
Rocky Enterprise Linux 9.2 Manual Pages on command 'newfstatat.2'

$ man newfstatat.2

STAT(2) Linux Programmer's Manual STAT(2)

NAME

 stat, fstat, lstat, fstatat - get file status

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <unistd.h>

 int stat(const char *pathname, struct stat *statbuf);

 int fstat(int fd, struct stat *statbuf);

 int lstat(const char *pathname, struct stat *statbuf);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int fstatat(int dirfd, const char *pathname, struct stat *statbuf,

 int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 lstat():

 /* glibc 2.19 and earlier */ _BSD_SOURCE

 || /* Since glibc 2.20 */ _DEFAULT_SOURCE

 || _XOPEN_SOURCE >= 500

 || /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L

 fstatat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L Page 1/9

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 These functions return information about a file, in the buffer pointed to by statbuf. No

 permissions are required on the file itself, but?in the case of stat(), fstatat(), and

 lstat()?execute (search) permission is required on all of the directories in pathname that

 lead to the file.

 stat() and fstatat() retrieve information about the file pointed to by pathname; the dif?

 ferences for fstatat() are described below.

 lstat() is identical to stat(), except that if pathname is a symbolic link, then it re?

 turns information about the link itself, not the file that the link refers to.

 fstat() is identical to stat(), except that the file about which information is to be re?

 trieved is specified by the file descriptor fd.

 The stat structure

 All of these system calls return a stat structure, which contains the following fields:

 struct stat {

 dev_t st_dev; /* ID of device containing file */

 ino_t st_ino; /* Inode number */

 mode_t st_mode; /* File type and mode */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device ID (if special file) */

 off_t st_size; /* Total size, in bytes */

 blksize_t st_blksize; /* Block size for filesystem I/O */

 blkcnt_t st_blocks; /* Number of 512B blocks allocated */

 /* Since Linux 2.6, the kernel supports nanosecond

 precision for the following timestamp fields.

 For the details before Linux 2.6, see NOTES. */

 struct timespec st_atim; /* Time of last access */

 struct timespec st_mtim; /* Time of last modification */

 struct timespec st_ctim; /* Time of last status change */

 #define st_atime st_atim.tv_sec /* Backward compatibility */ Page 2/9

 #define st_mtime st_mtim.tv_sec

 #define st_ctime st_ctim.tv_sec

 };

 Note: the order of fields in the stat structure varies somewhat across architectures. In

 addition, the definition above does not show the padding bytes that may be present between

 some fields on various architectures. Consult the glibc and kernel source code if you

 need to know the details.

 Note: for performance and simplicity reasons, different fields in the stat structure may

 contain state information from different moments during the execution of the system call.

 For example, if st_mode or st_uid is changed by another process by calling chmod(2) or

 chown(2), stat() might return the old st_mode together with the new st_uid, or the old

 st_uid together with the new st_mode.

 The fields in the stat structure are as follows:

 st_dev This field describes the device on which this file resides. (The major(3) and mi?

 nor(3) macros may be useful to decompose the device ID in this field.)

 st_ino This field contains the file's inode number.

 st_mode

 This field contains the file type and mode. See inode(7) for further information.

 st_nlink

 This field contains the number of hard links to the file.

 st_uid This field contains the user ID of the owner of the file.

 st_gid This field contains the ID of the group owner of the file.

 st_rdev

 This field describes the device that this file (inode) represents.

 st_size

 This field gives the size of the file (if it is a regular file or a symbolic link)

 in bytes. The size of a symbolic link is the length of the pathname it contains,

 without a terminating null byte.

 st_blksize

 This field gives the "preferred" block size for efficient filesystem I/O.

 st_blocks

 This field indicates the number of blocks allocated to the file, in 512-byte units.

 (This may be smaller than st_size/512 when the file has holes.) Page 3/9

 st_atime

 This is the time of the last access of file data.

 st_mtime

 This is the time of last modification of file data.

 st_ctime

 This is the file's last status change timestamp (time of last change to the inode).

