the given host.

 ? --idempotent

 ?????????????????????????????????????

 ?Command-Line Format ? --idempotent ?

 ?????????????????????????????????????

 ?Type ? Boolean ?

 ?????????????????????????????????????

 ?Default Value ? true ?

 ?????????????????????????????????????

 Tell the MySQL Server to use idempotent mode while processing updates; this causes

 suppression of any duplicate-key or key-not-found errors that the server encounters in

 the current session while processing updates. This option may prove useful whenever it

 is desirable or necessary to replay one or more binary logs to a MySQL Server which

 may not contain all of the data to which the logs refer.

 The scope of effect for this option includes the current mysqlbinlog client and

 session only.

 ? --include-gtids=gtid_set

 ???

 ?Command-Line Format ? --include-gtids=gtid_set ?

 ???

 ?Type ? String ?

 ???

 ?Default Value ? ?

 ???

 Display only the groups listed in the gtid_set.

 ? --local-load=dir_name, -l dir_name Page 14/46

 ??

 ?Command-Line Format ? --local-load=dir_name ?

 ??

 ?Type ? Directory name ?

 ??

 For data loading operations corresponding to LOAD DATA statements, mysqlbinlog

 extracts the files from the binary log events, writes them as temporary files to the

 local file system, and writes LOAD DATA LOCAL statements to cause the files to be

 loaded. By default, mysqlbinlog writes these temporary files to an operating

 system-specific directory. The --local-load option can be used to explicitly specify

 the directory where mysqlbinlog should prepare local temporary files.

 Because other processes can write files to the default system-specific directory, it

 is advisable to specify the --local-load option to mysqlbinlog to designate a

 different directory for data files, and then designate that same directory by

 specifying the --load-data-local-dir option to mysql when processing the output from

 mysqlbinlog. For example:

 mysqlbinlog --local-load=/my/local/data ...

 | mysql --load-data-local-dir=/my/local/data ...

 Important

 These temporary files are not automatically removed by mysqlbinlog or any other

 MySQL program.

 ? --login-path=name

 ??

 ?Command-Line Format ? --login-path=name ?

 ??

 ?Type ? String ?

 ??

 Read options from the named login path in the .mylogin.cnf login path file. A ?login

 path? is an option group containing options that specify which MySQL server to connect

 to and which account to authenticate as. To create or modify a login path file, use

 the mysql_config_editor utility. See mysql_config_editor(1).

 For additional information about this and other option-file options, see

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?. Page 15/46

 ? --no-defaults

 ??????????????????????????????????????

 ?Command-Line Format ? --no-defaults ?

 ??????????????????????????????????????

 Do not read any option files. If program startup fails due to reading unknown options

 from an option file, --no-defaults can be used to prevent them from being read.

 The exception is that the .mylogin.cnf file is read in all cases, if it exists. This

 permits passwords to be specified in a safer way than on the command line even when

 --no-defaults is used. To create .mylogin.cnf, use the mysql_config_editor utility.

 See mysql_config_editor(1).

 For additional information about this and other option-file options, see

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

 ? --offset=N, -o N

 ???????????????????????????????????

 ?Command-Line Format ? --offset=# ?

 ???????????????????????????????????

 ?Type ? Numeric ?

 ???????????????????????????????????

 Skip the first N entries in the log.

 ? --open-files-limit=N

 ???

 ?Command-Line Format ? --open-files-limit=# ?

 ???

 ?Type ? Numeric ?

 ???

 ?Default Value ? 8 ?

 ???

 ?Minimum Value ? 1 ?

 ???

 ?Maximum Value ? [platform dependent] ?

 ???

 Specify the number of open file descriptors to reserve.

 ? --password[=password], -p[password] Page 16/46

 ??

 ?Command-Line Format ? --password[=password] ?

 ??

 ?Type ? String ?

 ??

 The password of the MySQL account used for connecting to the server. The password

 value is optional. If not given, mysqlbinlog prompts for one. If given, there must be

 no space between --password= or -p and the password following it. If no password

 option is specified, the default is to send no password.

 Specifying a password on the command line should be considered insecure. To avoid

 giving the password on the command line, use an option file. See Section 6.1.2.1,

 ?End-User Guidelines for Password Security?.

 To explicitly specify that there is no password and that mysqlbinlog should not prompt

 for one, use the --skip-password option.

 ? --plugin-dir=dir_name

 ??

 ?Command-Line Format ? --plugin-dir=dir_name ?

 ??

 ?Type ? Directory name ?

 ??

 The directory in which to look for plugins. Specify this option if the --default-auth

 option is used to specify an authentication plugin but mysqlbinlog does not find it.

 See Section 6.2.17, ?Pluggable Authentication?.

 ? --port=port_num, -P port_num

 ??

 ?Command-Line Format ? --port=port_num ?

 ??

 ?Type ? Numeric ?

 ??

 ?Default Value ? 3306 ?

 ??

 The TCP/IP port number to use for connecting to a remote server.

 ? --print-defaults Page 17/46

 ???

 ?Command-Line Format ? --print-defaults ?

 ???

 Print the program name and all options that it gets from option files.

 For additional information about this and other option-file options, see

 Section 4.2.2.3, ?Command-Line Options that Affect Option-File Handling?.

 ? --print-table-metadata

 ???

 ?Command-Line Format ? --print-table-metadata ?

 ???

 Print table related metadata from the binary log. Configure the amount of table

 related metadata binary logged using binlog-row-metadata.

 ? --protocol={TCP|SOCKET|PIPE|MEMORY}

 ??

