FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'nft.8'
$ man nft.8
NFT(8) NFT(8)
NAME
nft - Administration tool of the nftables framework for packet filtering and
classification
SYNOPSIS
nft [-nNscaeSupyjt] [-1 directory] [-f filename | -i | cmd ...]
nft -h
nft -v
DESCRIPTION
nft is the command line tool used to set up, maintain and inspect packet filtering and
classification rules in the Linux kernel, in the nftables framework. The Linux kernel
subsystem is known as nf_tables, and ?nf? stands for Netfilter.
OPTIONS
The command accepts several different options which are documented here in groups for
better understanding of their meaning. You can get information about options by running
nft --help.
General options:
-h, --help
Show help message and all options.
-v, --version
Show version.
-V

Show long version information, including compile-time configuration. Page 1/104

Ruleset input handling options that specify to how to load rulesets:
-f, -file filename
Read input from filename. If filename is -, read from stdin.
-D, --define name=value
Define a variable. You can only combine this option with -f.
-i, --interactive
Read input from an interactive readline CLI. You can use quit to exit, or use the EOF
marker, normally this is CTRL-D.
-1, --includepath directory
Add the directory directory to the list of directories to be searched for included
files. This option may be specified multiple times.
-c, --check
Check commands validity without actually applying the changes.
-0, --optimize
Optimize your ruleset. You can combine this option with -c to inspect the proposed
optimizations.
Ruleset list output formatting that modify the output of the list ruleset command:
-a, --handle
Show object handles in output.
-s, --Stateless
Omit stateful information of rules and stateful objects.
-t, --terse
Omit contents of sets from output.
-S, --service
Translate ports to service names as defined by /etc/services.
-N, --reversedns
Translate IP address to names via reverse DNS lookup. This may slow down your listing
since it generates network traffic.
-u, --guid
Translate numeric UID/GID to names as defined by /etc/passwd and /etc/group.
-n, --numeric
Print fully numerical output.

-y, --numeric-priority

Page 2/104

Display base chain priority numerically.
-p, --numeric-protocol
Display layer 4 protocol numerically.
-T, --numeric-time
Show time, day and hour values in numeric format.
Command output formatting:
-e, --echo
When inserting items into the ruleset using add, insert or replace commands, print
notifications just like nft monitor.
-j, --json
Format output in JSON. See libnftables-json(5) for a schema description.
-d, --debug level
Enable debugging output. The debug level can be any of scanner, parser, eval, netlink,
mnl, proto-ctx, segtree, all. You can combine more than one by separating by the ,
symbol, for example -d eval,mnl.
INPUT FILE FORMATS
LEXICAL CONVENTIONS
Input is parsed line-wise. When the last character of a line, just before the newline
character, is a non-quoted backslash (\), the next line is treated as a continuation.
Multiple commands on the same line can be separated using a semicolon ().
A hash sign (#) begins a comment. All following characters on the same line are ignored.
Identifiers begin with an alphabetic character (a-z,A-Z), followed by zero or more
alphanumeric characters (a-z,A-Z,0-9) and the characters slash (/), backslash (\),
underscore () and dot (.). Identifiers using different characters or clashing with a
keyword need to be enclosed in double quotes ().
INCLUDE FILES
include filename
Other files can be included by using the include statement. The directories to be searched
for include files can be specified using the -I/--includepath option. You can override
this behaviour either by prepending ?./? to your path to force inclusion of files located
in the current working directory (i.e. relative path) or / for file location expressed as
an absolute path.

If -1/--includepath is not specified, then nft relies on the default directory that is Page 3/104

specified at compile time. You can retrieve this default directory via the -h/--help
option.
Include statements support the usual shell wildcard symbols (,?,[]). Having no matches for
an include statement is not an error, if wildcard symbols are used in the include
statement. This allows having potentially empty include directories for statements like
include "/etc/firewall/rules/". The wildcard matches are loaded in alphabetical order.
Files beginning with dot (.) are not matched by include statements.
SYMBOLIC VARIABLES

define variable = expr

undefine variable

redefine variable = expr

$variable
Symbolic variables can be defined using the define statement. Variable references are
expressions and can be used to initialize other variables. The scope of a definition is
the current block and all blocks contained within. Symbolic variables can be undefined
using the undefine statement, and modified using the redefine statement.
Using symbolic variables.

define int_if1 = ethO

define int_if2 = ethl

define int_ifs = { $int_if1, $int_if2 }

redefine int_if2 = wlan0

undefine int_if2

filter input iif $int_ifs accept

ADDRESS FAMILIES
Address families determine the type of packets which are processed. For each address
family, the kernel contains so called hooks at specific stages of the packet processing
paths, which invoke nftables if rules for these hooks exist.
ip IPv4 address family.
ip6 IPv6 address family.
inet Internet (IPv4/IPv6) address
family.

arp ARP address family, handling

IPv4 ARP packets. Page 4/104

bridge Bridge address family, handling
packets which traverse a bridge
device.
netdev Netdev address family, handling
packets on ingress and egress.
All nftables objects exist in address family specific namespaces, therefore all
identifiers include an address family. If an identifier is specified without an address
family, the ip family is used by default.
IPV4/IPV6/INET ADDRESS FAMILIES
The IPv4/IPv6/Inet address families handle IPv4, IPv6 or both types of packets. They
contain five hooks at different packet processing stages in the network stack.

Table 1. IPv4/IPv6/Inet address family hooks

PPV 7?7???7??7?7??7??7??7??7??7?77

?Hook ? Description ?

PPV ?7?????7?7??7??7?7?7??7??7?7?7

?prerouting ? All packets entering the system ?

? ? are processed by the prerouting ?
? ? hook. It is invoked before the ?

? ? routing process and is used for ?
? ? early filtering or changing ?

? ? packet attributes that affect ?

? ? routing. ?

PP 77?7?772??7??????7??7???7?77?777

?input ? Packets delivered to the local ?

? ? system are processed by the ?

? ? input hook. ?
PPPPVVPIVVVIVVVVIVVVIIIVVIIVVNVIIVVIVINNNT?
?forward ? Packets forwarded to a different ?

? ? host are processed by the ?

? ? forward hook. ? Page 5/104

QP00 ?????7????????7???7??7?777

?output ? Packets sent by local processes ?
? ? are processed by the output ~ ?
? ? hook. ?

PPV 7?7???7?7??7?7??7??7?7?7?7?7?77

?postrouting ? All packets leaving the system ?

? ? are processed by the postrouting ?

? ? hook. ?

PP 7???7??7????7?7?7?7??7??7?77

?ingress ? All packets entering the system ?

? ? are processed by this hook. It ?
? ? is invoked before layer 3 ?

? ? protocol handlers, hence before ?
? ? the prerouting hook, and it can ?
? ? be used for filtering and ?

? ? policing. Ingress is only ?

? ? available for Inet family (since ?

? ? Linux kernel 5.10). ?

PPV 77??7???7?7??7?7??7?7?7?7?7?7?7?7?7

ARP ADDRESS FAMILY
The ARP address family handles ARP packets received and sent by the system. It is commonly
used to mangle ARP packets for clustering.

Table 2. ARP address family hooks

PPV 2?7?7???777????7??77?777?777

?Hook ? Description ?

PPNV
?input ? Packets delivered to the local ?

? ? system are processed by the ?

? ? input hook. ? Page 6/104

PP 7??2?7??7??7??7??7?7??7?77?7

?output ? Packets send by the local system ?
? ? are processed by the output ~ ?
? ? hook. ?

PPV ???7?27????7?7??7??7?7??77?7?7?7?7?77

BRIDGE ADDRESS FAMILY
The bridge address family handles Ethernet packets traversing bridge devices.
The list of supported hooks is identical to IPv4/IPv6/Inet address families above.

NETDEV ADDRESS FAMILY
The Netdev address family handles packets from the device ingress and egress path. This
family allows you to filter packets of any ethertype such as ARP, VLAN 802.1q, VLAN
802.1ad (Q-in-Q) as well as IPv4 and IPv6 packets.

Table 3. Netdev address family hooks

PPV 7?7?7?7?7?7?7??7?7?7?7?7?7?77?7

?Hook ? Description ?

PPV 7??7????7?7?7?7?7?7?777

?ingress ? All packets entering the system ?
? ? are processed by this hook. It ?

? ? is invoked after the network ?

? ? taps (ie. tcpdump), right after ?

? ? tc ingress and before layer 3 ?

? ? protocol handlers, it can be ?

? ? used for early filtering and ?

? ? policing. ?

PPV 2?7?7???777????7??77?777?777

?egress ? All packets leaving the system ?
? ? are processed by this hook. It ?

? ? is invoked after layer 3 ?

? ? protocol handlers and before tc ?

? ? egress. It can be used for late ? Page 7/104

? ? filtering and policing. ?

PP 2?????77?77???7?7?77?7?7?7?7?77

Tunneled packets (such as vxlan) are processed by netdev family hooks both in decapsulated
and encapsulated (tunneled) form. So a packet can be filtered on the overlay network as
well as on the underlying network.
Note that the order of netfilter and tc is mirrored on ingress versus egress. This ensures
symmetry for NAT and other packet mangling.
Ingress packets which are redirected out some other interface are only processed by
netfilter on egress if they have passed through netfilter ingress processing before. Thus,
ingress packets which are redirected by tc are not subjected to netfilter. But they are if
they are redirected by netfilter on ingress. Conceptually, tc and netfilter can be thought
of as layers, with netfilter layered above tc: If the packet hasn?t been passed up from
the tc layer to the netffilter layer, it?s not subjected to netfilter on egress.
RULESET
{list | flush} ruleset [family]

The ruleset keyword is used to identify the whole set of tables, chains, etc. currently in
place in kernel. The following ruleset commands exist:
list Printthe ruleset in

human-readable format.
flush Clear the whole ruleset. Note

that, unlike iptables, this will

remove all tables and whatever

they contain, effectively

leading to an empty ruleset - no

packet filtering will happen

anymore, so the kernel accepts

any valid packet it receives.
It is possible to limit list and flush to a specific address family only. For a list of
valid family names, see the section called 7ADDRESS FAMILIES? above.
By design, list ruleset command output may be used as input to nft -f. Effectively, this
is the nft-equivalent of iptables-save and iptables-restore.

TABLES

{add | create} table [family] table [{comment comment ;} { flags 'flags ; }] Page 8/104

{delete | list | flush} table [family] table

list tables [family]

delete table [family] handle handle
Tables are containers for chains, sets and stateful objects. They are identified by their
address family and their name. The address family must be one of ip, ip6, inet, arp,
bridge, netdev. The inet address family is a dummy family which is used to create hybrid
IPv4/IPv6 tables. The meta expression nfproto keyword can be used to test which family
(ipv4 or ipv6) context the packet is being processed in. When no address family is
specified, ip is used by default. The only difference between add and create is that the
former will not return an error if the specified table already exists while create will
return an error.

Table 4. Table flags

PPV 7?7?7?7?7??7?7?7?7?7?7?77?7

?Flag ? Description ?

PPV 7?7?7?7?7?7?7??7?7?7?7?7?7?77?7

?dormant ? table is not evaluated any more ?

? ? (base chains are unregistered). ?

PPV 2?7????77?????7?7??7?77?7?777

Add, change, delete a table.
start nft in interactive mode
nft --interactive
create a new table.
create table inet mytable
add a new base chain: get input packets
add chain inet mytable myin { type filter hook input priority filter; }
add a single counter to the chain
add rule inet mytable myin counter
disable the table temporarily -- rules are not evaluated anymore
add table inet mytable { flags dormant; }
make table active again:
add table inet mytable

add Add a new table for the given

Page 9/104

family with the given name.
delete Delete the specified table.
list Listall chains and rules of the
specified table.
flush Flush all chains and rules of
the specified table.
CHAINS
{add | create} chain [family] table chain [{ type type hook hook [device device] priority priority ; [policy policy ;]
[comment comment ;] }]
{delete | list | flush} chain [family] table chain
list chains [family]
delete chain [family] table handle handle
rename chain [family] table chain newname
Chains are containers for rules. They exist in two kinds, base chains and regular chains.
A base chain is an entry point for packets from the networking stack, a regular chain may
be used as jump target and is used for better rule organization.
add Add a new chain in the specified
table. When a hook and priority
value are specified, the chain
is created as a base chain and
hooked up to the networking
stack.
create Similar to the add command, but
returns an error if the chain
already exists.
delete Delete the specified chain. The
chain must not contain any rules
or be used as jump target.
rename Rename the specified chain.
list List all rules of the specified
chain.
flush Flush all rules of the specified

chain. Page 10/104

For base chains, type, hook and priority parameters are mandatory.

Table 5. Supported chain types

PP 777?77?7??7??7??7???7?7?7?777

?Type ? Families ? Hooks ? Description ?

PP 77?7??7??7??7??7??7?7?777

? ? ? 2 ?
?filter ? all ? all ? Standard chain type ?
? ? ? ?to use in doubt. ?

PP 7?7?77?7??7??7??7?7?7?7??7??7??77

?nat ?ip, ip6, inet ? prerouting, input, ? Chains of this type ?

? ? ? output, postrouting ? perform Native ?
? ? ? ? Address Translation ?
? ? ? ? based on conntrack ?
? ? ? ? entries. Only the ?

? ? ? ? first packetofa ?

? ? ? ? connection actually ?
? ? ? ? traverses this ?

? ? ? ? chain - its rules ?

? ? ? ? usually define ?

? ? ? ? details of the ?

? ? ? ? created conntrack ?
? ? ? ? entry (NAT ?

? ? ? ? statements for ?

? ? ? ? instance). ?

PP 7?72?7?70?7??7??7??7????7?7?77?77

? 2 ? 2 ?
?route ?ip, ip6 ? output ? If a packethas ?
? ? ? ? traversed a chain ?

? ? ? ? of this type and is ?

? ? ? ? about to be ?

? ? ? ? accepted, anew ?

? ? ? ? route lookup is ?

Page 11/104

? ? ? ? performed if ?

? ? ? ? relevant parts of ?

? ? ? ? the IP header have ?
? ? ? ? changed. This ?
? ? ? ?allowstoe.g. ?

? ? ? ? implement policy ?
? ? ? ? routing selectors ?
? ? ? ? in nftables. ?

PP 7?7?77?7??7??7??7?7?7?7??7??7??77

Apart from the special cases illustrated above (e.g. nat type not supporting forward hook
or route type only supporting output hook), there are three further quirks worth noticing:
? The netdev family supports merely two combinations, namely filter type with ingress
hook and filter type with egress hook. Base chains in this family also require the
device parameter to be present since they exist per interface only.
? The arp family supports only the input and output hooks, both in chains of type
filter.
? The inet family also supports the ingress hook (since Linux kernel 5.10), to filter
IPv4 and IPv6 packet at the same location as the netdev ingress hook. This inet hook
allows you to share sets and maps between the usual prerouting, input, forward,
output, postrouting and this ingress hook.
The priority parameter accepts a signed integer value or a standard priority name which
specifies the order in which chains with the same hook value are traversed. The ordering
is ascending, i.e. lower priority values have precedence over higher ones.
Standard priority values can be replaced with easily memorizable names. Not all names make
sense in every family with every hook (see the compatibility matrices below) but their
numerical value can still be used for prioritizing chains.
These names and values are defined and made available based on what priorities are used by
xtables when registering their default chains.
Most of the families use the same values, but bridge uses different ones from the others.
See the following tables that describe the values and compatibility.