 For further information on the above fields, see inode(7).

 fstatat()

 The fstatat() system call is a more general interface for accessing file information which

 can still provide exactly the behavior of each of stat(), lstat(), and fstat().

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by stat() and lstat() for a relative

 pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

 preted relative to the current working directory of the calling process (like stat() and

 lstat()).

 If pathname is absolute, then dirfd is ignored.

 flags can either be 0, or include one or more of the following flags ORed:

 AT_EMPTY_PATH (since Linux 2.6.39)

 If pathname is an empty string, operate on the file referred to by dirfd (which may

 have been obtained using the open(2) O_PATH flag). In this case, dirfd can refer

 to any type of file, not just a directory, and the behavior of fstatat() is similar

 to that of fstat(). If dirfd is AT_FDCWD, the call operates on the current working

 directory. This flag is Linux-specific; define _GNU_SOURCE to obtain its defini?

 tion.

 AT_NO_AUTOMOUNT (since Linux 2.6.38)

 Don't automount the terminal ("basename") component of pathname if it is a direc?

 tory that is an automount point. This allows the caller to gather attributes of an

 automount point (rather than the location it would mount). Since Linux 4.14, also

 don't instantiate a nonexistent name in an on-demand directory such as used for au?

 tomounter indirect maps. This flag has no effect if the mount point has already

 been mounted over. Page 4/9

 Both stat() and lstat() act as though AT_NO_AUTOMOUNT was set.

 The AT_NO_AUTOMOUNT can be used in tools that scan directories to prevent mass-au?

 tomounting of a directory of automount points.

 This flag is Linux-specific; define _GNU_SOURCE to obtain its definition.

 AT_SYMLINK_NOFOLLOW

 If pathname is a symbolic link, do not dereference it: instead return information

 about the link itself, like lstat(). (By default, fstatat() dereferences symbolic

 links, like stat().)

 See openat(2) for an explanation of the need for fstatat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES Search permission is denied for one of the directories in the path prefix of path?

 name. (See also path_resolution(7).)

 EBADF fd is not a valid open file descriptor.

 EFAULT Bad address.

 ELOOP Too many symbolic links encountered while traversing the path.

 ENAMETOOLONG

 pathname is too long.

 ENOENT A component of pathname does not exist or is a dangling symbolic link.

 ENOENT pathname is an empty string and AT_EMPTY_PATH was not specified in flags.

 ENOMEM Out of memory (i.e., kernel memory).

 ENOTDIR

 A component of the path prefix of pathname is not a directory.

 EOVERFLOW

 pathname or fd refers to a file whose size, inode number, or number of blocks can?

 not be represented in, respectively, the types off_t, ino_t, or blkcnt_t. This er?

 ror can occur when, for example, an application compiled on a 32-bit platform with?

 out -D_FILE_OFFSET_BITS=64 calls stat() on a file whose size exceeds (1<<31)-1

 bytes.

 The following additional errors can occur for fstatat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags. Page 5/9

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to a file other than

 a directory.

VERSIONS

 fstatat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 stat(), fstat(), lstat(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1.2008.

 fstatat(): POSIX.1-2008.

 According to POSIX.1-2001, lstat() on a symbolic link need return valid information only

 in the st_size field and the file type of the st_mode field of the stat structure.

 POSIX.1-2008 tightens the specification, requiring lstat() to return valid information in

 all fields except the mode bits in st_mode.

 Use of the st_blocks and st_blksize fields may be less portable. (They were introduced in

 BSD. The interpretation differs between systems, and possibly on a single system when NFS

 mounts are involved.)

NOTES

 Timestamp fields

 Older kernels and older standards did not support nanosecond timestamp fields. Instead,

 there were three timestamp fields?st_atime, st_mtime, and st_ctime?typed as time_t that

 recorded timestamps with one-second precision.