 ?Command-Line Format ? --protocol=type ?

 ??

 ?Type ? String ?

 ??

 ?Default Value ? [see text] ?

 ??

 ?Valid Values ? ?

 ? ? TCP ?

 ? ? ?

 ? ? SOCKET ?

 ? ? ?

 ? ? PIPE ?

 ? ? ?

 ? ? MEMORY ?

 ??

 The transport protocol to use for connecting to the server. It is useful when the

 other connection parameters normally result in use of a protocol other than the one

 you want. For details on the permissible values, see Section 4.2.7, ?Connection

 Transport Protocols?. Page 18/46

 ? --raw

 ????????????????????????????????

 ?Command-Line Format ? --raw ?

 ????????????????????????????????

 ?Type ? Boolean ?

 ????????????????????????????????

 ?Default Value ? FALSE ?

 ????????????????????????????????

 By default, mysqlbinlog reads binary log files and writes events in text format. The

 --raw option tells mysqlbinlog to write them in their original binary format. Its use

 requires that --read-from-remote-server also be used because the files are requested

 from a server. mysqlbinlog writes one output file for each file read from the server.

 The --raw option can be used to make a backup of a server's binary log. With the

 --stop-never option, the backup is ?live? because mysqlbinlog stays connected to the

 server. By default, output files are written in the current directory with the same

 names as the original log files. Output file names can be modified using the

 --result-file option. For more information, see the section called ?USING MYSQLBINLOG

 TO BACK UP BINARY LOG FILES?.

 ? --read-from-remote-source=type

 ???

 ?Command-Line Format ? --read-from-remote-source=type ?

 ???

 ?Introduced ? 8.0.26 ?

 ???

 From MySQL 8.0.26, use --read-from-remote-source, and before MySQL 8.0.26, use

 --read-from-remote-master. Both options have the same effect. The options read binary

 logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID commands by

 setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-GTIDS,

 respectively. If --read-from-remote-source=BINLOG-DUMP-GTIDS or

 --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with --exclude-gtids,

 transactions can be filtered out on the source, avoiding unnecessary network traffic.

 The connection parameter options are used with these options or the

 --read-from-remote-server option. These options are --host, --password, --port, Page 19/46

 --protocol, --socket, and --user. If none of the remote options is specified, the

 connection parameter options are ignored.

 The REPLICATION SLAVE privilege is required to use these options.

 ? --read-from-remote-master=type

 ???

 ?Command-Line Format ? --read-from-remote-master=type ?

 ???

 ?Deprecated ? 8.0.26 ?

 ???

 Use this option before MySQL 8.0.26 rather than --read-from-remote-source. Both

 options have the same effect.

 ? --read-from-remote-server=file_name, -R

 ??

 ?Command-Line Format ? --read-from-remote- ?

 ? ? server=file_name ?

 ??

 Read the binary log from a MySQL server rather than reading a local log file. This

 option requires that the remote server be running. It works only for binary log files

 on the remote server, not relay log files, and takes only the binary log file name

 (including the numeric suffix) as its argument, while ignoring any path.

 The connection parameter options are used with this option or the

 --read-from-remote-master option. These options are --host, --password, --port,

 --protocol, --socket, and --user. If neither of the remote options is specified, the

 connection parameter options are ignored.

 The REPLICATION SLAVE privilege is required to use this option.

 This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

 ? --result-file=name, -r name

 ???

 ?Command-Line Format ? --result-file=name ?

 ???

 Without the --raw option, this option indicates the file to which mysqlbinlog writes

 text output. With --raw, mysqlbinlog writes one binary output file for each log file

 transferred from the server, writing them by default in the current directory using Page 20/46

 the same names as the original log file. In this case, the --result-file option value

 is treated as a prefix that modifies output file names.

 ? --require-row-format

 ???

 ?Command-Line Format ? --require-row-format ?

 ???

 ?Introduced ? 8.0.19 ?

 ???

 ?Type ? Boolean ?

 ???

 ?Default Value ? false ?

 ???

 Require row-based binary logging format for events. This option enforces row-based

 replication events for mysqlbinlog output. The stream of events produced with this

 option would be accepted by a replication channel that is secured using the

 REQUIRE_ROW_FORMAT option of the CHANGE REPLICATION SOURCE TO statement (from MySQL

 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). binlog_format=ROW must

 be set on the server where the binary log was written. When you specify this option,

 mysqlbinlog stops with an error message if it encounters any events that are

 disallowed under the REQUIRE_ROW_FORMAT restrictions, including LOAD DATA INFILE

 instructions, creating or dropping temporary tables, INTVAR, RAND, or USER_VAR events,

 and non-row-based events within a DML transaction. mysqlbinlog also prints a SET

 @@session.require_row_format statement at the start of its output to apply the

 restrictions when the output is executed, and does not print the SET

 @@session.pseudo_thread_id statement.

 This option was added in MySQL 8.0.19.

 ? --rewrite-db='from_name->to_name'

 ??

 ?Command-Line Format ? --rewrite-db='oldname->newname' ?

 ??

 ?Type ? String ?

 ??

 ?Default Value ? [none] ? Page 21/46

 ??

 When reading from a row-based or statement-based log, rewrite all occurrences of

 from_name to to_name. Rewriting is done on the rows, for row-based logs, as well as on

 the USE clauses, for statement-based logs.

 Warning

 Statements in which table names are qualified with database names are not

 rewritten to use the new name when using this option.

 The rewrite rule employed as a value for this option is a string having the form

 'from_name->to_name', as shown previously, and for this reason must be enclosed by

 quotation marks.