Table 6. Standard priority names, family and hook compatibility matrix

QPP 7?2???????????7?7??7??7?777

?Name ? Value ? Families ? Hooks ?

Page 12/104

PPV 7???????7???7??7?7?7??7??7?777

?raw ?-300 ?ip, ip6, inet ? all ?

PPV 2?72??777??7???7?7?7?7?7?7?7?7?7?7?7?7?77

?mangle ?-150 ?ip, ip6, inet ? all ?

PPV 7??????????7??7?7?7??7??7?777

?dstnat ?-100 ?ip, ip6, inet ? prerouting ?

PP 2?72??777??7???7?7??7?7?7?7?7?7?7?7?7?77

2 2 2 2 2
?filter 20 ?ip, ip6, inet, arp, ? all ?
? ? ? netdev ? ?

PPV ??7?2?72??7??77??77?7?77?7?7?7?7?77?7??7?77?77

?security ? 50 7 ip, ip6, inet ? all ?

PPV 7??7??7??????7??7??7??7??7?7?7

?srcnat ? 100 ?ip, ip6, inet ? postrouting ?

PP ???7??????7???7???7?7?77?7??7?7?7?7?7??7?777?

Table 7. Standard priority names and hook compatibility for the bridge family

PPV 7??77???7?7?7?7?7?77?777

?Name ? Value ? Hooks ?

PPV ??????7?72?7?7?77?777

?dstnat ? -300 ? prerouting ?

QP00 7?77?77?77?

?filter ? -200 ? all ?

PPV ?7?????7?727?7?7?77?777

?out 7?7100 ?output ?

Page 13/104

QP00 7??7??7??7?7?77?7?7

?srcnat ? 300 ? postrouting ?

P00 ???7???7???7?7?7?7?7?77?777

Basic arithmetic expressions (addition and subtraction) can also be achieved with these
standard names to ease relative prioritizing, e.g. mangle - 5 stands for -155. Values will
also be printed like this until the value is not further than 10 from the standard value.
Base chains also allow to set the chain?s policy, i.e. what happens to packets not
explicitly accepted or refused in contained rules. Supported policy values are accept
(which is the default) or drop.
RULES
{add | insert} rule [family] table chain [handle handle | index index] statement ... [comment comment]
replace rule [family] table chain handle handle statement ... [comment comment]
delete rule [family] table chain handle handle
Rules are added to chains in the given table. If the family is not specified, the ip
family is used. Rules are constructed from two kinds of components according to a set of
grammatical rules: expressions and statements.
The add and insert commands support an optional location specifier, which is either a
handle or the index (starting at zero) of an existing rule. Internally, rule locations are
always identified by handle and the translation from index happens in userspace. This has
two potential implications in case a concurrent ruleset change happens after the
translation was done: The effective rule index might change if a rule was inserted or
deleted before the referred one. If the referred rule was deleted, the command is rejected
by the kernel just as if an invalid handle was given.
A comment is a single word or a double-quoted () multi-word string which can be used to
make notes regarding the actual rule. Note: If you use bash for adding rules, you have to
escape the quotation marks, e.g. \"enable ssh for servers\".
add Add a new rule described by the
list of statements. The rule is
appended to the given chain
unless a location is specified,
in which case the rule is

inserted after the specified Page 14/104

rule.
insert Same as add except the rule is
inserted at the beginning of the
chain or before the specified
rule.
replace Similar to add, but the rule
replaces the specified rule.
delete Delete the specified rule.
add a rule to ip table output chain.
nft add rule filter output ip daddr 192.168.0.0/24 accept # 'ip filter' is assumed
same command, slightly more verbose
nft add rule ip filter output ip daddr 192.168.0.0/24 accept
delete rule from inet table.
nft -a list ruleset
table inet filter {
chain input {
type filter hook input priority filter; policy accept;
ct state established,related accept # handle 4

ip saddr 10.1.1.1 tcp dport ssh accept # handle 5

delete the rule with handle 5
nft delete rule inet filter input handle 5
SETS

nftables offers two kinds of set concepts. Anonymous sets are sets that have no specific
name. The set members are enclosed in curly braces, with commas to separate elements when
creating the rule the set is used in. Once that rule is removed, the set is removed as
well. They cannot be updated, i.e. once an anonymous set is declared it cannot be changed
anymore except by removing/altering the rule that uses the anonymous set.
Using anonymous sets to accept particular subnets and ports.

nft add rule filter input ip saddr { 10.0.0.0/8, 192.168.0.0/16 } tcp dport { 22, 443 } accept
Named sets are sets that need to be defined first before they can be referenced in rules.
Unlike anonymous sets, elements can be added to or removed from a named set at any time.

Sets are referenced from rules using an @ prefixed to the sets name.

Page 15/104

Using named sets to accept addresses and ports.
nft add rule filter input ip saddr @allowed_hosts tcp dport @allowed_ports accept
The sets allowed_hosts and allowed_ports need to be created first. The next section
describes nft set syntax in more detail.
add set [family] table set { type type | typeof expression ; [flags flags ;] [timeout timeout ;] [gc-interval gc-interval ;]
[elements = { element], ...] } ;] [Size size ;] [comment comment ;] [policy 'policy ;] [auto-merge ;] }
{delete | list | flush} set [family] table set
list sets [family]
delete set [family] table handle handle
{add | delete} element [family] table set { element[, ...] }
Sets are element containers of a user-defined data type, they are uniquely identified by a
user-defined name and attached to tables. Their behaviour can be tuned with the flags that
can be specified at set creation time.
add Add a new set in the specified
table. See the Set specification
table below for more information
about how to specify properties
of a set.
delete Delete the specified set.
list Display the elements in the
specified set.
flush Remove all elements from the
specified set.

Table 8. Set specifications

PP 72??7??7?7??7?7?27?7?77?7?7?7?

?Keyword ? Description ? Type ?

PPV 72?7???7?7?7?7??2?7?777?77?

?type ? data type of set ? string: ipv4_addr, ?

? ? elements ? ipv6_addr, ether_addr, ?
? ? ? inet_proto, ?
? ? ? inet_service, mark ?

PPV 72??7????7?7?7??277?777?7?77? Page 16/104

? ? ? ?
?typeof ? data type of set element ? expression to derive the ?

? ? ? data type from ?

PP 7277?72?7?2?7?77??7?7?7?7?7?7?7??27?7?777?7?77?

2 ? ? ?
?flags ? set flags ? string: constant, ?
? ? ? dynamic, interval, ?

? ? ? timeout ?

PPV 7?7?77?7??7?7?7??7?7?77?7?7

?timeout ? time an element stays in ? string, decimal followed ?

? ? the set, mandatory if 2 by unit. Units are: d, ?
? ? setis added to from the ? h, m, s ?
? ? packet path (ruleset) ? ?

PPV 7?77?7??7?7?7??7?7?77?7?7

?gc-interval ? garbage collection ? string, decimal followed ?

? ? interval, only available ? by unit. Units are: d, ?
? ? when timeoutorflag ?h,m,s ?
? ? timeout are active ? ?

PP 7??7???7?7??7??2?7?77?7?77?

2 2 2 ?
?elements ? elements contained by ? set data type ?
? ? the set ? ?

PP 72??7??7?7??7?7?27?7?77?7?7?7?

2 2 2 ?
?size ? maximum number of ? unsigned integer (64 ?
? ? elements in the set, ? bit) ?

? ? mandatory if setis ? ?

? ? added to from the packet ? ?

? ? path (ruleset) ? ?

PP 77?7?7?7?77?77?7?7

Page 17/104

?policy ? set policy ? string: performance ?
? ? ? [default], memory ?

PPV 77?7??7?7??77?77?7?7

2 2 2 ?
?auto-merge ? automatic merge of ? ?
? ? adjacent/overlapping set ? ?

? ? elements (only for ? ?

? ? interval sets) ? ?

PPV 7?7?77?7??7?7?7??7?7?77?7?7

add map [family] table map { type type | typeof expression [flags flags ;] [elements = { element], ...] } ;] [size size ;]
[comment comment ;] [policy 'policy ;] }
{delete | list | flush} map [family] table map
list maps [family]
Maps store data based on some specific key used as input. They are uniquely identified by

a user-defined name and attached to tables.

add Add a new map in the specified
table.

delete Delete the specified map.

list Display the elements in the

specified map.

flush Remove all elements from the
specified map.

add element Comma-separated list of elements
to add into the specified map.

delete element Comma-separated list of element
keys to delete from the
specified map.

Table 9. Map specifications

P07 7??7??72?7?77?77?77?7

?Keyword ? Description ? Type ?

PP 7??7?727?7?77?77?77?7

2 2 2 2 Page 18/104

?type ? data type of map ? string: ipv4_addr, ?

? ? elements ? ipv6_addr, ether_addr, ?
? ? ? inet_proto, ?

? ? ? inet_service, mark, ?

? ? ? counter, quota. Counter ?

? ? ? and quota can?t be used ?

2 ? ? as keys ?

PP ???7?7?7?7?77?2?7?72??7?7?7?7??7?7??7?7?7?7?

?typeof ? data type of set element ? expression to derive the ?

? ? ? data type from ?

PPV 7?7??7?7?77?7?77????7?7?7?7??7?7??7?77?7?7?

2 ? ? 2
?flags ? map flags ? string: constant, ?
? ? ? interval ?

PP 7??7?7???7?7?7?7??7?7??77?77?7

2 ? 2 ?
?elements ? elements contained by ? map data type ?
? ? the map ? ?

PPV 7???7???7?7?77?2?7?7???7?7?7?7??7?7??7?7?7?7

? 2 ? ?
?size ? maximum number of ? unsigned integer (64 ?
? ? elements inthe map ? bit) ?

PP 7?7?72?7?7?77?77?7

? 2 ? ?
?policy ? map policy ? string: performance ?
? ? ? [default], memory ?

QP07 7?7?77?7?7?77?777?7

ELEMENTS
{add | create | delete | get } element [family] table set { ELEMENT], ...] }
ELEMENT := key_expression OPTIONS [: value_expression]
OPTIONS := [timeout TIMESPEC] [expires TIMESPEC] [comment string]

TIMESPEC := [numd][numh][numm][num[s]] Page 19/104

Element-related commands allow to change contents of named sets and maps. key_expression
is typically a value matching the set type. value_expression is not allowed in sets but
mandatory when adding to maps, where it matches the data part in its type definition. When
deleting from maps, it may be specified but is optional as key_expression uniquely

identifies the element.

create command is similar to add with the exception that none of the listed elements may
already exist.

get command is useful to check if an element is contained in a set which may be

non-trivial in very large and/or interval sets. In the latter case, the containing

interval is returned instead of just the element itself.

Table 10. Element options

PP 7?2?7????7??7?7??7?7?77?7?7?7??277?7

?0ption ? Description ?

PP ??7?7?77???7?7?7?7?7?7?7??277?7

?timeout ? timeout value for sets/maps with ?
? ? flag timeout ?

PPV 7???7?7?7?77?77?7??7?7?7?7??7?7??277?7

?expires ? the time until given element ?
? ? expires, useful for ruleset ?
? ? replication only ?

PP 72?????7?77??7?7?7?7?7?7?7?727?7?7

?comment ? per element comment field ?

P77 72?0?7???????????7?7?7??7?7?7777?7

FLOWTABLES
{add | create} flowtable [family] table flowtable { hook hook priority priority ; devices = { device][, ...] } ; }
list flowtables [family]
{delete | list} flowtable [family] table flowtable
delete flowtable [family] table handle handle
Flowtables allow you to accelerate packet forwarding in software. Flowtables entries are

represented through a tuple that is composed of the input interface, source and Page 20/104

destination address, source and destination port; and layer 3/4 protocols. Each entry also
caches the destination interface and the gateway address - to update the destination
link-layer address - to forward packets. The ttl and hoplimit fields are also decremented.
Hence, flowtables provides an alternative path that allow packets to bypass the classic
forwarding path. Flowtables reside in the ingress hook that is located before the
prerouting hook. You can select which flows you want to offload through the flow
expression from the forward chain. Flowtables are identified by their address family and
their name. The address family must be one of ip, ip6, or inet. The inet address family is
a dummy family which is used to create hybrid IPv4/IPv6 tables. When no address family is
specified, ip is used by default.
The priority can be a signed integer or filter which stands for 0. Addition and
subtraction can be used to set relative priority, e.g. filter + 5 equals to 5.
add Add a new flowtable for the
given family with the given
name.
delete Delete the specified flowtable.
list Listall flowtables.
LISTING

list { secmarks | synproxys | flow tables | meters | hooks } [family]

list { secmarks | synproxys | flow tables | meters | hooks } table [family] table

list ct { timeout | expectation | helper | helpers } table [family] table
Inspect configured objects. list hooks shows the full hook pipeline, including those
registered by kernel modules, such as nf_conntrack.

STATEFUL OBJECTS

{add | delete | list | reset} type [family] table object

delete type [family] table handle handle

list counters [family]

list quotas [family]

list limits [family]
Stateful objects are attached to tables and are identified by a unique name. They group
stateful information from rules, to reference them in rules the keywords "type name" are
used e.g. "counter name".

add Add a new stateful object in the Page 21/104

specified table.
delete Delete the specified object.
list Display stateful information the
object holds.
reset List-and-reset stateful object.
CT HELPER
add ct helper [family] table name { type type protocol protocol ; [I3proto family ;] }
delete ct helper [family] table name
list ct helpers
Ct helper is used to define connection tracking helpers that can then be used in
combination with the ct helper set statement. type and protocol are mandatory, I3proto is
derived from the table family by default, i.e. in the inet table the kernel will try to
load both the ipv4 and ipv6 helper backends, if they are supported by the kernel.

Table 11. conntrack helper specifications

PPV 7??7??7??7?7?7??7?7?7?7?7?7?7?7?7?7

?Keyword ? Description ? Type ?

PPV 7??7??7?7?7?7?7?7?7?7

?type ? name of helper type ? quoted string (e.g. ?
? ? ? "ftp") ?

PPV 7?72??2??7???7???7??7?7?7?7?7?7

2 2 2 2
?protocol ? layer 4 protocol of the ? string (e.g. ip) ?
? ? helper ? ?