 Since kernel 2.5.48, the stat structure supports nanosecond resolution for the three file

 timestamp fields. The nanosecond components of each timestamp are available via names of

 the form st_atim.tv_nsec, if suitable feature test macros are defined. Nanosecond time?

 stamps were standardized in POSIX.1-2008, and, starting with version 2.12, glibc exposes

 the nanosecond component names if _POSIX_C_SOURCE is defined with the value 200809L or

 greater, or _XOPEN_SOURCE is defined with the value 700 or greater. Up to and including

 glibc 2.19, the definitions of the nanoseconds components are also defined if _BSD_SOURCE

 or _SVID_SOURCE is defined. If none of the aforementioned macros are defined, then the

 nanosecond values are exposed with names of the form st_atimensec.

 C library/kernel differences

 Over time, increases in the size of the stat structure have led to three successive ver?

 sions of stat(): sys_stat() (slot __NR_oldstat), sys_newstat() (slot __NR_stat), and Page 6/9

 sys_stat64() (slot __NR_stat64) on 32-bit platforms such as i386. The first two versions

 were already present in Linux 1.0 (albeit with different names); the last was added in

 Linux 2.4. Similar remarks apply for fstat() and lstat().

 The kernel-internal versions of the stat structure dealt with by the different versions

 are, respectively:

 __old_kernel_stat

 The original structure, with rather narrow fields, and no padding.

 stat Larger st_ino field and padding added to various parts of the structure to allow

 for future expansion.

 stat64 Even larger st_ino field, larger st_uid and st_gid fields to accommodate the

 Linux-2.4 expansion of UIDs and GIDs to 32 bits, and various other enlarged fields

 and further padding in the structure. (Various padding bytes were eventually con?

 sumed in Linux 2.6, with the advent of 32-bit device IDs and nanosecond components

 for the timestamp fields.)

 The glibc stat() wrapper function hides these details from applications, invoking the most

 recent version of the system call provided by the kernel, and repacking the returned in?

 formation if required for old binaries.

 On modern 64-bit systems, life is simpler: there is a single stat() system call and the

 kernel deals with a stat structure that contains fields of a sufficient size.

 The underlying system call employed by the glibc fstatat() wrapper function is actually

 called fstatat64() or, on some architectures, newfstatat().

EXAMPLES

 The following program calls lstat() and displays selected fields in the returned stat

 structure.

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <stdint.h>

 #include <time.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/sysmacros.h>

 int

 main(int argc, char *argv[]) Page 7/9

 {

 struct stat sb;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if (lstat(argv[1], &sb) == -1) {

 perror("lstat");

 exit(EXIT_FAILURE);

 }

 printf("ID of containing device: [%jx,%jx]\n",

 (uintmax_t) major(sb.st_dev),

 (uintmax_t) minor(sb.st_dev));

 printf("File type: ");

 switch (sb.st_mode & S_IFMT) {

 case S_IFBLK: printf("block device\n"); break;

 case S_IFCHR: printf("character device\n"); break;

 case S_IFDIR: printf("directory\n"); break;

 case S_IFIFO: printf("FIFO/pipe\n"); break;

 case S_IFLNK: printf("symlink\n"); break;

 case S_IFREG: printf("regular file\n"); break;

 case S_IFSOCK: printf("socket\n"); break;

 default: printf("unknown?\n"); break;

 }

 printf("I-node number: %ju\n", (uintmax_t) sb.st_ino);

 printf("Mode: %jo (octal)\n",

 (uintmax_t) sb.st_mode);

 printf("Link count: %ju\n", (uintmax_t) sb.st_nlink);

 printf("Ownership: UID=%ju GID=%ju\n",

 (uintmax_t) sb.st_uid, (uintmax_t) sb.st_gid);

 printf("Preferred I/O block size: %jd bytes\n",

 (intmax_t) sb.st_blksize);

 printf("File size: %jd bytes\n", Page 8/9

 (intmax_t) sb.st_size);

 printf("Blocks allocated: %jd\n",

 (intmax_t) sb.st_blocks);

 printf("Last status change: %s", ctime(&sb.st_ctime));

 printf("Last file access: %s", ctime(&sb.st_atime));

 printf("Last file modification: %s", ctime(&sb.st_mtime));

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), statx(2), utime(2), capabili?

 ties(7), inode(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 STAT(2)

Page 9/9