 To employ multiple rewrite rules, specify the option multiple times, as shown here:

 mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \

 binlog.00001 > /tmp/statements.sql

 When used together with the --database option, the --rewrite-db option is applied

 first; then --database option is applied, using the rewritten database name. The order

 in which the options are provided makes no difference in this regard.

 This means that, for example, if mysqlbinlog is started with

 --rewrite-db='mydb->yourdb' --database=yourdb, then all updates to any tables in

 databases mydb and yourdb are included in the output. On the other hand, if it is

 started with --rewrite-db='mydb->yourdb' --database=mydb, then mysqlbinlog outputs no

 statements at all: since all updates to mydb are first rewritten as updates to yourdb

 before applying the --database option, there remain no updates that match

 --database=mydb.

 ? --server-id=id

 ???????????????????????????????????????

 ?Command-Line Format ? --server-id=id ?

 ???????????????????????????????????????

 ?Type ? Numeric ?

 ???????????????????????????????????????

 Display only those events created by the server having the given server ID.

 ? --server-id-bits=N

 ???

 ?Command-Line Format ? --server-id-bits=# ? Page 22/46

 ???

 ?Type ? Numeric ?

 ???

 ?Default Value ? 32 ?

 ???

 ?Minimum Value ? 7 ?

 ???

 ?Maximum Value ? 32 ?

 ???

 Use only the first N bits of the server_id to identify the server. If the binary log

 was written by a mysqld with server-id-bits set to less than 32 and user data stored

 in the most significant bit, running mysqlbinlog with --server-id-bits set to 32

 enables this data to be seen.

 This option is supported only by the version of mysqlbinlog supplied with the NDB

 Cluster distribution, or built with NDB Cluster support.

 ? --server-public-key-path=file_name

 ???

 ?Command-Line Format ? --server-public-key- ?

 ? ? path=file_name ?

 ???

 ?Type ? File name ?

 ???

 The path name to a file in PEM format containing a client-side copy of the public key

 required by the server for RSA key pair-based password exchange. This option applies

 to clients that authenticate with the sha256_password or caching_sha2_password

 authentication plugin. This option is ignored for accounts that do not authenticate

 with one of those plugins. It is also ignored if RSA-based password exchange is not

 used, as is the case when the client connects to the server using a secure connection.

 If --server-public-key-path=file_name is given and specifies a valid public key file,

 it takes precedence over --get-server-public-key.

 For sha256_password, this option applies only if MySQL was built using OpenSSL.

 For information about the sha256_password and caching_sha2_password plugins, see

 Section 6.4.1.3, ?SHA-256 Pluggable Authentication?, and Section 6.4.1.2, ?Caching Page 23/46

 SHA-2 Pluggable Authentication?.

 ? --set-charset=charset_name

 ???

 ?Command-Line Format ? --set-charset=charset_name ?

 ???

 ?Type ? String ?

 ???

 Add a SET NAMES charset_name statement to the output to specify the character set to

 be used for processing log files.

 ? --shared-memory-base-name=name

 ???

 ?Command-Line Format ? --shared-memory-base-name=name ?

 ???

 ?Platform Specific ? Windows ?

 ???

 On Windows, the shared-memory name to use for connections made using shared memory to

 a local server. The default value is MYSQL. The shared-memory name is case-sensitive.

 This option applies only if the server was started with the shared_memory system

 variable enabled to support shared-memory connections.

 ? --short-form, -s

 ?????????????????????????????????????

 ?Command-Line Format ? --short-form ?

 ?????????????????????????????????????

 Display only the statements contained in the log, without any extra information or

 row-based events. This is for testing only, and should not be used in production

 systems. It is deprecated, and you should expect it to be removed in a future release.

 ? --skip-gtids[=(true|false)]

 ??

 ?Command-Line Format ? --skip-gtids[=true|false] ?

 ??

 ?Type ? Boolean ?

 ??

 ?Default Value ? false ? Page 24/46

 ??

 Do not include the GTIDs from the binary log files in the output dump file. For

 example:

 mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql

 mysql -u root -p -e "source /tmp/dump.sql"

 You should not normally use this option in production or in recovery, except in the

 specific, and rare, scenarios where the GTIDs are actively unwanted. For example, an

 administrator might want to duplicate selected transactions (such as table

 definitions) from a deployment to another, unrelated, deployment that will not

 replicate to or from the original. In that scenario, --skip-gtids can be used to

 enable the administrator to apply the transactions as if they were new, and ensure

 that the deployments remain unrelated. However, you should only use this option if the

 inclusion of the GTIDs causes a known issue for your use case.

 ? --socket=path, -S path

 ???

 ?Command-Line Format ? --socket={file_name|pipe_name} ?

 ???

 ?Type ? String ?

 ???

 For connections to localhost, the Unix socket file to use, or, on Windows, the name of

 the named pipe to use.

 On Windows, this option applies only if the server was started with the named_pipe

 system variable enabled to support named-pipe connections. In addition, the user

 making the connection must be a member of the Windows group specified by the

 named_pipe_full_access_group system variable.

 ? --ssl* Options that begin with --ssl specify whether to connect to the server using

 encryption and indicate where to find SSL keys and certificates. See the section

 called ?Command Options for Encrypted Connections?.

 ? --ssl-fips-mode={OFF|ON|STRICT}

 ??

 ?Command-Line Format ? --ssl-fips-mode={OFF|ON|STRICT} ?

 ??

 ?Deprecated ? 8.0.34 ? Page 25/46

 ??

 ?Type ? Enumeration ?