PPV ???7?72?7?72?7?2?7?77?77???7?7?7?7?7?7?7?7

?13proto ? layer 3 protocol of the ? address family (e.g. ip) ?
? ? helper ? ?

PPV ???7?72?7?7??7?2?7?7??7??7?7?7?7?7?7?7?7?7

? ? ? ?
?comment ? per ct helper comment ? string ?
? ? field ? ?

PPV ?27?7???7?7277?7??7?2?7?77?77??7?7?7?7?7??7?7?7

Page 22/104

defining and assigning ftp helper.
Unlike iptables, helper assignment needs to be performed after the conntrack
lookup has completed, for example with the default O hook priority.
table inet myhelpers {
ct helper ftp-standard {
type "ftp" protocol tcp
}
chain prerouting {
type filter hook prerouting priority filter;

tcp dport 21 ct helper set "ftp-standard"

}
CT TIMEOUT

add ct timeout [family] table name { protocol protocol ; policy = { state: value [, ...] } ; [I3proto family ;] }
delete ct timeout [family] table name
list ct timeouts

Ct timeout is used to update connection tracking timeout values.Timeout policies are

assigned with the ct timeout set statement. protocol and policy are mandatory, 13proto is

derived from the table family by default.

Table 12. conntrack timeout specifications

PPV 7?72??2??7???7???7??7?7?7?7?7?7

?Keyword ? Description ? Type ?

PPV ???7?272?7?72?7?2?7?7??7??7?7?7?7?7?7?7?7?7

? ? ? ?
?protocol ? layer 4 protocol of the ? string (e.g. ip) ?
? ? timeout object ? ?

PPV 7???7772??72?7?2?7?7?77??7?7?7?7?7?7?7?7?7

? ? ? ?
?state ? connection state name ? string (e.g. ?
? ? ? "established") ?

PP ???7?72?7?7??7?2?7?7???7??7?7?7?7?7?7?7?7?7

?value ?timeoutvalue for ? unsigned integer ? Page 23/104

? ? connection state ? ?

PPV 7???7?72?7?72?7?277?72??7??7?7?7?77?7?277?7

?I13proto ? layer 3 protocol of the ? address family (e.g. ip) ?
? ? timeout object ? ?

PPV 7???7?7277?7??7?2?7?72??7??7?7?7?7?7??277?7

? ? ? ?
?comment ? per ct timeout comment ? string ?
? ? field ? ?

PP ???0772??7?27?77???7?7?7?7?7??7?2?7?7???7??7?7??7?7??277?7

tcp connection state names that can have a specific timeout value are:

close, close_wait, established, fin_wait, last_ack, retrans, syn_recv, syn_sent, time_wait

and unack.

You can use sysctl -a |grep net.netfilter.nf_conntrack tcp_timeout to view and change the

system-wide defaults. ct timeout allows for flow-specific settings, without changing the

global timeouts.
For example, tcp port 53 could have much lower settings than other traffic.
udp state names that can have a specific timeout value are replied and unreplied.
defining and assigning ct timeout policy.
table ip filter {
ct timeout customtimeout {
protocol tcp;
I3proto ip
policy = { established: 120, close: 20 }
}
chain output {
type filter hook output priority filter; policy accept;

ct timeout set "customtimeout”

}

testing the updated timeout policy.
% conntrack -E

It should display:

Page 24/104

[UPDATE] tcp 6 120 ESTABLISHED src=172.16.19.128 dst=172.16.19.1
sport=22 dport=41360 [UNREPLIED] src=172.16.19.1 dst=172.16.19.128
sport=41360 dport=22

CT EXPECTATION

add ct expectation [family] table name { protocol protocol ; dport dport ; timeout timeout ; size size ; [*I3proto family ;]

delete ct expectation [family] table name

list ct expectations
Ct expectation is used to create connection expectations. Expectations are assigned with
the ct expectation set statement. protocol, dport, timeout and size are mandatory, 13proto
is derived from the table family by default.

Table 13. conntrack expectation specifications

PPV 7??7??7??7??7?7?7?7?7?7?7?7?7?7

?Keyword ? Description ? Type ?

PPV 7??7??7??7?7?7??7?7?7?7?7?7?7?7?7?7

2 2 2 2
?protocol ? layer 4 protocol of the ? string (e.g. ip) ?
? ? expectation object ? ?

PPV 2?????7?72??72?7?2?7?7??7???7??7?7?7?7?7?7

2 2 2 2
?dport ? destination port of ? unsigned integer ?
? ? expected connection ? ?

PPV ???7?272?7?72?7?2?7?7??7??7?7?7?7?7?7?7?7?7

2 2 2 2
?timeout ? timeout value for ? unsigned integer ?
? ? expectation ? ?

PPV 7???7772??72?7?2?7?7?77??7?7?7?7?7?7?7?7?7

2 2 2 2
?size ? size value for ? unsigned integer ?
? ? expectation ? ?

PP ???7?72?7?7??7?2?7?7???7??7?7?7?7?7?7?7?7?7

?13proto ? layer 3 protocol of the ? address family (e.g. ip) ? Page 25/104

? ? expectation object ? ?

PPV 7???7?72?7?72?7?277?72??7??7?7?7?77?7?277?7

? ? ? ?
?comment ? per ct expectation ? string ?
? ? comment field ? ?

PPV 7???7?7277?7??7?2?7?72??7??7?7?7?7?7??277?7

defining and assigning ct expectation policy.
table ip filter {
ct expectation expect {

protocol udp

dport 9876
timeout 2m
size 8
I3proto ip

}

chain input {
type filter hook input priority filter; policy accept;
ct expectation set "expect"”

}

}
COUNTER

add counter [family] table name [{ [packets packets bytes bytes ;] [comment comment ; }]

delete counter [family] table name
list counters

Table 14. Counter specifications

PP 7???7??7?7???7??7??7?77777

?Keyword ? Description ? Type ?

PP 7???7??7?7???7??7??7?77777

?packets ? initial count of packets ? unsigned integer (64 ?
? ? ? bit) ?

PP ??7???7???7??7?7?7?77?777?77?77

Page 26/104

?bytes 7 initial count of bytes ? unsigned integer (64 ?
? ? ? bit) ?

PP 7??7??7??7??7?7?7?77?77?77

2 2 2 2
?comment ? per counter comment ? string ?
? ? field ? ?

PP 7???7?????7????7??7??7??7??7??7?7?77?777?77

Using named counters.
nft add counter filter http
nft add rule filter input tcp dport 80 counter name \"http\"
Using named counters with maps.
nft add counter filter http
nft add counter filter https
nft add rule filter input counter name tcp dport map { 80 : \"http\", 443 : \"https\" }
QUOTA
add quota [family] table name { [over|until] bytes BYTE_UNIT [used bytes BYTE_UNIT] ; [comment comment ;] }
BYTE_UNIT := bytes | kbytes | mbytes
delete quota [family] table name
list quotas

Table 15. Quota specifications

PPV 2?7?72??77??7?7??7?7?7?7?7?7?7?7?7?7

?Keyword ? Description ? Type ?

PPV 2?7?72??72??7???7??7?7?7?7?7?7?7?7

?quota ? quota limit, used as the ? Two arguments, unsigned ?

? ? quota name ? integer (64 bit) and ?
? ? ? string: bytes, kbytes, ?

? ? ? mbytes. "over"and ?

? ? ? "until" go before these ?

? ? ? arguments ?

PPV ?7??7?2?7?72??2??7???7?7?7?7?7?7?7?7?7?7

?used ?initial value of used ? Two arguments, unsigned ? Page 27/104

? ? quota ? integer (64 bit) and ?
? ? ? string: bytes, kbytes, ?
? ? ? mbytes ?

PPV 277?72??72?7?7???7?7?7?7?7?77?7?77

?comment ? per quota comment field ? string ?

PPV ?7????7?7??7???7??7??7?7?7??77?7?7?7

Using named quotas.

nft add quota filter user123 { over 20 mbytes }

nft add rule filter input ip saddr 192.168.10.123 quota name \"user123\"
Using named quotas with maps.

nft add quota filter user123 { over 20 mbytes }

nft add quota filter user124 { over 20 mbytes }

nft add rule filter input quota name ip saddr map { 192.168.10.123 : \"user123\", 192.168.10.124 : \"user124\" }

EXPRESSIONS
Expressions represent values, either constants like network addresses, port numbers, etc.,
or data gathered from the packet during ruleset evaluation. Expressions can be combined
using binary, logical, relational and other types of expressions to form complex or
relational (match) expressions. They are also used as arguments to certain types of
operations, like NAT, packet marking etc.
Each expression has a data type, which determines the size, parsing and representation of
symbolic values and type compatibility with other expressions.
DESCRIBE COMMAND

describe expression | data type
The describe command shows information about the type of an expression and its data type.
A data type may also be given, in which nft will display more information about the type.
The describe command.

$ nft describe tcp flags

payload expression, datatype tcp_flag (TCP flag) (basetype bitmask, integer), 8 bits

predefined symbolic constants:

fin 0x01

syn 0x02
rst 0x04 Page 28/104

psh 0x08

ack 0x10

urg 0x20

ecn 0x40

cwr 0x80
DATA TYPES

Data types determine the size, parsing and representation of symbolic values and type
compatibility of expressions. A number of global data types exist, in addition some
expression types define further data types specific to the expression type. Most data
types have a fixed size, some however may have a dynamic size, f.i. the string type. Some
types also have predefined symbolic constants. Those can be listed using the nft describe
command:

$ nft describe ct_state

datatype ct_state (conntrack state) (basetype bitmask, integer), 32 bits

pre-defined symbolic constants (in hexadecimal):

invalid 0x00000001

new ...
Types may be derived from lower order types, f.i. the IPv4 address type is derived from
the integer type, meaning an IPv4 address can also be specified as an integer value.
In certain contexts (set and map definitions), it is necessary to explicitly specify a
data type. Each type has a name which is used for this.

INTEGER TYPE

PPV 77???7??7?7?7?7?7?7?77

?Name ? Keyword ? Size ? Base type ?

PPV 2?7???7?7???7??7?7?7?7?7?7?77

?Integer ? integer ? variable ? - ?

PPV 2?72???7??????7??7?7??7??7?777

The integer type is used for numeric values. It may be specified as a decimal, hexadecimal
or octal number. The integer type does not have a fixed size, its size is determined by
the expression for which it is used.

BITMASK TYPE

P e L e L L b b e L bl b l) Page 29/104

?Name ? Keyword ? Size ? Base type ?

PPV ??7???77???7?7?77??7?7??77?7?77?7?77

?Bitmask ? bitmask ? variable ? integer ?

PPV 7????7?????????7??7??7?77

The bitmask type (bitmask) is used for bitmasks.
STRING TYPE

PPV 7?2???27?7???7?7???7??7?7??7?77?77

?Name ? Keyword ? Size ? Base type ?

PPV 7???7??7??7?7??7?7?7???7??7?7??7?77?7

?String ? string ? variable ? - ?

PPV ?????????7??7??7??7?7?7?7?77?77?

The string type is used for character strings. A string begins with an alphabetic
character (a-zA-Z) followed by zero or more alphanumeric characters or the characters /,
-, _and .. In addition, anything enclosed in double quotes (") is recognized as a string.
String specification.

Interface name

filter input iifname ethO

Weird interface name

filter input iifname "(eth0)"

LINK LAYER ADDRESS TYPE

PPV 7?2??7?772??7??7?2?7?72??7?7?7?7?77?7

?Name ? Keyword ? Size ? Base type ?

PPV 7?2??7?772??7??7?72?7?72??7?7?7?7?77?7

?Link layer address ? lladdr ? variable ? integer ?

PP 72?2???7????????7???7??7??7?7777?77

The link layer address type is used for link layer addresses. Link layer addresses are
specified as a variable amount of groups of two hexadecimal digits separated using colons
©.

Link layer address specification.

Ethernet destination MAC address Page 30/104

filter input ether daddr 20:¢9:d0:43:12:d9
IPV4 ADDRESS TYPE

PPV 7???????7???7??7??7??77?77?77

?Name ? Keyword ? Size ? Base type ?

PP ????????7???7??7??7??7?7?77?77

?IPV4 address ? ipv4_addr ? 32 bit ? integer ?

PPV 2?7?7???7?77?77??77?7?77?7?2??7?77?7?7?7

The IPv4 address type is used for IPv4 addresses. Addresses are specified in either dotted
decimal, dotted hexadecimal, dotted octal, decimal, hexadecimal, octal notation or as a
host name. A host name will be resolved using the standard system resolver.
IPv4 address specification.

dotted decimal notation

filter output ip daddr 127.0.0.1

host name

filter output ip daddr localhost

IPV6 ADDRESS TYPE

PPV 77?77???7?7??7?7??7?7?7?7?7?7?7?77

?Name ? Keyword ? Size ? Base type ?

PPV ??7????77??7???7???7?7??7??7?7?77?7?7?7

?IPv6 address ? ipv6_addr ? 128 bit ? integer ?

PPV ???7?7??7?7??7?77?7?77?7?7?7

The IPv6 address type is used for IPv6 addresses. Addresses are specified as a host name
or as hexadecimal halfwords separated by colons. Addresses might be enclosed in square
brackets ("[]") to differentiate them from port numbers.
IPv6 address specification.

abbreviated loopback address

filter output ip6 daddr ::1
IPv6 address specification with bracket notation.

without [] the port number (22) would be parsed as part of the

ipv6 address

ip6 nat prerouting tcp dport 2222 dnat to [1ce::d0]:22 Page 31/104

BOOLEAN TYPE

PPV ???7?27?7???7??7?7??7?7??7?7?7?7

?Name ? Keyword ? Size ? Base type ?

PPV ???7?27?7???7??7?7??7?7??7?7?7?7

?Boolean ? boolean ? 1 bit ? integer ?

PPV 7?7???7?????7????7?7?77

The boolean type is a syntactical helper type in userspace. Its use is in the right-hand
side of a (typically implicit) relational expression to change the expression on the
left-hand side into a boolean check (usually for existence).

Table 16. The following keywords will automatically resolve into a boolean type with given

value

PP???7?7?7??7??7??7?7?7?777

?Keyword ? Value ?

QP00 7??7?7?7?777

?exists 21 ?

PP?0????7???7?7??7?7?7?7

?missing?0 ?

PP?0????????7??7?7?7?7

Table 17. expressions support a boolean comparison

PPV 77???7??7?7?7?7?7?7?77

?Expression ? Behaviour ?

PPV 2?7???7?7???7??7?7?7?7?7?7?77

?fib ? Check route existence. ?

PPV 2?72???7??????7??7?7??7??7?777

?exthdr ? Check IPv6 extension header ?

? ? existence. ?

PPV 2?70???7??????7??7???7??7?77

Page 32/104

?tcp option ? Check TCP option header ?

? ? existence. ?

