
Rocky Enterprise Linux 9.2 Manual Pages on command 'nanosleep.2'

$ man nanosleep.2

NANOSLEEP(2)                        Linux Programmer's Manual                        NANOSLEEP(2)

NAME

       nanosleep - high-resolution sleep

SYNOPSIS

       #include <time.h>

       int nanosleep(const struct timespec *req, struct timespec *rem);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       nanosleep(): _POSIX_C_SOURCE >= 199309L

DESCRIPTION

       nanosleep()  suspends  the  execution of the calling thread until either at least the time

       specified in *req has elapsed, or the delivery of a signal that triggers the invocation of

       a handler in the calling thread or that terminates the process.

       If  the  call  is  interrupted  by a signal handler, nanosleep() returns -1, sets errno to

       EINTR, and writes the remaining time into the structure pointed to by rem  unless  rem  is

       NULL.  The value of *rem can then be used to call nanosleep() again and complete the spec?

       ified pause (but see NOTES).

       The structure timespec is used to specify intervals of time with nanosecond precision.  It

       is defined as follows:

           struct timespec {

               time_t tv_sec;        /* seconds */

               long   tv_nsec;       /* nanoseconds */

           };

       The value of the nanoseconds field must be in the range 0 to 999999999. Page 1/3



       Compared  to sleep(3) and usleep(3), nanosleep() has the following advantages: it provides

       a higher resolution for specifying the sleep interval; POSIX.1 explicitly  specifies  that

       it does not interact with signals; and it makes the task of resuming a sleep that has been

       interrupted by a signal handler easier.

RETURN VALUE

       On successfully sleeping for the requested interval, nanosleep() returns 0.  If  the  call

       is  interrupted by a signal handler or encounters an error, then it returns -1, with errno

       set to indicate the error.

ERRORS

       EFAULT Problem with copying information from user space.

       EINTR  The pause has been interrupted by a signal that was delivered to  the  thread  (see

              signal(7)).  The remaining sleep time has been written into *rem so that the thread

              can easily call nanosleep() again and continue with the pause.

       EINVAL The value in the tv_nsec field was not in the range 0 to 999999999  or  tv_sec  was

              negative.

CONFORMING TO

       POSIX.1-2001, POSIX.1-2008.

NOTES

       If  the  interval  specified in req is not an exact multiple of the granularity underlying

       clock (see time(7)), then the interval will be rounded up to the next multiple.   Further?

       more, after the sleep completes, there may still be a delay before the CPU becomes free to

       once again execute the calling thread.

       The fact that nanosleep() sleeps for a relative interval can be problematic if the call is

       repeatedly restarted after being interrupted by signals, since the time between the inter?

       ruptions and restarts of the call will lead to drift in the time when  the  sleep  finally

       completes.   This problem can be avoided by using clock_nanosleep(2) with an absolute time

       value.

       POSIX.1 specifies that nanosleep() should measure time against the  CLOCK_REALTIME  clock.

       However,  Linux measures the time using the CLOCK_MONOTONIC clock.  This probably does not

       matter, since the POSIX.1  specification  for  clock_settime(2)  says  that  discontinuous

       changes in CLOCK_REALTIME should not affect nanosleep():

              Setting  the  value  of the CLOCK_REALTIME clock via clock_settime(2) shall have no

              effect on threads that are blocked waiting for a relative time service  based  upon Page 2/3



              this  clock, including the nanosleep() function; ...  Consequently, these time ser?

              vices shall expire when the requested relative interval elapses,  independently  of

              the new or old value of the clock.

   Old behavior

       In  order  to  support  applications requiring much more precise pauses (e.g., in order to

       control some time-critical hardware), nanosleep() would handle pauses of up to 2 millisec?

       onds  by busy waiting with microsecond precision when called from a thread scheduled under

       a real-time policy like SCHED_FIFO or SCHED_RR.  This special  extension  was  removed  in

       kernel 2.5.39, and is thus not available in Linux 2.6.0 and later kernels.

BUGS

       If  a  program  that  catches signals and uses nanosleep() receives signals at a very high

       rate, then scheduling delays and rounding errors in the kernel's calculation of the  sleep

       interval and the returned remain value mean that the remain value may steadily increase on

       successive  restarts  of  the   nanosleep()   call.    To   avoid   such   problems,   use

       clock_nanosleep(2) with the TIMER_ABSTIME flag to sleep to an absolute deadline.

       In  Linux  2.4, if nanosleep() is stopped by a signal (e.g., SIGTSTP), then the call fails

       with the error EINTR after the thread is resumed by a SIGCONT signal.  If the system  call

       is subsequently restarted, then the time that the thread spent in the stopped state is not

       counted against the sleep interval.  This problem is fixed in Linux 2.6.0 and  later  ker?

       nels.

SEE ALSO

       clock_nanosleep(2),  restart_syscall(2), sched_setscheduler(2), timer_create(2), sleep(3),

       usleep(3), time(7)

COLOPHON

       This page is part of release 5.10 of the Linux man-pages project.  A  description  of  the

       project,  information  about  reporting  bugs, and the latest version of this page, can be

       found at https://www.kernel.org/doc/man-pages/.

Linux                                       2017-09-15                               NANOSLEEP(2)

Page 3/3