 ??

 ?Default Value ? OFF ?

 ??

 ?Valid Values ? ?

 ? ? OFF ?

 ? ? ?

 ? ? ON ?

 ? ? ?

 ? ? STRICT ?

 ??

 Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option

 differs from other --ssl-xxx options in that it is not used to establish encrypted

 connections, but rather to affect which cryptographic operations to permit. See

 Section 6.8, ?FIPS Support?.

 These --ssl-fips-mode values are permitted:

 ? OFF: Disable FIPS mode.

 ? ON: Enable FIPS mode.

 ? STRICT: Enable ?strict? FIPS mode.

 Note

 If the OpenSSL FIPS Object Module is not available, the only permitted value for

 --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON or STRICT

 causes the client to produce a warning at startup and to operate in non-FIPS mode.

 As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future

 version of MySQL.

 ? --start-datetime=datetime

 ??

 ?Command-Line Format ? --start-datetime=datetime ?

 ??

 ?Type ? Datetime ?

 ??

 Start reading the binary log at the first event having a timestamp equal to or later Page 26/46

 than the datetime argument. The datetime value is relative to the local time zone on

 the machine where you run mysqlbinlog. The value should be in a format accepted for

 the DATETIME or TIMESTAMP data types. For example:

 mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

 This option is useful for point-in-time recovery. See Section 7.5, ?Point-in-Time

 (Incremental) Recovery?.

 ? --start-position=N, -j N

 ???

 ?Command-Line Format ? --start-position=# ?

 ???

 ?Type ? Numeric ?

 ???

 Start decoding the binary log at the log position N, including in the output any

 events that begin at position N or after. The position is a byte point in the log

 file, not an event counter; it needs to point to the starting position of an event to

 generate useful output. This option applies to the first log file named on the command

 line.

 Prior to MySQL 8.0.33, the maximum value supported for this option was 4294967295

 (232-1). In MySQL 8.0.33 and later, it is 18446744073709551616 (264-1), unless

 --read-from-remote-server or --read-from-remote-source is also used, in which case the

 maximum is 4294967295.

 This option is useful for point-in-time recovery. See Section 7.5, ?Point-in-Time

 (Incremental) Recovery?.

 ? --stop-datetime=datetime

 ???

 ?Command-Line Format ? --stop-datetime=datetime ?

 ???

 Stop reading the binary log at the first event having a timestamp equal to or later

 than the datetime argument. See the description of the --start-datetime option for

 information about the datetime value.

 This option is useful for point-in-time recovery. See Section 7.5, ?Point-in-Time

 (Incremental) Recovery?.

 ? --stop-never Page 27/46

 ?????????????????????????????????????

 ?Command-Line Format ? --stop-never ?

 ?????????????????????????????????????

 ?Type ? Boolean ?

 ?????????????????????????????????????

 ?Default Value ? FALSE ?

 ?????????????????????????????????????

 This option is used with --read-from-remote-server. It tells mysqlbinlog to remain

 connected to the server. Otherwise mysqlbinlog exits when the last log file has been

 transferred from the server. --stop-never implies --to-last-log, so only the first

 log file to transfer need be named on the command line.

 --stop-never is commonly used with --raw to make a live binary log backup, but also

 can be used without --raw to maintain a continuous text display of log events as the

 server generates them.

 With --stop-never, by default, mysqlbinlog reports a server ID of 1 when it connects

 to the server. Use --connection-server-id to explicitly specify an alternative ID to

 report. It can be used to avoid a conflict with the ID of a replica server or another

 mysqlbinlog process. See the section called ?SPECIFYING THE MYSQLBINLOG SERVER ID?.

 ? --stop-never-slave-server-id=id

 ???

 ?Command-Line Format ? --stop-never-slave-server-id=# ?

 ???

 ?Type ? Numeric ?

 ???

 ?Default Value ? 65535 ?

 ???

 ?Minimum Value ? 1 ?

 ???

 This option is deprecated; expect it to be removed in a future release. Use the

 --connection-server-id option instead to specify a server ID for mysqlbinlog to

 report.

 ? --stop-position=N

 ?? Page 28/46

 ?Command-Line Format ? --stop-position=# ?

 ??

 ?Type ? Numeric ?

 ??

 Stop decoding the binary log at the log position N, excluding from the output any

 events that begin at position N or after. The position is a byte point in the log

 file, not an event counter; it needs to point to a spot after the starting position of

 the last event you want to include in the output. The event starting before position N

 and finishing at or after the position is the last event to be processed. This option

 applies to the last log file named on the command line.

 This option is useful for point-in-time recovery. See Section 7.5, ?Point-in-Time

 (Incremental) Recovery?.

 ? --tls-ciphersuites=ciphersuite_list

 ??

 ?Command-Line Format ? --tls- ?

 ? ? ciphersuites=ciphersuite_list ?

 ??

 ?Introduced ? 8.0.16 ?

 ??

 ?Type ? String ?

 ??

 The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is

 a list of one or more colon-separated ciphersuite names. The ciphersuites that can be

 named for this option depend on the SSL library used to compile MySQL. For details,

 see Section 6.3.2, ?Encrypted Connection TLS Protocols and Ciphers?.

 This option was added in MySQL 8.0.16.

 ? --tls-version=protocol_list

 ??

 ?Command-Line Format ? --tls-version=protocol_list ?

 ??

 ?Type ? String ?

 ??

 ?Default Value (? 8.0.16) ? ? Page 29/46

 ? ? TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 ?

 ? ? (OpenSSL 1.1.1 or ?