PPV ?7????7?????????7??7??7?77

Boolean specification.
match if route exists
filter input fib daddr . iif oif exists
match only non-fragmented packets in IPv6 traffic
filter input exthdr frag missing
match if TCP timestamp option is present
filter input tcp option timestamp exists

ICMP TYPE TYPE

PPV 277???7?77??7??77??77?7?7?7?7?77

?Name ? Keyword ? Size ? Base type ?

P07 2?77???7???7??77??77?7?77?7?77

?ICMP Type ? icmp_type ? 8 bit ? integer ?

PPV 7??7????7?7?7?7?7?7?777

The ICMP Type type is used to conveniently specify the ICMP header?s type field.

Table 18. Keywords may be used when specifying the ICMP type

PPV 7????????7??7???7??7?7?7?7°

?Keyword ? Value ?

P07 7??????????7??7?7??7?7?7?7°

?echo-reply ?0 ?

PPV ???7???7?77?7?7?7?

?destination-unreachable ? 3 ?

PP 7?77???7??7??7??7??77?77?7

?source-quench 24 7

PPV 7?7?????????7??7?7?7?7?7?7?7?

?redirect ?5 2 Page 33/104

PP 77??????7??????7?7??7?7

?echo-request ?8 ?

P02 7??????7??77?7??7?7?7?7?7?7?7°

?router-advertisement ?9 ?

PP ?????????7?7?7??7?7

?router-solicitation ?10 ?

PP 7????????7??7??7?7??7?7?7?7

?time-exceeded ?11 ?

PPV ????7???7??7?7?7??7?77

?parameter-problem ?12 2

PP 7??????7???7?7??7?7??7?7?7?7°

?timestamp-request ?13 ?

PPV ????7???2??7???7?77?7?7?7°

?timestamp-reply ?214 2

P07 7??????????7??7?7??7?7?7?7°

?info-request ?15 ?

PPV ???7???7?77?7?7?7?

?info-reply ?16 7

PP 7?77???7??7??7??7??77?77?7

?address-mask-request ? 17 ?

PPV 7?7?????????7??7?7?7?7?7?7?7?

?address-mask-reply ?18 *?

Page 34/104

PP 77??????7??????7?7??7?7

ICMP Type specification.
match ping packets
filter output icmp type { echo-request, echo-reply }
ICMP CODE TYPE

PPV ???7?27????7?7??7??7?7??77?7?7?7?7?77

?Name ? Keyword ? Size ? Base type ?

PP 27????7?7??7??7?7??77?7?7?7?7?77

?ICMP Code ? icmp_code ? 8 bit ? integer ?

PP 7??7?7?7??7??7??7???7?7?7?77?7

The ICMP Code type is used to conveniently specify the ICMP header?s code field.

Table 19. Keywords may be used when specifying the ICMP code

PP ??????7??77??7?7??77?7?7?

?Keyword ? Value ?

PP 2?????7??77??7?7?7?77?7?7

?net-unreachable 20 ?

PP ??????7?77?7?7?7

?host-unreachable 7?1 ?

PP ??????7??77??7?7??77?7?7?

?prot-unreachable 72 ?

PPV ??7???7?7?7?7?7?7

?port-unreachable ? 3 ?

PP 7?7?7?7?77?77?7?7?

?frag-needed ?4 ?

PP 2???????7???7?7?7?7?7?7?

?net-prohibited ?9 ? Page 35/104

PP 7?7?7?7??7??7?7?7?7?7?7

?host-prohibited ? 10 ?

P77 ??????7??77???7?7?77?7?7

?admin-prohibited ? 13 ?

QP07 7?7?7??7??77?7?7?7?7

ICMPV6 TYPE TYPE

PPV 7??7??7?7?7??7??7?7??7?7?7

?Name ? Keyword ? Size ? Base type ?

PPV 7????7??7??7??7?7??7?7?7

?ICMPvV6 Type ? icmpx_code ? 8 bit ? integer ?

PPV ????7?77???7?7??7?7??7??77?7??7?7??77?7?7

The ICMPV6 Type type is used to conveniently specify the ICMPv6 header?s type field.

Table 20. keywords may be used when specifying the ICMPV6 type:

PPV ???????7?7?7?7?7??77

?Keyword ? Value ?

PPV ????7???2??7???7?77?7?7?7°

?destination-unreachable ? 1 ?

P07 7??????????7??7?7??7?7?7?7°

?packet-too-big ?2 7

PPV ???7???7?77?7?7?7?

?time-exceeded ?3 ?

PP 7?77???7??7??7??7??77?77?7

?parameter-problem 24 2

PPV 7?7?????????7??7?7?7?7?7?7?7?

?echo-request ?128 ? Page 36/104

PP 77??????7??????7?7??7?7

?echo-reply ?129 7

P02 7??????7??77?7??7?7?7?7?7?7?7°

?mld-listener-query ~ ? 130 ?

PP ?????????7?7?7??7?7

?mld-listener-report ? 131 ?

PP 7????????7??7??7?7??7?7?7?7

?mld-listener-done ?132 ?

PPV ????7???7??7?7?7??7?77

?mld-listener-reduction ? 132 ?

PP 7??????7???7?7??7?7??7?7?7?7°

?nd-router-solicit ?133 ?

PPV ????7???2??7???7?77?7?7?7°

?nd-router-advert ?134 2

P07 7??????????7??7?7??7?7?7?7°

?nd-neighbor-solicit 7135 ?

PPV ???7???7?77?7?7?7?

?nd-neighbor-advert ? 136 ?

PP 7?77???7??7??7??7??77?77?7

?nd-redirect ?137 ?

PPV 7?7?????????7??7?7?7?7?7?7?7?

?router-renumbering ? 138 ?

Page 37/104

PP 77??????7??????7?7??7?7

?ind-neighbor-solicit ? 141 ?

P02 7??????7??77?7??7?7?7?7?7?7?7°

?ind-neighbor-advert ? 142 ?

PP ?????????7?7?7??7?7

?mld2-listener-report ? 143 ?

PP 7????????7??7??7?7??7?7?7?7

ICMPV6 Type specification.
match ICMPV6 ping packets
filter output icmpv6 type { echo-request, echo-reply }

ICMPV6 CODE TYPE

PPV ??????7???7?7??7??7??7?7?7?7?77?7

?Name ? Keyword ? Size ? Base type ?

PPV ?????7???7??7??7??7?7?77?77

?ICMPv6 Code ? icmpv6_code ? 8 bit ? integer ?

PPV 7?7??7??77??7?7?7?7??7?7?7?7??7?7

The ICMPv6 Code type is used to conveniently specify the ICMPVv6 header?s code field.

Table 21. keywords may be used when specifying the ICMPv6 code

PPV ??7???7?7?7?7?7?7?

?Keyword ? Value ?

PPV ??7???7?7?7?7?7?7

?no-route ?20 ?

PP 7?7?7?7?77?77?7?7?

?admin-prohibited 71 ?

PP 2???????7???7?7?7?7?7?7?

?addr-unreachable 7?3 2 Page 38/104

PP 7?7?7?7??7??7?7?7?7?7?7

?port-unreachable 74 ?

P77 ??????7??77???7?7?77?7?7

?policy-fail ?5 ?

QP07 7?7?7??7??77?7?7?7?7

?reject-route ?6 ?

PP 2?7????7?7?7???7??7?7?7?7

ICMPVX CODE TYPE

PPV 7?7?77??77?7?77?7???7?77?7??7?7

?Name ? Keyword ? Size ? Base type ?

PPV 2?772??7?7?77??77?7?77?7???7?77?7??7?7

?ICMPvX Code ? icmpv6_type ? 8 bit ? integer ?

PPV ?????7???7??7??7??7?7?77?77

The ICMPvX Code type abstraction is a set of values which overlap between ICMP and ICMPv6
Code types to be used from the inet family.

Table 22. keywords may be used when specifying the ICMPvX code

PPV ??????7?7?7?7?7?7?

?Keyword ? Value ?

PPV ??7???7?7?7?7?7?7?

?no-route ?70 ?

PP 7?7?7?7?77?77?7?7?

?port-unreachable 71 ?

PPV 7???7???7?7?7?7?7?7?

?host-unreachable 72 ?

PP 77?7?7?7?7?7?77?77?7?7?

? ? ? Page 39/104

?admin-prohibited ? 3 ?

PP 7??77???7?7?77?7?7

CONNTRACK TYPES

Table 23. overview of types used in ct expression and statement

PPV 7??7??7?7?77?77?77?7

?Name ? Keyword ? Size ? Base type ?

PPV 7?7?777?77?77?7

?conntrack state ? ct_state ? 4 byte ? bitmask ?

PP 277?7???7?7??7??7?7??27?7?777?7?7?

?conntrack direction ? ct_dir ? 8 bit ?integer ?

PP 7??7?7?7?7?7?7?77?77?7

?conntrack status ? ct_status ? 4 byte ? bitmask ?

PPV ?77?72??7???7??7?7??277?777?7?7?

?conntrack event ? ct_event ? 4 byte ? bitmask ?
?bits ? ? ? ?

PPV ?77?7???7???7??7?7??277?7?77?7?7?

?conntrack label ? ct_label ? 128 bit ? bitmask ?

PPV 2?7?77??7????7?77?7?27?7?777?7?77?

For each of the types above, keywords are available for convenience:

Table 24. conntrack state (ct_state)

QP07 7??7?7?7?77?77?7

?Keyword ? Value ?

QP07 7??7?7?7?77?77?7

?invalid 2?21 ?

P07 7?????7?7?7?7??7?7

?established ?2 ? Page 40/104

P07 7??7??7?7?77?7

?related ?4 ?

P77 7?????7?7?7?7??7?7

?new ?8 ?

P07 7??7??7?777?7

?untracked ?64 ?

P77 ???7???7??7?7??7?7

Table 25. conntrack direction (ct_dir)

PP?07???7?7??7??7?7?777

?Keyword ? Value ?

PP?07???7?7??7?77?7??7?7

?original 70 ?

PP?P?????7??7??7?7?7?77?7?7?

?reply ?1 2

PP?0????7????7??7?7??77

Table 26. conntrack status (ct_status)

P07 ??77??7?7??77?7?7

?Keyword ? Value ?

P07 7?7?7?77?77?7?7?

?expected ?1 7

P07 ?????7?7?7?77?7?7?7

?seen-reply?2 ?

P07 7?7?7?77?77?7?7?

?assured ?4 ?

P07 ?????7?7??77?7?7?7

Page 41/104

? ? ?

?confirmed 2?8 ?

P07 7??77?7?7?7?7

?snat ?16 ?

P77 ???7??7?7??77?7?7

?dnat ?32 ?

QP07 7??7?7?7?7?7?7

2dying ?512 ?

P77 ???7??77??77?7?7

Table 27. conntrack event bits (ct_event)

P77 7??77??77?7?77?7

?Keyword ? Value ?

P77 7??7?7??77?7?77?7

?new ?1 2

PP?0??????7????7??7°?7?7

?related ?2 7

PPP0????7??7?7??77?7?77?7

?destroy ?4 ?

P07 ??7????7?7?77?7?7

?reply ?8 ?

PP 7???7?7??7??7?77?7

?assured ?16 ?

P07 ??7?7???7?7?7?7?7

?protoinfo ? 32 ?

Page 42/104

PP?P????7??7??7??7?77?7?7

?helper 2?64 ?

P07 ??7?7??7?7?7?77?7

?mark ?128 ?

P07 7??7?77?777

?segad] ? 256 ?

PP?0??????7?7??7?7?7?77?7

?secmark ?512 ?

PP??????7??7??7??7??7?7?7

?label 7?1024 ?

P77 7??7?7??77?7?77?7

Possible keywords for conntrack label type (ct_label) are read at runtime from
/etc/connlabel.conf.

DCCP PKTTYPE TYPE

PPV 7???7??77?7?7?7?7?7?7?7??7?7

?Name ? Keyword ? Size ? Base type ?

PPV 7???7??77?7?7?7?7?7?7?7??7?7

?DCCP packet type ? dccp_pktitype ? 4 bit ? integer ?

PPV 7?2??7?772??7??7?72?7?72??7?7?7?7?77?7

The DCCP packet type abstracts the different legal values of the respective four bit field

in the DCCP header, as stated by RFC4340. Note that possible values 10-15 are considered
reserved and therefore not allowed to be used. In iptables' dccp match, these values are
aliased INVALID. With nftables, one may simply match on the numeric value range, i.e.
10-15.

Table 28. keywords may be used when specifying the DCCP packet type

PP?P?????7?7?77?7777?

?Keyword ? Value ? Page 43/104

PP?P?????7??7??77?777?77?

?request 70 ?

PP?0????7?2??7??7?7??7?7

?response ?1 ?

PP?P?????7??7??77777?7?

?ack ?3 ?

PP?P?????7??7??7?7?7?77?7?7?

?dataack ?74 ?

PP?0????7??7??7??7?7??77

?closereq?5 ?

PPP7????7?7??7??7?7??7?7

?close ?6 ?

PP?0????7????7??7?7??77

?reset ?7 ?

P72 7??7??7?7?77?7

?sync ?8 ?

PP?P?7???7?7?77?7777?

?syncack ?9 ?

PPP0????7?7??7??7?7??77

PRIMARY EXPRESSIONS

The lowest order expression is a primary expression, representing either a constant or a Page 44/104

single datum from a packet?s payload, meta data or a stateful module.
META EXPRESSIONS
meta {length | nfproto | |4proto | protocol | priority}
[meta] {mark | iif | iifname | iiftype | oif | oifname | oiftype | skuid | skgid | nftrace | rtclassid | ibrname | obrname |
pkttype | cpu | iifgroup | oifgroup | cgroup | random | ipsec | iifkind | oifkind | time | hour | day }
A meta expression refers to meta data associated with a packet.
There are two types of meta expressions: unqualified and qualified meta expressions.
Qualified meta expressions require the meta keyword before the meta key, unqualified meta
expressions can be specified by using the meta key directly or as qualified meta
expressions. Meta l4proto is useful to match a particular transport protocol that is part
of either an IPv4 or IPv6 packet. It will also skip any IPv6 extension headers present in
an IPv6 packet.
meta iif, oif, iifname and oifname are used to match the interface a packet arrived on or
is about to be sent out on.
iif and oif are used to match on the interface index, whereas iifname and oifname are used
to match on the interface name. This is not the same ? assuming the rule
filter input meta iif "foo"
Then this rule can only be added if the interface "foo" exists. Also, the rule will
continue to match even if the interface "foo" is renamed to "bar".
This is because internally the interface index is used. In case of dynamically created
interfaces, such as tun/tap or dialup interfaces (ppp for example), it might be better to
use iifname or oifname instead.
In these cases, the name is used so the interface doesn?t have to exist to add such a
rule, it will stop matching if the interface gets renamed and it will match again in case
interface gets deleted and later a new interface with the same name is created.
Like with iptables, wildcard matching on interface name prefixes is available for iifname
and oifname matches by appending an asterisk (*) character. Note however that unlike
iptables, nftables does not accept interface names consisting of the wildcard character
only - users are supposed to just skip those always matching expressions. In order to
match on literal asterisk character, one may escape it using backslash (\).

