
Rocky Enterprise Linux 9.2 Manual Pages on command 'newlocale.3'

$ man newlocale.3

NEWLOCALE(3) Linux Programmer's Manual NEWLOCALE(3)

NAME

 newlocale, freelocale - create, modify, and free a locale object

SYNOPSIS

 #include <locale.h>

 locale_t newlocale(int category_mask, const char *locale,

 locale_t base);

 void freelocale(locale_t locobj);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 newlocale(), freelocale():

 Since glibc 2.10:

 _XOPEN_SOURCE >= 700

 Before glibc 2.10:

 _GNU_SOURCE

DESCRIPTION

 The newlocale() function creates a new locale object, or modifies an existing object, re?

 turning a reference to the new or modified object as the function result. Whether the

 call creates a new object or modifies an existing object is determined by the value of

 base:

 * If base is (locale_t) 0, a new object is created.

 * If base refers to valid existing locale object (i.e., an object returned by a previous

 call to newlocale() or duplocale(3)), then that object is modified by the call. If the

 call is successful, the contents of base are unspecified (in particular, the object re? Page 1/6

 ferred to by base may be freed, and a new object created). Therefore, the caller

 should ensure that it stops using base before the call to newlocale(), and should sub?

 sequently refer to the modified object via the reference returned as the function re?

 sult. If the call fails, the contents of base remain valid and unchanged.

 If base is the special locale object LC_GLOBAL_LOCALE (see duplocale(3)), or is not (lo?

 cale_t) 0 and is not a valid locale object handle, the behavior is undefined.

 The category_mask argument is a bit mask that specifies the locale categories that are to

 be set in a newly created locale object or modified in an existing object. The mask is

 constructed by a bitwise OR of the constants LC_ADDRESS_MASK, LC_CTYPE_MASK, LC_COL?

 LATE_MASK, LC_IDENTIFICATION_MASK, LC_MEASUREMENT_MASK, LC_MESSAGES_MASK, LC_MONE?

 TARY_MASK, LC_NUMERIC_MASK, LC_NAME_MASK, LC_PAPER_MASK, LC_TELEPHONE_MASK, and

 LC_TIME_MASK. Alternatively, the mask can be specified as LC_ALL_MASK, which is equiva?

 lent to ORing all of the preceding constants.

 For each category specified in category_mask, the locale data from locale will be used in

 the object returned by newlocale(). If a new locale object is being created, data for all

 categories not specified in category_mask is taken from the default ("POSIX") locale.

 The following preset values of locale are defined for all categories that can be specified

 in category_mask:

 "POSIX"

 A minimal locale environment for C language programs.

 "C" Equivalent to "POSIX".

 "" An implementation-defined native environment corresponding to the values of the

 LC_* and LANG environment variables (see locale(7)).

 freelocale()

 The freelocale() function deallocates the resources associated with locobj, a locale ob?

 ject previously returned by a call to newlocale() or duplocale(3). If locobj is

 LC_GLOBAL_LOCALE or is not valid locale object handle, the results are undefined.

 Once a locale object has been freed, the program should make no further use of it.

RETURN VALUE

 On success, newlocale() returns a handle that can be used in calls to duplocale(3), free?

 locale(), and other functions that take a locale_t argument. On error, newlocale() re?

 turns (locale_t) 0, and sets errno to indicate the cause of the error.

ERRORS Page 2/6

 EINVAL One or more bits in category_mask do not correspond to a valid locale category.

 EINVAL locale is NULL.

 ENOENT locale is not a string pointer referring to a valid locale.

 ENOMEM Insufficient memory to create a locale object.

VERSIONS

 The newlocale() and freelocale() functions first appeared in version 2.3 of the GNU C li?

 brary.

CONFORMING TO

 POSIX.1-2008.

NOTES

 Each locale object created by newlocale() should be deallocated using freelocale().

EXAMPLES

 The program below takes up to two command-line arguments, which each identify locales.

 The first argument is required, and is used to set the LC_NUMERIC category in a locale ob?

 ject created using newlocale(). The second command-line argument is optional; if it is

 present, it is used to set the LC_TIME category of the locale object.

 Having created and initialized the locale object, the program then applies it using uselo?

 cale(3), and then tests the effect of the locale changes by:

 1. Displaying a floating-point number with a fractional part. This output will be af?

 fected by the LC_NUMERIC setting. In many European-language locales, the fractional

 part of the number is separated from the integer part using a comma, rather than a pe?

 riod.

 2. Displaying the date. The format and language of the output will be affected by the

 LC_TIME setting.

 The following shell sessions show some example runs of this program.

 Set the LC_NUMERIC category to fr_FR (French):

 $./a.out fr_FR

 123456,789

 Fri Mar 7 00:25:08 2014

 Set the LC_NUMERIC category to fr_FR (French), and the LC_TIME category to it_IT (Ital?

 ian):

 $./a.out fr_FR it_IT

 123456,789 Page 3/6

 ven 07 mar 2014 00:26:01 CET

 Specify the LC_TIME setting as an empty string, which causes the value to be taken from

 environment variable settings (which, here, specify mi_NZ, New Zealand M?ori):

 $ LC_ALL=mi_NZ ./a.out fr_FR ""

 123456,789

 Te Paraire, te 07 o Pout?-te-rangi, 2014 00:38:44 CET

 Program source

 #define _XOPEN_SOURCE 700

 #include <stdio.h>

 #include <stdlib.h>

 #include <locale.h>

 #include <time.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 char buf[100];

 time_t t;

 size_t s;

 struct tm *tm;

 locale_t loc, nloc;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s locale1 [locale2]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /* Create a new locale object, taking the LC_NUMERIC settings

 from the locale specified in argv[1] */

 loc = newlocale(LC_NUMERIC_MASK, argv[1], (locale_t) 0);

 if (loc == (locale_t) 0)

 errExit("newlocale");

 /* If a second command-line argument was specified, modify the

 locale object to take the LC_TIME settings from the locale Page 4/6

 specified in argv[2]. We assign the result of this newlocale()

 call to 'nloc' rather than 'loc', since in some cases, we might

 want to preserve 'loc' if this call fails. */

 if (argc > 2) {

 nloc = newlocale(LC_TIME_MASK, argv[2], loc);

 if (nloc == (locale_t) 0)

 errExit("newlocale");

 loc = nloc;

 }

 /* Apply the newly created locale to this thread */

 uselocale(loc);

 /* Test effect of LC_NUMERIC */

 printf("%8.3f\n", 123456.789);

 /* Test effect of LC_TIME */

 t = time(NULL);

 tm = localtime(&t);

 if (tm == NULL)

 errExit("time");

 s = strftime(buf, sizeof(buf), "%c", tm);

 if (s == 0)

 errExit("strftime");

 printf("%s\n", buf);

 /* Free the locale object */

 uselocale(LC_GLOBAL_HANDLE); /* So 'loc' is no longer in use */

 freelocale(loc);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 locale(1), duplocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 5/6

Linux 2020-11-01 NEWLOCALE(3)

Page 6/6