 ? ? higher) ?

 ? ? ?

 ? ? TLSv1,TLSv1.1,TLSv1.2 ?

 ? ? (otherwise) ?

 ??

 ?Default Value (? 8.0.15) ? TLSv1,TLSv1.1,TLSv1.2 ?

 ??

 The permissible TLS protocols for encrypted connections. The value is a list of one or

 more comma-separated protocol names. The protocols that can be named for this option

 depend on the SSL library used to compile MySQL. For details, see Section 6.3.2,

 ?Encrypted Connection TLS Protocols and Ciphers?.

 ? --to-last-log, -t

 ??????????????????????????????????????

 ?Command-Line Format ? --to-last-log ?

 ??????????????????????????????????????

 Do not stop at the end of the requested binary log from a MySQL server, but rather

 continue printing until the end of the last binary log. If you send the output to the

 same MySQL server, this may lead to an endless loop. This option requires

 --read-from-remote-server.

 ? --user=user_name, -u user_name

 ??

 ?Command-Line Format ? --user=user_name, ?

 ??

 ?Type ? String ?

 ??

 The user name of the MySQL account to use when connecting to a remote server.

 If you are using the Rewriter plugin with MySQL 8.0.31 or later, you should grant this

 user the SKIP_QUERY_REWRITE privilege.

 ? --verbose, -v

 ??????????????????????????????????

 ?Command-Line Format ? --verbose ? Page 30/46

 ??????????????????????????????????

 Reconstruct row events and display them as commented SQL statements, with table

 partition information where applicable. If this option is given twice (by passing in

 either "-vv" or "--verbose --verbose"), the output includes comments to indicate

 column data types and some metadata, and informational log events such as row query

 log events if the binlog_rows_query_log_events system variable is set to TRUE.

 For examples that show the effect of --base64-output and --verbose on row event

 output, see the section called ?MYSQLBINLOG ROW EVENT DISPLAY?.

 ? --verify-binlog-checksum, -c

 ???

 ?Command-Line Format ? --verify-binlog-checksum ?

 ???

 Verify checksums in binary log files.

 ? --version, -V

 ??????????????????????????????????

 ?Command-Line Format ? --version ?

 ??????????????????????????????????

 Display version information and exit.

 Unlike the case with previous versions of MySQL, the version number shown by

 mysqlbinlog when using this option is the same as the MySQL Server version.

 ? --zstd-compression-level=level

 ???

 ?Command-Line Format ? --zstd-compression-level=# ?

 ???

 ?Introduced ? 8.0.18 ?

 ???

 ?Type ? Integer ?

 ???

 The compression level to use for connections to the server that use the zstd

 compression algorithm. The permitted levels are from 1 to 22, with larger values

 indicating increasing levels of compression. The default zstd compression level is 3.

 The compression level setting has no effect on connections that do not use zstd

 compression. Page 31/46

 For more information, see Section 4.2.8, ?Connection Compression Control?.

 This option was added in MySQL 8.0.18.

 You can pipe the output of mysqlbinlog into the mysql client to execute the events

 contained in the binary log. This technique is used to recover from an unexpected exit

 when you have an old backup (see Section 7.5, ?Point-in-Time (Incremental) Recovery?). For

 example:

 mysqlbinlog binlog.000001 | mysql -u root -p

 Or:

 mysqlbinlog binlog.[0-9]* | mysql -u root -p

 If the statements produced by mysqlbinlog may contain BLOB values, these may cause

 problems when mysql processes them. In this case, invoke mysql with the --binary-mode

 option.

 You can also redirect the output of mysqlbinlog to a text file instead, if you need to

 modify the statement log first (for example, to remove statements that you do not want to

 execute for some reason). After editing the file, execute the statements that it contains

 by using it as input to the mysql program:

 mysqlbinlog binlog.000001 > tmpfile

 ... edit tmpfile ...

 mysql -u root -p < tmpfile

 When mysqlbinlog is invoked with the --start-position option, it displays only those

 events with an offset in the binary log greater than or equal to a given position (the

 given position must match the start of one event). It also has options to stop and start

 when it sees an event with a given date and time. This enables you to perform

 point-in-time recovery using the --stop-datetime option (to be able to say, for example,

 ?roll forward my databases to how they were today at 10:30 a.m.?).

 Processing multiple files. If you have more than one binary log to execute on the MySQL

 server, the safe method is to process them all using a single connection to the server.

 Here is an example that demonstrates what may be unsafe:

 mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!

 mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

 Processing binary logs this way using multiple connections to the server causes problems

 if the first log file contains a CREATE TEMPORARY TABLE statement and the second log

 contains a statement that uses the temporary table. When the first mysql process Page 32/46

 terminates, the server drops the temporary table. When the second mysql process attempts

 to use the table, the server reports ?unknown table.?

 To avoid problems like this, use a single mysql process to execute the contents of all

 binary logs that you want to process. Here is one way to do so:

 mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

 Another approach is to write all the logs to a single file and then process the file:

 mysqlbinlog binlog.000001 > /tmp/statements.sql

 mysqlbinlog binlog.000002 >> /tmp/statements.sql

 mysql -u root -p -e "source /tmp/statements.sql"

 From MySQL 8.0.12, you can also supply multiple binary log files to mysqlbinlog as

 streamed input using a shell pipe. An archive of compressed binary log files can be

 decompressed and provided directly to mysqlbinlog. In this example, binlog-files_1.gz

 contains multiple binary log files for processing. The pipeline extracts the contents of

 binlog-files_1.gz, pipes the binary log files to mysqlbinlog as standard input, and pipes

 the output of mysqlbinlog into the mysql client for execution:

 gzip -cd binlog-files_1.gz | ./mysqlbinlog - | ./mysql -uroot -p

 You can specify more than one archive file, for example:

 gzip -cd binlog-files_1.gz binlog-files_2.gz | ./mysqlbinlog - | ./mysql -uroot -p

 For streamed input, do not use --stop-position, because mysqlbinlog cannot identify the

 last log file to apply this option.