Table 29. Meta expression types

PP 7?2?7?7?7?72?7?77?7?7?7?7?77?7

?Keyword ? Description ? Type ? Page 45/104

PPV 7?77?7?7?7??7?77?7?7?7?7?777

?length ? Length of the packet in ? integer (32-bit) ?
? ? bytes ? ?

PPV 7??7?7??7??7?77?7?7?7?7?777

?nfproto ? real hook protocol ? integer (32 bit) ?
? ? family, useful only in ? ?
? ? inet table ? ?

PPV ??????7???7?27??7???7??77?7???7?7?7??7?7?7?7?7?7??7?7?7?7?7777

?l4proto ? layer 4 protocol, skips ? integer (8 bit) ?
? ? ipv6 extension headers ? ?

PPV 7???7??77?277?7???7?7??7?2?77?7?7?7?7??7?7?77?7777

?protocol ? EtherType protocol value ? ether_type ?

PPV 7??7?7?7?7?7?7?777

?priority ? TC packet priority ? tc_handle ?

PPV ??????77???7???7???7??77?7???7???7??77??7?7?7??7?7?77?7?777

?mark ? Packet mark ? mark ?

PPV 72??2?77???7?7???7??7?7777

?iif ? Input interface index ? iface_index ?

PP 72?7?7?72?7?77?7?7?7?7?7777

?iifname ? Input interface name ? ifname ?

PPV ???72?77?7??7?7???7°?7?7777

?iiftype ? Input interface type ? iface_type ?

PP 7?2?7?7?7?72?7?77?7?7?7?7?77?7

Page 46/104

?0if ? Output interface index ? iface_index ?

PPV 7?277?72??727?7?2?7?7?7??7?7??7?7?77?7?777

?oifname ? Output interface name ? ifname ?

PPV 7??7?7??7??7?77?7?7?7?7?777

? ? ? ?
?0iftype ? Output interface ? iface_type ?
? ? hardware type ? ?

PP 7?7?7?7?7?7??7??7?7?7?7?7?7?7777

2 2 2 ?
?sdif ? Slave device input ? iface_index ?
? ? interface index ? ?

PP 7??7??7??7?7?7?7?7?7?777

2 ? 2 2
?sdifname ? Slave device interface ? ifname ?
? ? name ? ?

PPV 7??7?7?7?7?7?7?777

2 ? ? ?
?skuid ? UID associated with 7 uid ?
? ? originating socket ? ?

PPV 2??2?77?7??7?7??7?7??7?77?77

? ? ? ?
?skgid ? GID associated with ? gid ?
? ? originating socket ? ?

PPV 2?2?77?7??7?7???7??7?7777

?rtclassid ? Routing realm ? realm ?

PP 72?7?7?72?7?77?7?7?7?7?7777

? ? ? ?
?ibrname ? Input bridge interface ? ifname ?
? ? name ? ?

PP 7?2?7?7?7?72?7?77?7?7?7?7?77?7

Page 47/104

?obrname ? Output bridge interface ? ifname ?
? ? name ? ?

PPV 7?7?7??7?77?7?7?7?7?777

?pkttype ? packet type ? pkt_type ?

PPV 7???7?277?7???727?7?2?7?7?7?7?7?7??7?7?7?7?7?777

?cpu ? cpu number processing ? integer (32 bit) ?
? ? the packet ? ?

PPV ??????7???7?27??7???7??77?7???7?7?7??7?7?7?7?7?7??7?7?7?7?7777

?iifgroup ? incoming device group ? devgroup ?

PP 7??7??7??7?7?7?7?7?7?777

?oifgroup ? outgoing device group ? devgroup ?

PPV 7?7??7???7??77?7???7???7?2?7?7??7?7?7??7?7?7?7?7?777

?cgroup ? control group id ? integer (32 bit) ?

PPV 2?7?72??72??72?77?7??7?7??7?7?7?7?77?7?7

?random ? pseudo-random number ? integer (32 bit) ?

PPV 727??7??77??77?7??7?7?7?7?7?777

?ipsec ? true if packet was ipsec ? boolean (1 bit) ?
? ? encrypted ? ?

PP 72?7?7?72?7?77?7?7?7?7?7777

?iifkind ? Input interface kind ? ?

PPV ???72?77?7??7?7???7°?7?7777

?oifkind ? Output interface kind ? ?

PP 7?2?7?7?7?72?7?77?7?7?7?7?77?7

Page 48/104

?time ? Absolute time of packet ? Integer (32 bit) or ?
? ? reception ? string ?

PPV 7?7?7??7?77?7?7?7?7?777

2 2 2 ?
?day ? Day of week ? Integer (8 bit) or ?
? ? ? string ?

PPV 7?7?7??7??7?7?7?7?7?7?777

?hour ? Hour of day ? String ?

PPV ??????7???7?27??7???7??77?7???7?7?7??7?7?7?7?7?7??7?7?7?7?7777

Table 30. Meta expression specific types

PPV 277?7???72?77???7?7?77??7?7?7?77?7

?Type ? Description ?

PPV 077?7???2?77??77?7?77?7?7?7?7?77?7

?iface_index ? Interface index (32 bit number). ?

? ? Can be specified numerically or ?
? ? as name of an existing ?
? ? interface. ?

PPV 277?7???7??7?7???7?7?77??7?7?7?77?7

? 2 2
?ifname ? Interface name (16 byte string). ?
? ? Does not have to exist. ?

QP07 070????0?????7???????7??7?7777?7

?iface_type ? Interface type (16 bit number). ?

PPV ???7?7277?7?7?7?7?7?7?7

2 2 2
?uid ? User ID (32 bit number). Can be ?
? ? specified numerically or as user ?

? ? name. ?

PP 2???7??7???7???7?7??7?7777?7

Page 49/104

?gid ? Group ID (32 bit number). Can be ?
? ? specified numerically oras ?
? ? group name. ?

PPV 277?7???7?7?7?7??7?7?77?7?7?7?7?277?7

? 2 2
?realm ? Routing Realm (32 bit number). ?
? ? Can be specified numerically or ?

? ? as symbolic name definedin ~ ?

? ? letc/iproute2/rt_realms. ?

PP 077?7???2?7?7???7?7?77??7?7?7?77?7

?devgroup_type ? Device group (32 bit number). ?

? ? Can be specified numerically or ?
? ? as symbolic name definedin ~ ?
? ? letcliproute2/group. ?

PPV 077?7???7?77?77???7?7?77??7?7?7?77?7

?pkt_type ? Packet type: host (addressed to ?

? ? local host), broadcast (to all), ?
? ? multicast (to group), other 2
? ? (addressed to another host). ?

PPV 077?7???7?7?7?7???7?7?77??7?7?7?77?7

?ifkind ? Interface kind (16 byte string). ?
? ? See TYPES in ip-link(8) fora ?
? ? list. ?

PPV ???7?7277?7?7?7?7?7?7?7

? ? ?
?time ? Either an integer or a date in ?
? ? 1SO format. For example: ?

? ?"2019-06-06 17:00". Hour and ~ ?
? ? seconds are optional and can be ?
? ? omitted if desired. If omitted, ?

Page 50/104

? ? midnight will be assumed. The ?

? ? following three would be ?

? ? equivalent: "2019-06-06", ?

? ? "2019-06-06 00:00" and ?

? ? "2019-06-06 00:00:00". When an ?
? ? integer is given, it is assumed ?

? ? to be a UNIX timestamp. ?

PPV 277?7???72?7?7???7?7?77?7?7?7?7?277?7

2 ? ?
?day ? Either a day of week ("Monday", ?
? ? "Tuesday", etc.), or an integer ?

? ? between 0 and 6. Strings are ?

? ? matched case-insensitively, and ?
? ? a full match is not expected ?

? ? (e.g. "Mon" would match ?

? ? "Monday"). When an integeris ?

? ? given,0is Sundayand 6is ?

? ? Saturday. ?

PPV 0?7?7???77?7????7?7?7?7?7?7?7?7?7?7?7

? ? ?
?hour ? A string representing an hour in ?
? ? 24-hour format. Seconds can ~ ?
? ? optionally be specified. For ?

? ? example, 17:00 and 17:00:00 ?
? ? would be equivalent. ?

QP07 070???7??2?????7???7???7?7?7?7??777?7

Using meta expressions.
qualified meta expression
filter output meta oif ethO
filter forward meta iifkind { "tun”, "veth" }
unqualified meta expression
filter output oif ethO

incoming packet was subject to ipsec processing

Page 51/104

raw prerouting meta ipsec exists accept
SOCKET EXPRESSION

socket {transparent | mark | wildcard}

socket cgroupv2 level NUM
Socket expression can be used to search for an existing open TCP/UDP socket and its
attributes that can be associated with a packet. It looks for an established or non-zero
bound listening socket (possibly with a non-local address). You can also use it to match
on the socket cgroupv?2 at a given ancestor level, e.g. if the socket belongs to cgroupv2
a/b, ancestor level 1 checks for a matching on cgroup a and ancestor level 2 checks for a
matching on cgroup b.

Table 31. Available socket attributes

PPV 7???7?277?7??7??77?7???7??7?7?7?7

?Name ? Description ? Type ?

PPV 277?7??7???7?7???7??7?7?7?7

? ? ? ?

?transparent ? Value of the ? boolean (1 bit) ?
? ? IP_TRANSPARENT socket ? ?
? ? option in the found ? ?

? ? socket. ltcan be O or ? ?

? ?1. ? ?

PPV 2?7?72?????7??7?7??7?7?7?7?

2 2 2 2
?mark ? Value of the socket mark ? mark ?
? ? (SOL_SOCKET, SO_MARK). ? ?

PPV 2??7?7?????7??7?7??7?7?7?7°

?wildcard ? Indicates whether the ? boolean (1 bit) ?
? ? socket is wildcard-bound ? ?
? ? (e.g.0.0.0.00r::0). ? ?

PP 7??7??727?7?7?77?77?7

?cgroupv2 ? cgroup version 2 for ? cgroupv2 ?

? ? this socket (path from ? ? Page 52/104

?

PP 72??2??2?7??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

? [sysl/fs/icgroup) ? ?

Using socket expression.

Mark packets that correspond to a transparent socket. "socket wildcard 0"

means that zero-bound listener sockets are NOT matched (which is usually

exactly what you want).
table inet x {
chainy {

type filter hook prerouting priority mangle; policy accept;

socket transparent 1 socket wildcard 0 mark set 0x00000001 accept

}

Trace packets that corresponds to a socket with a mark value of 15

table inet x {
chainy {
type filter hook prerouting priority mangle; policy accept;

socket mark 0x0000000f nftrace set 1

}

Set packet mark to socket mark
table inet x {
chainy {
type filter hook prerouting priority mangle; policy accept;

tcp dport 8080 mark set socket mark

}

Count packets for cgroupv2 "user.slice" at level 1
table inet x {
chainy {
type filter hook input priority filter; policy accept;

socket cgroupv2 level 1 "user.slice" counter

Page 53/104

OSF EXPRESSION
osf [ttl {loose | skip}] {name | version}
The osf expression does passive operating system fingerprinting. This expression compares
some data (Window Size, MSS, options and their order, DF, and others) from packets with
the SYN bhit set.

Table 32. Available osf attributes

PPV 7?????????7??7??7?7?7?7

?Name ? Description ? Type ?

PP 7??????7??7???7??7??7??77

?ttl ? Do TTL checks onthe ? string ?
? ? packet to determine the ? ?
? ? operating system. ? ?

PPV 2??7???7??77??7?7??7?7?7?7?

2 2 2 2
?version ? Do OS version checks on ? ?
? ? the packet. ? ?

PP 7???7?7??7?2??7???7??7?7??7?7??7?77?7?7?

?name ? Name of the OS signature ? string ?
? ? to match. All signatures ? ?

? ? can be found at pf.os ? ?

? ? file. Use "unknown" for ? ?

? ? OS signatures that the ? ?

? ? expression could not ? ?

? ? detect. ? ?

PPV 2??77????77??7?7?7?7?7?77

Available ttl values.
If no TTL attribute is passed, make a true IP header and fingerprint TTL true comparison. This generally works for
LANSs.
* loose: Check if the IP header's TTL is less than the fingerprint one. Works for globally-routable addresses.
* skip: Do not compare the TTL at all.

Using osf expression. Page 54/104

Accept packets that match the "Linux" OS genre signature without comparing TTL.
table inet x {
chainy {
type filter hook input priority filter; policy accept;

osf ttl skip name "Linux"

}
FIB EXPRESSIONS

fib {saddr | daddr | mark | iif | 0if} [. ...] {oif | oifname | type}
A fib expression queries the fib (forwarding information base) to obtain information such
as the output interface index a particular address would use. The input is a tuple of
elements that is used as input to the fib lookup functions.

Table 33. fib expression specific types

PPV 7??7?2??7?7?77?7??7?277?7??7?7?77?7??7?7

?Keyword ? Description ? Type ?

PPV 7?7??7??77?7?7??7?7?7?7??7?7

?0if ? Output interface index ? integer (32 bit) ?

PPV 72?7?7??7?7??7?7?77?7

?oifname ? Output interface name ? string ?

PPV 7???7??77?7?7?7?7?7?7?7??7?7

?type ? Address type ? fib_addrtype ?

PPV 7?2??7?772??7??7?72?7?72??7?7?7?7?77?7

Use nft describe fib_addrtype to get a list of all address types.
Using fib expressions.
drop packets without a reverse path
filter prerouting fib saddr . iif oif missing drop
In this example, 'saddr . iif' looks up routing information based on the source address and the input interface.
oif picks the output interface index from the routing information.
If no route was found for the source address/input interface combination, the output interface index is zero.

In case the input interface is specified as part of the input key, the output interface index is always the Ragee5241pé

input interface index or zero.

If only 'saddr oif' is given, then oif can be any interface index or zero.

drop packets to address not configured on incoming interface

filter prerouting fib daddr . iif type !={ local, broadcast, multicast } drop

perform lookup in a specific 'blackhole’ table (Oxdead, needs ip appropriate ip rule)

filter prerouting meta mark set Oxdead fib daddr . mark type vmap { blackhole : drop, prohibit : jump prohibited,
unreachable : drop }
ROUTING EXPRESSIONS
rt [ip | ip6] {classid | nexthop | mtu | ipsec}
A routing expression refers to routing data associated with a packet.

Table 34. Routing expression types

PPV 7???7?277?7??7??77?7???7??7?7?7?7

?Keyword ? Description ? Type ?

PPV 277?7??7???7?7???7??7?7?7?7

?classid ? Routing realm ? realm ?

PPV 7??7??7??7??7?7?77?7

?nexthop ? Routing nexthop ? ipv4_addr/ipv6_addr ?