 LOAD DATA operations. mysqlbinlog can produce output that reproduces a LOAD DATA operation

 without the original data file. mysqlbinlog copies the data to a temporary file and

 writes a LOAD DATA LOCAL statement that refers to the file. The default location of the

 directory where these files are written is system-specific. To specify a directory

 explicitly, use the --local-load option.

 Because mysqlbinlog converts LOAD DATA statements to LOAD DATA LOCAL statements (that is,

 it adds LOCAL), both the client and the server that you use to process the statements must

 be configured with the LOCAL capability enabled. See Section 6.1.6, ?Security

 Considerations for LOAD DATA LOCAL?.

 Warning

 The temporary files created for LOAD DATA LOCAL statements are not automatically

 deleted because they are needed until you actually execute those statements. You

 should delete the temporary files yourself after you no longer need the statement log. Page 33/46

 The files can be found in the temporary file directory and have names like

 original_file_name-#-#.

MYSQLBINLOG HEX DUMP FORMAT

 The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

 mysqlbinlog --hexdump source-bin.000001

 The hex output consists of comment lines beginning with #, so the output might look like

 this for the preceding command:

 /*!40019 SET @@SESSION.max_insert_delayed_threads=0*/;

 /*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

 # at 4

 #051024 17:24:13 server id 1 end_log_pos 98

 # Position Timestamp Type Master ID Size Master Pos Flags

 # 00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00

 # 00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|

 # 00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|

 # 00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

 # 00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|

 # 00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|

 # Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13

 # at startup

 ROLLBACK;

 Hex dump output currently contains the elements in the following list. This format is

 subject to change. For more information about binary log format, see MySQL Internals: The

 Binary Log[1].

 ? Position: The byte position within the log file.

 ? Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the

 representation of '051024 17:24:13' in hexadecimal.

 ? Type: The event type code.

 ? Master ID: The server ID of the replication source server that created the event.

 ? Size: The size in bytes of the event.

 ? Master Pos: The position of the next event in the original source log file.

 ? Flags: Event flag values.

MYSQLBINLOG ROW EVENT DISPLAY Page 34/46

 The following examples illustrate how mysqlbinlog displays row events that specify data

 modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT,

 and DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options

 may be used to affect row event output.

 Suppose that the server is using row-based binary logging and that you execute the

 following sequence of statements:

 CREATE TABLE t

 (

 id INT NOT NULL,

 name VARCHAR(20) NOT NULL,

 date DATE NULL

) ENGINE = InnoDB;

 START TRANSACTION;

 INSERT INTO t VALUES(1, 'apple', NULL);

 UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;

 DELETE FROM t WHERE id = 1;

 COMMIT;

 By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG

 statements. Omitting extraneous lines, the output for the row events produced by the

 preceding statement sequence looks like this:

 $> mysqlbinlog log_file

 ...

 # at 218

 #080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

 '/*!*/;

 ...

 # at 302

 #080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ= Page 35/46

 fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

 '/*!*/;

 ...

 # at 400

 #080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

 '/*!*/;

 To see the row events as comments in the form of ?pseudo-SQL? statements, run mysqlbinlog

 with the --verbose or -v option. This output level also shows table partition information

 where applicable. The output contains lines beginning with ###:

 $> mysqlbinlog -v log_file

 ...

 # at 218

 #080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

 '/*!*/;

 ### INSERT INTO test.t

 ### SET

 ### @1=1

 ### @2='apple'

 ### @3=NULL

 ...

 # at 302

 #080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

 '/*!*/;

 ### UPDATE test.t Page 36/46

 ### WHERE

 ### @1=1

 ### @2='apple'

 ### @3=NULL

 ### SET

 ### @1=1

 ### @2='pear'

 ### @3='2009:01:01'

 ...

 # at 400

 #080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

 '/*!*/;

 ### DELETE FROM test.t

 ### WHERE

 ### @1=1

 ### @2='pear'

 ### @3='2009:01:01'

 Specify --verbose or -v twice to also display data types and some metadata for each

 column, and informational log events such as row query log events if the

 binlog_rows_query_log_events system variable is set to TRUE. The output contains an

 additional comment following each column change:

 $> mysqlbinlog -vv log_file

 ...

 # at 218

 #080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

 '/*!*/;

 ### INSERT INTO test.t Page 37/46

 ### SET

 ### @1=1 /* INT meta=0 nullable=0 is_null=0 */

 ### @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

 ### @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

 ...

 # at 302

 #080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

 '/*!*/;

 ### UPDATE test.t

 ### WHERE

 ### @1=1 /* INT meta=0 nullable=0 is_null=0 */

 ### @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

 ### @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

 ### SET

 ### @1=1 /* INT meta=0 nullable=0 is_null=0 */

 ### @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

 ### @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

 ...

 # at 400

 #080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

 BINLOG '

 fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

 fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

 '/*!*/;

 ### DELETE FROM test.t

 ### WHERE

 ### @1=1 /* INT meta=0 nullable=0 is_null=0 */

 ### @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

 ### @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

 You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the Page 38/46

 --base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not

 exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS

 and --verbose provides a convenient way to see row events only as SQL statements:

 $> mysqlbinlog -v --base64-output=DECODE-ROWS log_file

 ...

 # at 218

 #080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

 ### INSERT INTO test.t

 ### SET

 ### @1=1

 ### @2='apple'

 ### @3=NULL

 ...

 # at 302

 #080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

 ### UPDATE test.t

 ### WHERE

 ### @1=1

 ### @2='apple'

 ### @3=NULL

 ### SET

 ### @1=1

 ### @2='pear'

 ### @3='2009:01:01'

 ...

 # at 400

 #080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

 ### DELETE FROM test.t

 ### WHERE

 ### @1=1

 ### @2='pear'

 ### @3='2009:01:01'

 Note Page 39/46

 You should not suppress BINLOG statements if you intend to re-execute mysqlbinlog

 output.

 The SQL statements produced by --verbose for row events are much more readable than the

 corresponding BINLOG statements. However, they do not correspond exactly to the original

 SQL statements that generated the events. The following limitations apply:

 ? The original column names are lost and replaced by @N, where N is a column number.

 ? Character set information is not available in the binary log, which affects string

 column display:

 ? There is no distinction made between corresponding binary and nonbinary string

 types (BINARY and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a

 data type of STRING for fixed-length strings and VARSTRING for variable-length

 strings.

 ? For multibyte character sets, the maximum number of bytes per character is not

 present in the binary log, so the length for string types is displayed in bytes

 rather than in characters. For example, STRING(4) is used as the data type for

 values from either of these column types:

 CHAR(4) CHARACTER SET latin1

 CHAR(2) CHARACTER SET ucs2

 ? Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements

 are displayed with the WHERE clause preceding the SET clause.

 Proper interpretation of row events requires the information from the format description

 event at the beginning of the binary log. Because mysqlbinlog does not know in advance

 whether the rest of the log contains row events, by default it displays the format

 description event using a BINLOG statement in the initial part of the output.

 If the binary log is known not to contain any events requiring a BINLOG statement (that

 is, no row events), the --base64-output=NEVER option can be used to prevent this header

 from being written.

USING MYSQLBINLOG TO BACK UP BINARY LOG FILES

 By default, mysqlbinlog reads binary log files and displays their contents in text format.

 This enables you to examine events within the files more easily and to re-execute them

 (for example, by using the output as input to mysql). mysqlbinlog can read log files

 directly from the local file system, or, with the --read-from-remote-server option, it can

 connect to a server and request binary log contents from that server. mysqlbinlog writes Page 40/46

 text output to its standard output, or to the file named as the value of the

 --result-file=file_name option if that option is given.

 ? mysqlbinlog Backup Capabilities

 ? mysqlbinlog Backup Options

 ? Static and Live Backups

 ? Output File Naming

 ? Example: mysqldump + mysqlbinlog for Backup and Restore

 ? mysqlbinlog Backup Restrictions

 mysqlbinlog Backup Capabilities

 mysqlbinlog can read binary log files and write new files containing the same content?that

 is, in binary format rather than text format. This capability enables you to easily back

 up a binary log in its original format. mysqlbinlog can make a static backup, backing up

 a set of log files and stopping when the end of the last file is reached. It can also make

 a continuous (?live?) backup, staying connected to the server when it reaches the end of

 the last log file and continuing to copy new events as they are generated. In

 continuous-backup operation, mysqlbinlog runs until the connection ends (for example, when

 the server exits) or mysqlbinlog is forcibly terminated. When the connection ends,

 mysqlbinlog does not wait and retry the connection, unlike a replica server. To continue a

 live backup after the server has been restarted, you must also restart mysqlbinlog.

 Important

 mysqlbinlog can back up both encrypted and unencrypted binary log files . However,

 copies of encrypted binary log files that are generated using mysqlbinlog are stored

 in an unencrypted format.

 mysqlbinlog Backup Options

 Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

 ? The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server

 and request its binary log. (This is similar to a replica server connecting to its

 replication source server.)

 ? The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

 Along with --read-from-remote-server, it is common to specify other options: --host

 indicates where the server is running, and you may also need to specify connection options

 such as --user and --password.

 Several other options are useful in conjunction with --raw: Page 41/46

 ? --stop-never: Stay connected to the server after reaching the end of the last log file

 and continue to read new events.

 ? --connection-server-id=id: The server ID that mysqlbinlog reports when it connects to

 a server. When --stop-never is used, the default reported server ID is 1. If this

 causes a conflict with the ID of a replica server or another mysqlbinlog process, use

 --connection-server-id to specify an alternative server ID. See the section called

 ?SPECIFYING THE MYSQLBINLOG SERVER ID?.

 ? --result-file: A prefix for output file names, as described later.

 Static and Live Backups

 To back up a server's binary log files with mysqlbinlog, you must specify file names that

 actually exist on the server. If you do not know the names, connect to the server and use

 the SHOW BINARY LOGS statement to see the current names. Suppose that the statement

 produces this output:

 mysql> SHOW BINARY LOGS;

 +---------------+-----------+-----------+

 | Log_name | File_size | Encrypted |

 +---------------+-----------+-----------+

 | binlog.000130 | 27459 | No |

 | binlog.000131 | 13719 | No |

 | binlog.000132 | 43268 | No |

 +---------------+-----------+-----------+

 With that information, you can use mysqlbinlog to back up the binary log to the current

 directory as follows (enter each command on a single line):

 ? To make a static backup of binlog.000130 through binlog.000132, use either of these

 commands:

 mysqlbinlog --read-from-remote-server --host=host_name --raw

 binlog.000130 binlog.000131 binlog.000132

 mysqlbinlog --read-from-remote-server --host=host_name --raw

 --to-last-log binlog.000130

 The first command specifies every file name explicitly. The second names only the

 first file and uses --to-last-log to read through the last. A difference between these

 commands is that if the server happens to open binlog.000133 before mysqlbinlog

 reaches the end of binlog.000132, the first command does not read it, but the second Page 42/46

 command does.