PPV 7???7????27?7?2??7?27??7???7??77?7??7?7?7?7?7???7??7?7?7?7

?mtu ? TCP maximum segment size ? integer (16 bit) ?
? ? of route ? ?

PP 7?72?7?7?77?77?7

? ? ? 2
?ipsec ? route via ipsec tunnel ? boolean ?
? ? or transport ? ?

PP 7?7?7?7?777?77?7

Table 35. Routing expression specific types

PP 0???????7???7??7??7??77?77?77?

?Type ? Description ?

PP 0???????7???7??7??7??77?77?77?

2 92 2 Page 56/104

?realm ? Routing Realm (32 bit number). ?
? ? Can be specified numerically or ?
? ?as symbolic name defined in ?

? ?/etcliproute2/rt_realms. ?

PP ???7??????7??7??7?7?777?77?

Using routing expressions.

IP family independent rt expression

filter output rt classid 10

IP family dependent rt expressions

ip filter output rt nexthop 192.168.0.1

ip6 filter output rt nexthop fd00::1

inet filter output rt ip nexthop 192.168.0.1

inet filter output rt ip6 nexthop fd00::1

outgoing packet will be encapsulated/encrypted by ipsec

filter output rt ipsec exists

IPSEC EXPRESSIONS

ipsec {in | out} [spnum NUM] {reqid | spi}

ipsec {in | out} [spnum NUM] {ip | ip6} {saddr | daddr}
An ipsec expression refers to ipsec data associated with a packet.
The in or out keyword needs to be used to specify if the expression should examine inbound
or outbound policies. The in keyword can be used in the prerouting, input and forward
hooks. The out keyword applies to forward, output and postrouting hooks. The optional
keyword spnum can be used to match a specific state in a chain, it defaults to 0.

Table 36. Ipsec expression types

PPV 2??7?7?????7??7?7??7?7?7?7°

?Keyword ? Description ? Type ?

PPV 2?7?7?7?7????7???7??7?7?7?7

?reqid ? Request ID ? integer (32 bit) ?

PP 7??7??727?7?7?77?77?7

?spi ? Security Parameter Index ? integer (32 bit) ?

bbb bbb bbb bbb bbb bbb bbbl il Page 57/104

? ? ? ?
?saddr ? Source address of the ? ipv4_addr/ipv6_addr ?

? ? tunnel ? ?

PPV 72??2??2?77??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?daddr ? Destination address of ? ipv4_addr/ipv6_addr ?

? ? the tunnel ? ?

PPV 2?72??7?27??7???7??77?7??7??7?7?7???7??7?7?7?7

NUMGEN EXPRESSION

numgen {inc | random} mod NUM [offset NUM]
Create a number generator. The inc or random keywords control its operation mode: In inc
mode, the last returned value is simply incremented. In random mode, a new random number
is returned. The value after mod keyword specifies an upper boundary (read: modulus) which
is not reached by returned numbers. The optional offset allows to increment the returned
value by a fixed offset.
A typical use-case for numgen is load-balancing:
Using numgen expression.

round-robin between 192.168.10.100 and 192.168.20.200:

add rule nat prerouting dnat to numgen inc mod 2 map \

{0:192.168.10.100, 1 : 192.168.20.200 }
probability-based with odd bias using intervals:
add rule nat prerouting dnat to numgen random mod 10 map \
{0-2:192.168.10.100, 3-9 : 192.168.20.200 }
HASH EXPRESSIONS

jhash {ip saddr | ip6 daddr | tcp dport | udp sport | ether saddr} [. ...] mod NUM [seed NUM] [offset NUM]

symhash mod NUM [offset NUM]
Use a hashing function to generate a number. The functions available are jhash, known as
Jenkins Hash, and symhash, for Symmetric Hash. The jhash requires an expression to
determine the parameters of the packet header to apply the hashing, concatenations are
possible as well. The value after mod keyword specifies an upper boundary (read: modulus)
which is not reached by returned numbers. The optional seed is used to specify an init
value used as seed in the hashing function. The optional offset allows to increment the

returned value by a fixed offset. Page 58/104

A typical use-case for jhash and symhash is load-balancing:
Using hash expressions.
load balance based on source ip between 2 ip addresses:
add rule nat prerouting dnat to jhash ip saddr mod 2 map \
{0:192.168.10.100, 1 : 192.168.20.200 }
symmetric load balancing between 2 ip addresses:
add rule nat prerouting dnat to symhash mod 2 map \
{0:192.168.10.100, 1 : 192.168.20.200 }
PAYLOAD EXPRESSIONS
Payload expressions refer to data from the packet?s payload.
ETHERNET HEADER EXPRESSION
ether {daddr | saddr | type}

Table 37. Ethernet header expression types

PPV 2?7????77?7???7???7?7??7??7?7?77?7?7?7

?Keyword ? Description ? Type ?

PPV 77?77???7?7??7?7??7?7?7?7?7?7?7?7?7

?daddr ? Destination MAC address ? ether_addr ?

PPV 7?????7?7??7?7??7?7?7?7?7?7?7?77

?saddr ? Source MAC address ? ether_addr ?

PPV 77??7???7?7??7?7??7?7?7?7?7?7?7?7?7

?type ? EtherType ? ether_type ?

P00 ???7?7??7?7??7?77?7?7?7?7?7

VLAN HEADER EXPRESSION
vlan {id | dei | pcp | type}
Table 38. VLAN header expression

PPV 2?72??7?7???7?7??7?7??7?7?27?7?7?7?77?

?Keyword ? Description ? Type ?

PPV 2????77????7?7??7?7??7?7?27?7?7?7?77?

?id ? VLAN ID (VID) ? integer (12 bit) ? Page 59/104

PPV 7???????7???7??7?7?7??7??7?777

?dei ? Drop Eligible Indicator ? integer (1 bit) ?

PPV 2?72??777??7???7?7?7?7?7?7?7?7?7?7?7?7?77

?pcp ? Priority code point ? integer (3 bit) ?

PPV 7??????????7??7?7?7??7??7?777

?type ? EtherType ? ether_type ?

PP 2?72??777??7???7?7??7?7?7?7?7?7?7?7?7?77

ARP HEADER EXPRESSION
arp {htype | ptype | hlen | plen | operation | saddr { ip | ether } | daddr { ip | ether }

Table 39. ARP header expression

PPV 277?7??7???7?7???7??7?7?7?7

?Keyword ? Description ? Type ?

PPV 2?7?7??7?7?7?7?7???7??7?7?7?7°

?htype ? ARP hardware type ? integer (16 bit) ?

PPV 2?7?7?2???2??7??7?7??7?7?7?7?

?ptype ? EtherType ? ether_type ?

PPV 7???7????77?7?7??7?7??7???7??77?7??7?7??7?7???7??7?7?7?7

?hlen ? Hardware address len ? integer (8 bit) ?

PPV 2??7?7?????7??7?7??7?7?7?7°

?plen ? Protocol address len ? integer (8 bit) ?

PP 7?7?7?7?777?77?7

?operation ? Operation ? arp_op ?

PPV 72??7?????7?7??7?7??7?7?7?7?

?saddr ether ? Ethernet sender address ? ether_addr ~ ? Page 60/104

PP 7?7?7?77?7?7?7?7?7?77?7

?daddr ether ? Ethernet target address ? ether_addr ?

PPV 72??2??2?77??7?27?77???7?277?7??7??7?7?7???7??7?77?7?7

?saddrip ? IPv4 sender address ? ipv4_addr ?

PP 7??77?7?7?7?7?77?7

?daddrip ? IPv4 target address ? ipv4_addr ?

PP 7?7?7?7???7?277?7??7?7?7?7?7??7?7??7?7?7?7

IPV4 HEADER EXPRESSION
ip {version | hdrlength | dscp | ecn | length | id | frag-off | ttl | protocol | checksum | saddr | daddr }

Table 40. IPv4 header expression

PPV 7?7???7??7?2??7?7??7?7?77??7?7?777?7?7

?Keyword ? Description ? Type ?

PP 7?7?????7????7?7??7??77??7?7?7?7?7?7?7

?version ? IP header version (4) ? integer (4 bit) ?

PPV 2?7?7??7???7?7??7?7??7?7?7?77?

?hdrlength ? IP header length ? integer (4 bit) FIXME ?

? ? including options ? scaling ?

PPV 7??7???7?7??7???7?777?77

? ? ? ?
?dscp ? Differentiated Services ? dscp ?
? ? Code Point ? ?

PPV 7???7?7??7??7?7?7?7?77?

? ? ? ?
?ecn ? Explicit Congestion ? ecn ?
? ? Notification ? ?

PP 7?72?7?7???2?7?2??7???7?7??7?7?7?7?777?7?7?

?length ? Total packet length ~ ? integer (16 bit) ~ ? Page 61/104

QP07 7??7?2?7?7?77?7?7?7?7?77?77?7

?id ?1PID ? integer (16 bit) ?

PPV 2??7???7?7?7?7??7?7?7?77?7?7?

?frag-off ? Fragment offset ? integer (16 bit) ?

PPV 7??77?77?77?7

2ttl ? Time to live ? integer (8 hit) ?

PP ???7?2?2??2??7???7?7??7?7?????7?7??7?7??7?7?77??7?7?7?77?7?7?

?protocol ? Upper layer protocol ? inet_proto ?

PPV 7??7??7??7??7??7°7?7?7?77?77?7

?checksum ? IP header checksum ? integer (16 bit) ?

PP 7?7?????7????7?7??7??77??7?7?7?7?7?7?7

?saddr ? Source address ? ipv4_addr ?

PPV 2?7?7??7???7?7??7?7??7?7?7?77?

?daddr ? Destination address ? ipv4_addr ?

PPV 7?7?????7????7???7??77??7?7?7?77?7?7

ICMP HEADER EXPRESSION
icmp {type | code | checksum | id | sequence | gateway | mtu}
This expression refers to ICMP header fields. When using it in inet, bridge or netdev
families, it will cause an implicit dependency on IPv4 to be created. To match on unusual
cases like ICMP over IPv6, one has to add an explicit meta protocol ip6 match to the rule.

Table 41. ICMP header expression

PPV 2?7?77??7?7???7?77??27?7?777?77?

?Keyword ? Description ? Type ?

PPV 7???7?2?7?72??7??7?7?7?7??27?7?777?7?7?

?type ? ICMP type field ? icmp_type ? Page 62/104

PP 7?7?7??7?7?7?77?77?7?7

?code ? ICMP code field ? integer (8 bit) ?

PPV 277?2??7??77?7?7?7??27?7?7?77?7?7?

?checksum ? ICMP checksum field ? integer (16 bit) ?

PPV 7?7?777?77?77?7

2 2 2 ?
?id ? 1D of echo ? integer (16 bit) ?
? ? request/response ? ?

PP 7??7??7?7?7?7?77?7?7

?sequence ? sequence number of echo ? integer (16 bit) ?
? ? request/response ? ?

PP ??7???7???7??7??7??7??7??7?7?7?7?77?7?7

?gateway ? gateway of redirects ? integer (32 bit) ?

PP 7?77?7???7??77??7?7??277?777?7?7?

?mtu ? MTU of path MTU ? integer (16 bit) ?
? ? discovery ? ?

PPV 7???7??77?7???7???7??7?7??277?7?77?7?7?

IGMP HEADER EXPRESSION
igmp {type | mrt | checksum | group}
This expression refers to IGMP header fields. When using it in inet, bridge or netdev
families, it will cause an implicit dependency on IPv4 to be created. To match on unusual
cases like IGMP over IPv6, one has to add an explicit meta protocol ip6 match to the rule.

Table 42. IGMP header expression

PPV 7?2??7?7???7??7?2?7?7???7?7?7?7?77?7

?Keyword ? Description ? Type ?

PPV 7???2??7?72??7??7?2?7?7??7?7?7?7?7?77?7

?type ? IGMP type field ? igmp_type ? Page 63/104

PP 7?????7???????7???7??7?7?7?7?77?77?77

?mrt ? IGMP maximum response ? integer (8 bit) ?
? ? time field ? ?

PPV ????????7???7???7??7??7?7?777?77

?checksum ? IGMP checksum field ? integer (16 bit) ?

PPV 2??2??77?7?2??7?7??7?7?7?7??77?7??7?7?7?7?7??7?7

?group ? Group address ? integer (32 bit) ?

PPV ????????7???7?7??7??7??7??7?77?77?77

IPV6 HEADER EXPRESSION
ip6 {version | dscp | ecn | flowlabel | length | nexthdr | hoplimit | saddr | daddr}
This expression refers to the ipv6 header fields. Caution when using ip6 nexthdr, the
value only refers to the next header, i.e. ip6 nexthdr tcp will only match if the ipv6
packet does not contain any extension headers. Packets that are fragmented or e.g. contain
a routing extension headers will not be matched. Please use meta l4proto if you wish to
match the real transport header and ignore any additional extension headers instead.

Table 43. IPv6 header expression

PPV 0?7????7?77???7???7?7???7?77?7??7?7??7?7??77?7?7?7

?Keyword ? Description ? Type ?

PPV 7???7??77?7???7?7?7?7??7?7???7??77?7?7?7

?version ? IP header version (6) ? integer (4 bit) ?

PPV 27???77???7?7?7?7?77?7

? ? ? ?
?dscp ? Differentiated Services ? dscp ?
? ? Code Point ? ?

PPV ?2??7?2?7?7???7?777?7?77???7?7?7?7?7?7?7

? ? 2 ?
?ecn ? Explicit Congestion ? ecn ?
? ? Notification ? ?

PPV ?2??7?2?7?7????777?2?77??7?7?7?7?7?7?7?7 Page(¥U104

? ? ? ?

?flowlabel ? Flow label ? integer (20 bit) ?

PPV 7????????7???7??7??7??7?7?7?7?77?7

?length ? Payload length ? integer (16 bit) ?

PPV 727?77???7?72?7?7???7?77?7??7?7?7??7?7?7?7??7?7

?nexthdr ? Nexthdr protocol ? inet_proto ?

PP ?????7???7???7??7??7??7??7??77?7

?hoplimit ? Hop limit ? integer (8 hit) ?

PPV 7??77??77?7???7?77?7??7?7?7??7??77??7?7

?saddr ? Source address ? ipv6_addr ?

PPV 7?????7???7?7??7??7??7??7??7?7?7?7?7

?daddr ? Destination address ? ipv6_addr ?

PPV 7???7?7?77?7???7?777??7?7?7??7?7?7?7?7?7?7

Using ip6 header expressions.
matching if first extension header indicates a fragment
ip6 nexthdr ipv6-frag
ICMPV6 HEADER EXPRESSION
icmpv6 {type | code | checksum | parameter-problem | packet-too-big | id | sequence | max-delay}
This expression refers to ICMPv6 header fields. When using it in inet, bridge or netdev
families, it will cause an implicit dependency on IPv6 to be created. To match on unusual
cases like ICMPvV6 over IPv4, one has to add an explicit meta protocol ip match to the
rule.

Table 44. ICMPv6 header expression

P00 7?7???7??7?72?7?72??7?7?7??7?7??7?7?7?7?

?Keyword ? Description ? Type ?

P07 ?2??7?72??7??7?72?7?72???2?7?7??7?7??7?7?7?7?

?type ? ICMPV6 type field ?icmpv6_type ? Page 65/104

PP 7?7?77?7??77?7?7?77?7

?code ? ICMPvV6 code field ? integer (8 bit) ?

PP ?2??7?7???7?77?727?7?72??7?7?7?7??7?7??7?77?7?7

?checksum ? ICMPv6 checksum field ? integer (16 bit) ?

QP07 7?7?7?77?77?777?7

?parameter-problem ? pointer to problem ? integer (32 bit) ?

PP 77?77?2??7?7??7?7?77?27?7?72??7?7?7?7??7?7??7?7?7?7

?packet-too-big ? oversized MTU ? integer (32 bit) ?

PP 7??7?7?7?7?7??77?7?7?77?7

2 ? 2 2
?id ? 1D of echo ? integer (16 bit) ?
? ? request/response ? ?

PPV 7?7?7??7?7?7?7?777

2 ”? 2 2
?sequence ? sequence number of echo ? integer (16 bit) ?
? ? request/response ? ?

PPV ?7??7?72?7?77????7???7?7??7?7?7?7?

2 ? 2 2
?max-delay ? maximum response delay ? integer (16 bit) ?
? ? of MLD queries ? ?

PP ???7?72??7??7?2?7?72??2?7?7??7?7??7?7?7?7

TCP HEADER EXPRESSION
tcp {sport | dport | sequence | ackseq | doff | reserved | flags | window | checksum | urgptr}

Table 45. TCP header expression

PPV 7???7?72?7?72?7?72?7?7???7??7?7??7?7

?Keyword ? Description ? Type ?

PPV ??????7?72?7?72?7?27?7?72??7??7?7?7?7?7

?sport ? Source port ? inet_service ? Page 66/104

PP 7??7?7?7??7??7?7?7??7777?77

?dport ? Destination port ? inet_service ?

PPV 7??77??77?72?7?7277?7277?7?7??7??7?7??7?7

?sequence ? Sequence number ? integer (32 bit) ?

PP 7???7?????7????7??7??7??7??7??7?7?77?777?77

?ackseq ? Acknowledgement number ? integer (32 bit) ?

PP ?27?0?2??7?77??7???7?7??7?277??7?7?7?7??7?7?7?7??7?7

? ? ? ?
?doff ? Data offset ? integer (4 bit) FIXME ?
? ? ? scaling ?

PPV 7?7??7?7277?7277?7???7?77?7??7?7

?reserved ? Reserved area ? integer (4 bit) ?

PP ?????7??7??7??7??7??7?7?7?77?77?

?flags ? TCP flags ? tcp_flag ?

PP 7??77?7?77?7277?7?7?7?7??7?7?7?7?7??7?7

?window ? Window ? integer (16 bit) ?

PPV 7???7?72?7?72?7?72?7?77??7?7?7?7??7?7

?checksum ? Checksum ? integer (16 bit) ?

PP 7???7??7?7???7??7??7?77777

?2urgptr ? Urgent pointer ? integer (16 bit) ?

PPV 7???7?72?7?72?7?72?7?7???7??7?7??7?7

UDP HEADER EXPRESSION
udp {sport | dport | length | checksum}

Table 46. UDP header expression

PPV 77?????7?27?7?7??7?77?7??7?7??27?7?7 Page67ﬂ04

?Keyword ? Description ? Type ?

PPV 2?7???7??7???7?27?7?72??7?77?7?2?7?7??27?7?77

?sport ? Source port ? inet_service ?

PP 7????????????7???7??7?7?7?777

?dport ? Destination port ? inet_service ?

PPV 7?7??7??7?7?27?7?72??7?7?7??7?7??27?77?7

?length ? Total packet length ? integer (16 bit) ?

PPV 7??7?????????????7??7??7?777

?checksum ? Checksum ? integer (16 bit) ?

PPV ?7??7???7?27?7?72??7?7??7??7?7??277?7

UDP-LITE HEADER EXPRESSION
udplite {sport | dport | checksum}
Table 47. UDP-Lite header expression

PPV 77?77???7?7??7?7??7?7?7?7?7?7?7?77

?Keyword ? Description ? Type ?

PPV ??7????77??7???7???7?7??7??7?7?77?7?7?7

?sport ? Source port 7 inet_service ?

PPV ???7?7??7?7??7?77?7?77?7?7?7

?dport ? Destination port ? inet_service ?

QPP 70?2???7??7????7??7???7??7?77

?checksum ? Checksum ? integer (16 bit) ?

PPV ???7?7??7?7??7?7?7?7?777?77

SCTP HEADER EXPRESSION
sctp {sport | dport | vtag | checksum}
sctp chunk CHUNK [FIELD]

CHUNK :=data | init | init-ack | sack | heartbeat | Page 68/104

heartbeat-ack | abort | shutdown | shutdown-ack | error |
cookie-echo | cookie-ack | ecne | cwr | shutdown-complete

| asconf-ack | forward-tsn | asconf

FIELD := COMMON_FIELD | DATA_FIELD | INIT_FIELD | INIT_ACK_FIELD |

SACK_FIELD | SHUTDOWN_FIELD | ECNE_FIELD | CWR_FIELD |
ASCONF_ACK_FIELD | FORWARD_TSN_FIELD | ASCONF_FIELD
COMMON_FIELD := type | flags | length
DATA_FIELD :=tsn | stream | ssn | ppid
INIT_FIELD :=init-tag | a-rwnd | num-outbound-streams |
num-inbound-streams | initial-tsn
INIT_ACK_FIELD := INIT_FIELD
SACK_FIELD := cum-tsn-ack | a-rwnd | num-gap-ack-blocks |
num-dup-tsns
SHUTDOWN_FIELD := cum-tsn-ack
ECNE_FIELD := lowest-tsn
CWR_FIELD := lowest-tsn
ASCONF_ACK_FIELD := seqno
FORWARD_TSN_FIELD := new-cum-tsn
ASCONF_FIELD :=seqgno

Table 48. SCTP header expression

PPV 2??2?77?7??7?7??7?7??7?77?77

?Keyword ? Description ? Type ?

PPV 72??2?77???7?7???7??7?7777

?sport ? Source port ? inet_service ?

PP 72?7?7?72?7?77?7?7?7?7?7777

?dport ? Destination port ? inet_service ?

PPV ???72?77?7??7?7???7°?7?7777

?vtag ? Verification Tag ? integer (32 bit) ?

PP 7?2?7?7?7?72?7?77?7?7?7?7?77?7

Page 69/104

?checksum ? Checksum ? integer (32 bit) ?

PPV 7?277?72??727?7?2?7?7?7??7?7??7?7?77?7?777

?chunk ? Search chunk in packet ? without FIELD, boolean ?
? ? ? indicating existence ?

PPV 7???7?277?7???727?7?2?7?7?7?7?7?7??7?7?7?7?7?777

Table 49. SCTP chunk fields

PPV 277?2?7?0?2??7?27?77???7?27?72??2?72??72??7?7??7?2?7?70??7??7?77?7?7??7?7?7?7?77??7?7

?Name ? Width in bits ? Chunk ? Notes ?

PP 7???7???7?70??7??7?7?7?7?7??7?7?7?77?7?7?7

2 ? ? ? ?
?type ?8 ? all ? not useful, defined ?
? ? ? ? by chunk type ?

PPV 7?7??7???7?77??7??7?7?77?77??7?7?7?77??77

2 ? ? ? ?
?flags ?8 ? all ? semantics defined ?
? ? ? ? on per-chunk basis ?

PPV 7?7??7???7?72??7??7?7?7??7??7?7??77??7?7

? ? ? ? ?
?length ?16 ? all ? length of this ~ ?
? ? ? ? chunk in bytes ?

? ? ? ? excluding padding ?

PPV ?7??7?72?7?70??72??777?7?7???7?7?7?7?7?7?7

2 2 2 2 2
?tsn ?32 ? data ? transmission ?
? ? ? ? sequence number ?

PPV 77??7???7?7?7?7?7?7?7

?stream ?16 ? data ? stream identifier ?

PP 7??7?7??77?7?7??77?777?7

?ssn ?16 ? data ? stream sequence ?

? ? ? ? number ? Page 70/104

PPV 7?7?7??7??7?7?77?7

? 2 2 ? 2
?ppid ? 32 ? data ? payload protocol ?
? ? ? ? identifier ?

PPV 7?7?7??7??7?7?7?7?777?7

?init-tag ? 32 ? init, init-ack ? initiate tag ?

PPV 277?2?7?0?2??7?27?77???7?27?72??2?72??72??7?7??7?2?7?70??7??7?77?7?7??7?7?7?7?77??7?7

? ? ? ? 2
?a-rwnd ?32 ? init, init-ack, ? advertised receiver ?
? ? ? sack ? window credit ?

PPV 7???7???7?7???7??7?7?7??7??77?7?77??77

2 ? ? ? ?
?num-outbound-streams ? 16 ? init, init-ack ? number of outbound ?
? ? ? ? streams ?

PPV 7?7??7??77?72??7??7?7???7??7?7?7?77?7?7?7

2 2 2 2 2
?num-inbound-streams ? 16 ? init, init-ack ? number of inbound ?
? ? ? ? streams ?

PP 7?2?7???7?0??7?2??7?7?????7??77?7???72????7???7?7??7??7?7?72??7??7?7??7?7??7?7??77?7?7?7

2 2 2 2 2
?initial-tsn ?32 ?init, init-ack ? initial transmit ?
? ? ? ? sequence number ?

PPV ??2?2???7??7?7??7?777?7?7?77?777?7

2 2 2 2 2
?cum-tsn-ack ?32 ? sack, shutdown ? cumulative ?
? ? ? ? transmission ?

? ? ? ? sequence number ?

? ? ? ? acknowledged ?

PP 7??7?7??77?7?7??77?777?7

? 2 ? ? 2
?num-gap-ack-blocks ? 16 ? sack ? number of Gap Ack ?
? ? ? ? Blocks included ?

Page 71/104

PPV 7?7?7??7??7?7?77?7

? 2 2 ? 2
?num-dup-tsns ? 16 ? sack ? number of duplicate ?
? ? ? ? transmission ?

? ? ? ? sequence numbers ?

? ? ? ? received ?

PPV 7?7?7??7??7?77?77?7

2 2 2 2 2
?lowest-tsn ?32 ? ecne, cwr ? lowest transmission ?
? ? ? ? sequence number ?

PPV 7?7?7?7?7?7?7?7?7?7?77?7

?seqno ? 32 ? asconf-ack, asconf ? sequence number ?

PPV 7?7??7???7?77??7??7?7?77?77??7?7?7?77??77

2 2 2 2 2
?new-cum-tsn ? 32 ? forward-tsn ? new cumulative ?
? ? ? ? transmission ?

? ? ? ? sequence number ?

PPV 7?77??72??7??7?7???7?7?7?7?7?7?7

DCCP HEADER EXPRESSION
dccp {sport | dport | type}
Table 50. DCCP header expression

PPV 2?7????77????7?7??7?7?7?777

?Keyword ? Description ? Type ?

PPV 2?7?7???7??7???7?7??7?777?777

?sport ? Source port ? inet_service ?

PP 7?7??7?7?77?7??7??7??7??7?7??77?7

?dport ? Destination port ? inet_service ?

PPV ???7?2?7?7???2??7??7?7?7?7?7?77?7?777

?type ? Packettype ? dccp_pkttype ? Page 72/104

PP 7??2?7??7??7??7??7?7??7?77?7

AUTHENTICATION HEADER EXPRESSION
ah {nexthdr | hdrlength | reserved | spi | sequence}

Table 51. AH header expression

PPV 7?7?7??7?7??77?7?7?7?7?7?7?7

?Keyword ? Description ? Type ?

PPV 7?7?77?7?7?7?7?7?7?7

?nexthdr ? Next header protocol ? inet_proto ?

PP 2?7????2??7?2??7?7??7?7??7?2?7?7???7??7?7??7?7??27?7?7

?hdrlength ? AH Header length ? integer (8 bit) ?

PPV 7?7?7?7?7?7?7?7?7?7?7?7

?reserved ? Reserved area ? integer (16 bit) ?

PPV 7?7?77?277?7???7???7??7?7??27?7?7

?spi ? Security Parameter Index ? integer (32 bit) ?

PPV 2??7?72?7?7???72?7????7???7?7?7?7??7?7?7

?sequence ? Sequence number ? integer (32 bit) ?

PPV 72?7?7???7??77?7?77?7?77?7???7???7??7?7??27?7?7

ENCRYPTED SECURITY PAYLOAD HEADER EXPRESSION
esp {spi | sequence}
Table 52. ESP header expression

PP 72???7??????7??7???7??7?7?7?7?7?77?777?7

?Keyword ? Description ? Type ?

PP 7??2??7?7??7???7??7??7??7??77?777?7

?spi ? Security Parameter Index ? integer (32 bit) ?

PPV 77?7???7?2?7?7???7?77?72?77?7?7?7?7?7?7?7?7?7

?sequence ? Sequence number ? integer (32 bit) ?

Page 73/104

PP ???7????????7???7??7?7?7??7?7?7??77?7

IPCOMP HEADER EXPRESSION
comp {nexthdr | flags | cpi}
Table 53. IPComp header expression

PPV 7??7??7??7??7?7?77?7

?Keyword ? Description ? Type ?

PPV 7??7??7??7??7?7?77?7

?nexthdr ? Next header protocol ? inet_proto ?

PPV ???7???????7?77?7???7?7??7?7?7?7?7?7?7??7?7??27?77?7?7

?flags 7 Flags ? bitmask ?

PPV 7??7??7??7??7??7?7?77?7

?cpi ? compression Parameter ? integer (16 bit) ?
? ? Index ? ?

PPV 7??7??7??7?7?77?7

RAW PAYLOAD EXPRESSION
@base,offset,length
The raw payload expression instructs to load length bits starting at offset bits. Bit O
refers to the very first bit ? in the C programming language, this corresponds to the
topmost bit, i.e. 0x80 in case of an octet. They are useful to match headers that do not
have a human-readable template expression yet. Note that nft will not add dependencies for
Raw payload expressions. If you e.g. want to match protocol fields of a transport header
with protocol number 5, you need to manually exclude packets that have a different
transport header, for instance by using meta l4proto 5 before the raw expression.

Table 54. Supported payload protocol bases

PP 70?7?????????7??7??7??7?77?77?

?Base ? Description ?

PP 0???????7???7??7??7??77?77?77?