 ? To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing

 log files, then stays connected to copy new events as the server generates them:

 mysqlbinlog --read-from-remote-server --host=host_name --raw

 --stop-never binlog.000130

 With --stop-never, it is not necessary to specify --to-last-log to read to the last

 log file because that option is implied.

 Output File Naming

 Without --raw, mysqlbinlog produces text output and the --result-file option, if given,

 specifies the name of the single file to which all output is written. With --raw,

 mysqlbinlog writes one binary output file for each log file transferred from the server.

 By default, mysqlbinlog writes the files in the current directory with the same names as

 the original log files. To modify the output file names, use the --result-file option. In

 conjunction with --raw, the --result-file option value is treated as a prefix that

 modifies the output file names.

 Suppose that a server currently has binary log files named binlog.000999 and up. If you

 use mysqlbinlog --raw to back up the files, the --result-file option produces output file

 names as shown in the following table. You can write the files to a specific directory by

 beginning the --result-file value with the directory path. If the --result-file value

 consists only of a directory name, the value must end with the pathname separator

 character. Output files are overwritten if they exist.

 ??

 ?--result-file Option ? Output File Names ?

 ??

 ?--result-file=x ? xbinlog.000999 and up ?

 ??

 ?--result-file=/tmp/ ? /tmp/binlog.000999 and up ?

 ??

 ?--result-file=/tmp/x ? /tmp/xbinlog.000999 and up ?

 ??

 Example: mysqldump + mysqlbinlog for Backup and Restore

 The following example describes a simple scenario that shows how to use mysqldump and

 mysqlbinlog together to back up a server's data and binary log, and how to use the backup Page 43/46

 to restore the server if data loss occurs. The example assumes that the server is running

 on host host_name and its first binary log file is named binlog.000999. Enter each command

 on a single line.

 Use mysqlbinlog to make a continuous backup of the binary log:

 mysqlbinlog --read-from-remote-server --host=host_name --raw

 --stop-never binlog.000999

 Use mysqldump to create a dump file as a snapshot of the server's data. Use

 --all-databases, --events, and --routines to back up all data, and --master-data=2 to

 include the current binary log coordinates in the dump file.

 mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

 Execute the mysqldump command periodically to create newer snapshots as desired.

 If data loss occurs (for example, if the server unexpectedly exits), use the most recent

 dump file to restore the data:

 mysql --host=host_name -u root -p < dump_file

 Then use the binary log backup to re-execute events that were written after the

 coordinates listed in the dump file. Suppose that the coordinates in the file look like

 this:

 -- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

 If the most recent backed-up log file is named binlog.001004, re-execute the log events

 like this:

 mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004

 | mysql --host=host_name -u root -p

 You might find it easier to copy the backup files (dump file and binary log files) to the

 server host to make it easier to perform the restore operation, or if MySQL does not allow

 remote root access. mysqlbinlog Backup Restrictions

 Binary log backups with mysqlbinlog are subject to these restrictions:

 ? mysqlbinlog does not automatically reconnect to the MySQL server if the connection is

 lost (for example, if a server restart occurs or there is a network outage).

 ? The delay for a backup is similar to the delay for a replica server.

SPECIFYING THE MYSQLBINLOG SERVER ID

 When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL

 server, specifies a server ID to identify itself, and requests binary log files from the

 server. You can use mysqlbinlog to request log files from a server in several ways: Page 44/46

 ? Specify an explicitly named set of files: For each file, mysqlbinlog connects and

 issues a Binlog dump command. The server sends the file and disconnects. There is one

 connection per file.

 ? Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog

 dump command for all files. The server sends all files and disconnects.

 ? Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog

 connects and issues a Binlog dump command for all files. The server sends all files,

 but does not disconnect after sending the last one.

 With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which

 tells the server to disconnect after sending the last requested log file.

 With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero

 server ID, so the server does not disconnect after sending the last log file. The server

 ID is 1 by default, but this can be changed with --connection-server-id.

 Thus, for the first two ways of requesting files, the server disconnects because

 mysqlbinlog specifies a server ID of 0. It does not disconnect if --stop-never is given

 because mysqlbinlog specifies a nonzero server ID.

COPYRIGHT

 Copyright ? 1997, 2023, Oracle and/or its affiliates.

 This documentation is free software; you can redistribute it and/or modify it only under

 the terms of the GNU General Public License as published by the Free Software Foundation;

 version 2 of the License.

 This documentation is distributed in the hope that it will be useful, but WITHOUT ANY

 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

 PURPOSE. See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with the program;

 if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

 Boston, MA 02110-1301 USA or see http://www.gnu.org/licenses/.

NOTES

 1. MySQL Internals: The Binary Log

 https://dev.mysql.com/doc/internals/en/binary-log.html

SEE ALSO

 For more information, please refer to the MySQL Reference Manual, which may already be

 installed locally and which is also available online at http://dev.mysql.com/doc/. Page 45/46

AUTHOR

 Oracle Corporation (http://dev.mysql.com/).

MySQL 8.0 11/27/2023 MYSQLBINLOG(1)

Page 46/46