?Il ? Link layer, for example the ?

? ? Ethernet header ? Page 74/104

PP ????????7???7??7??7??7?7?7?77?

?nh ? Network header, for example IPv4 ?

? ?orlPv6 ?

PP ???7??????7??7??7?7?777?77?

?th ? Transport Header, for example ?
? ?TCP ?

PP ?7????7??????7??7??7??7?7?7?77?

Matching destination port of both UDP and TCP.

inet filter input meta l4proto {tcp, udp} @th,16,16 {53, 80 }
The above can also be written as

inet filter input meta I4proto {tcp, udp} th dport { 53, 80 }
it is more convenient, but like the raw expression notation no dependencies are created or
checked. It is the users responsibility to restrict matching to those header types that
have a notion of ports. Otherwise, rules using raw expressions will errnously match
unrelated packets, e.g. mis-interpreting ESP packets SPI field as a port.
Rewrite arp packet target hardware address if target protocol address matches a given
address.

input meta iifname enp2s0 arp ptype 0x0800 arp htype 1 arp hlen 6 arp plen 4 @nh,192,32 0xc0a88f10 @nh,144,48

set 0x112233445566 accept
EXTENSION HEADER EXPRESSIONS

Extension header expressions refer to data from variable-sized protocol headers, such as
IPv6 extension headers, TCP options and IPv4 options.
nftables currently supports matching (finding) a given ipv6 extension header, TCP option
or IPv4 option.

hbh {nexthdr | hdrlength}

frag {nexthdr | frag-off | more-fragments | id}

rt {nexthdr | hdrlength | type | seg-left}

dst {nexthdr | hdrlength}

mh {nexthdr | hdrlength | checksum | type}

srh {flags | tag | sid | seg-left}

tcp option {eol | nop | maxseg | window | sack-perm | sack | sackO | sackl | sack2 | sack3 Paigecétdhi}sh

tcp_option_field

ip option { Isrr | ra | rr | ssrr} ip_option_field

The following syntaxes are valid only in a relational expression with boolean type on

right-hand side for checking header existence only:
exthdr {hbh | frag | rt | dst | mh}
tcp option {eol | nop | maxseg | window | sack-perm | sack | sackO | sackl | sack2 | sack3 | timestamp}
ip option { Isrr | ra | rr | ssrr}

Table 55. IPv6 extension headers

QP07 7?7?7??7??7?7?7?7??7?7?7

?Keyword ? Description ?

QP07 7??7?7?7?7?7?7??7?7?7

?hbh ? Hop by Hop ?

PPV ???7?2?7?7??7?7?7?7?7??77

?rt ? Routing Header ?

PP 7??7?7?7?7?7?7?7?7?7?7

?frag ? Fragmentation header ?

PPV 7??7???7?2?7?7??7?7?7?7?7??77

?dst ? dst options ?

PPV 2??7???7?7?7??7?7

?mh ? Mobility Header ?

P07 7?7?7?7?77?7??7??7??7?7?7?7?7?7

?srh ? Segment Routing Header ?

PPV 2?7?7???777?7?7?7?7

Table 56. TCP Options

PP 7?72?7?7???2?7?2??7???7?7??7?7?7?7?777?7?7?

?Keyword ? Description ? TCP option fields ?

PP 7??7???7?7??7??7?7?777?7?7? Page'ﬂﬂ104

? ? ? ?

?eol ? End if option list ?- ?

PPV 7?7?77?77?777

? ? 2 ?
?nop ? 1 Byte TCP Nop padding ? - ?
? ? option ? ?

PPV 7??77?77?77?7

?maxseg ? TCP Maximum Segment Size ? length, size ?

PP ???7?2?2??2??7???7?7??7?7?????7?7??7?7??7?7?77??7?7?7?77?7?7?

?window ? TCP Window Scaling ? length, count ?

PPV 7??7??7??7??7??7°7?7?7?77?77?7

?sack-perm ? TCP SACK permitted ? length ?

PP 7?7?????7????7?7??7??77??7?7?7?7?7?7?7

? ? ? ?
?sack ? TCP Selective ? length, left, right ?
? ? Acknowledgement (alias ? ?
? ? of block 0) ? ?

PPV 2?7?7??7???7?7??7?7??7?777?77

? ? ? ?
?sack0 ? TCP Selective ? length, left, right ?
? ? Acknowledgement (block ? ?
? ?0) ? ?

QP07 7?72?7?7?7?77?77?77

? ? ? ?
?sackl ? TCP Selective ? length, left, right ?
? ? Acknowledgement (block ? ?
? ?21) ? ?

PP 7?72?7?7???2?7?2??7???7?7??7?7?7?7?777?7?7?

?sack2 ? TCP Selective ? length, left, right ?

Page 77/104

? ? Acknowledgement (block ? ?
? ?2) ? ?

PPV 7?7?77?77?777

? ? ? ?
?sack3 ? TCP Selective ? length, left, right ?
? ? Acknowledgement (block ? ?
? ? 3) ? ?

PPV 7????72?7?7??7???7?7?7?7??7?7?7?7?7?7?7

?timestamp ? TCP Timestamps ? length, tsval, tsecr ?

QP07 7??7?2?7??7??7?7?7?7?77?7?7

TCP option matching also supports raw expression syntax to access arbitrary options:

tcp option
tcp option @number,offset,length

Table 57. IP Options

PPV 7?7?77?277?7???7???7??7?7??27?7?7

?Keyword ? Description ? IP option fields ?

PPV 7?7??7?7277?7??7?7?7??7??7?7??27?7?7

?Isrr ? Loose Source Route ? type, length, ptr, addr ?

PPV 72?7?72??7?7??7?7?7?7??7?7?7

?ra ? Router Alert ? type, length, value ?

PPV 72?7?7?7?77?77?77?7?7?

?rr ? Record Route ? type, length, ptr, addr ?

PPV 7?7???72?7?72??7???7?7?7?7??7?7?7

?ssrr ? Strict Source Route ? type, length, ptr, addr ?

PP 7?7?7?7??7?77?7?7?7?7?

finding TCP options.
filter input tcp option sack-perm exists counter

matching TCP options.

Page 78/104

filter input tcp option maxseg size It 536
matching IPv6 exthdr.

ip6 filter input frag more-fragments 1 counter
finding IP option.

filter input ip option Isrr exists counter

CONNTRACK EXPRESSIONS

Conntrack expressions refer to meta data of the connection tracking entry associated with
a packet.
There are three types of conntrack expressions. Some conntrack expressions require the
flow direction before the conntrack key, others must be used directly because they are
direction agnostic. The packets, bytes and avgpkt keywords can be used with or without a
direction. If the direction is omitted, the sum of the original and the reply direction is
returned. The same is true for the zone, if a direction is given, the zone is only matched
if the zone id is tied to the given direction.

ct {state | direction | status | mark | expiration | helper | label | count | id}

ct [original | reply] {I3proto | protocol | bytes | packets | avgpkt | zone}

ct {original | reply} {proto-src | proto-dst}

ct {original | reply} {ip | ip6} {saddr | daddr}
The conntrack-specific types in this table are described in the sub-section CONNTRACK
TYPES above.

Table 58. Conntrack expressions

PPV 7?7?????7????7???7??77??7?7?7?77?7?7

?Keyword ? Description ? Type ?

QP07 77?7?7?7??77?77?77

?state ? State of the connection ? ct_state ?

PPV 7???7?7??7??7?7?7?7?77?

? ? ? ?

?direction ? Direction of the packet ? ct_dir ?
? ? relative to the ? ?

? ? connection ? ?

PP 7??72?7?7?7?77?77?77?77

Page 79/104

?status ? Status of the connection ? ct_status ?

PP 7??7???7?7?7?7??7?7?7?77?7?7?

?mark ? Connection mark ? mark ?

PPV 7?7?7?7?7?77?77?7

? 2 ? ?
?expiration ? Connection expiration ? time ?
? ? time ? ?

QP07 7??7?2?7??7?7?7?7?7?7?77?7?7

2 2 2 2
?helper ? Helper associated with ? string ?
? ? the connection ? ?

PPV 7??7??7??7??7??7°7?7?7?77?77?7

2 2 2 2
?label ? Connection tracking ? ct_label ?
? ? label bit or symbolic ? ?
? ? name defined in ? ?
? ? connlabel.conf in the 7 ?
? ? nftables include path 7 ?

PP 7??????7????7???7??77??7?7?7?77?7?7

? 2 ? 2
?13proto ? Layer 3 protocol of the ? nf_proto ?
? ? connection ? ?

QP07 77?7?7?7??77?77?77

?saddr ? Source address of the 7 ipv4_addr/ipv6_addr ?

? ? connection for the given ? ?

? ? direction ? ?

A i i i i A il il
?daddr ? Destination address of ? ipv4_addr/ipv6_addr ?

? ? the connection for the ? ?

? ? given direction ? ?

Page 80/104

QP07 7??7?2?7?7?77?7?7?7?7?77?77?7

? 2 ? ?
?protocol ? Layer 4 protocol of the ? inet_proto ?
? ? connection for the given ? ?

? ? direction ? ?

PPV 7?7???2?7?2??7?7??7?7?7?7??27?7?7?7?7?7?7

?proto-src ? Layer 4 protocol source ? integer (16 bit) ?
? ? for the given direction ? ?

PP ???7?2?2??2??7???7?7??7?7?????7?7??7?7??7?7?77??7?7?7?77?7?7?

? ? ? ?

?proto-dst ? Layer 4 protocol ? integer (16 bit) ?
? ? destination for the ? ?

? ? given direction ? ?

PPV 7??7??7??7??7??7?7?7?7?777?7

?packets ? packet count seen in the ? integer (64 bit) ?
? ? given direction or sum ? ?
? ? of original and reply ? ?

PP 7??????7????7???7??77??7?7?7?77?7?7

?bytes ? byte count seen, see ? integer (64 bit) ?
? ? description for packets ? ?
? ? keyword ? ?

PPV 7??7???7?7??7?7??7?77?7?77?

?avgpkt ? average bytes per ? integer (64 bit) ?
? ? packet, see description ? ?
? ? for packets keyword ~ ? ?

PP 7?7?7?7?7?77?77?77?777

?zone ? conntrack zone ? integer (16 bit) ?

PP 7??7???7?7??7??7?7?777?7?7?

Page 81/104

? ? ? ?
?count ? number of current ? integer (32 bit) ?

? ? connections ? ?

PPV 2??7???7?7?7?7??7?7?7?77?7?7?

?id ? Connection id ?ct id ?

PPV 7??77?77?77?7

restrict the number of parallel connections to a server.
nft add set filter ssh_flood '{ type ipv4_addr; flags dynamic; }'
nft add rule filter input tcp dport 22 add @ssh_flood { ip saddr ct count over 2 }' reject
STATEMENTS
Statements represent actions to be performed. They can alter control flow (return, jump to
a different chain, accept or drop the packet) or can perform actions, such as logging,
rejecting a packet, etc.
Statements exist in two kinds. Terminal statements unconditionally terminate evaluation of
the current rule, non-terminal statements either only conditionally or never terminate
evaluation of the current rule, in other words, they are passive from the ruleset
evaluation perspective. There can be an arbitrary amount of non-terminal statements in a
rule, but only a single terminal statement as the final statement.
VERDICT STATEMENT
The verdict statement alters control flow in the ruleset and issues policy decisions for
packets.
{accept | drop | queue | continue | return}
{jump | goto} chain
accept and drop are absolute verdicts ? they terminate ruleset evaluation immediately.
accept Terminate ruleset evaluation and
accept the packet. The packet
can still be dropped later by
another hook, for instance
accept in the forward hook still
allows to drop the packet later
in the postrouting hook, or

another forward base chain that Page 82/104

has a higher priority number and
is evaluated afterwards in the
processing pipeline.

drop Terminate ruleset evaluation and
drop the packet. The drop occurs
instantly, no further chains or
hooks are evaluated. It is not
possible to accept the packet in
a later chain again, as those
are not evaluated anymore for
the packet.

queue Terminate ruleset evaluation and
queue the packet to userspace.
Userspace must provide a drop or
accept verdict. In case of
accept, processing resumes with
the next base chain hook, not
the rule following the queue
verdict.

continue Continue ruleset evaluation with
the next rule. This is the
default behaviour in case a rule
issues no verdict.

return Return from the current chain
and continue evaluation at the
next rule in the last chain. If
issued in a base chain, it is
equivalent to the base chain
policy.

jump chain Continue evaluation at the first
rule in chain. The current
position in the ruleset is

pushed to a call stack and Page 83/104

evaluation will continue there
when the new chain is entirely
evaluated or a return verdict is
issued. In case an absolute
verdict is issued by a rule in
the chain, ruleset evaluation
terminates immediately and the
specific action is taken.
goto chain Similar to jump, but the current
position is not pushed to the
call stack, meaning that after
the new chain evaluation will
continue at the last chain
instead of the one containing
the goto statement.
Using verdict statements.
process packets from ethO and the internal network in from_lan
chain, drop all packets from ethO with different source addresses.
filter input iif ethO ip saddr 192.168.0.0/24 jump from_lan
filter input iif ethO drop
PAYLOAD STATEMENT
payload_expression set value
The payload statement alters packet content. It can be used for example to set ip DSCP
(diffserv) header field or ipv6 flow labels.
route some packets instead of bridging.
redirect tcp:http from 192.160.0.0/16 to local machine for routing instead of bridging
assumes 00:11:22:33:44:55 is local MAC address.
bridge input meta iif ethO ip saddr 192.168.0.0/16 tcp dport 80 meta pkttype set unicast ether daddr set
00:11:22:33:44:55
Set IPv4 DSCP header field.
ip forward ip dscp set 42
EXTENSION HEADER STATEMENT

extension_header_expression set value Page 84/104

The extension header statement alters packet content in variable-sized headers. This can
currently be used to alter the TCP Maximum segment size of packets, similar to TCPMSS.
change tcp mss.

tcp flags syn tcp option maxseg size set 1360

set a size based on route information:

tcp flags syn tcp option maxseg size set rt mtu

LOG STATEMENT

log [prefix quoted_string] [level syslog-level] [flags log-flags]

log group nflog_group [prefix quoted_string] [queue-threshold value] [snaplen size]

log level audit
The log statement enables logging of matching packets. When this statement is used from a
rule, the Linux kernel will print some information on all matching packets, such as header
fields, via the kernel log (where it can be read with dmesg(1) or read in the syslog).
In the second form of invocation (if nflog_group is specified), the Linux kernel will pass
the packet to nfnetlink_log which will send the log through a netlink socket to the
specified group. One userspace process may subscribe to the group to receive the logs, see
man(8) ulogd for the Netfilter userspace log daemon and libnetfilter _log documentation for
details in case you would like to develop a custom program to digest your logs.
In the third form of invocation (if level audit is specified), the Linux kernel writes a
message into the audit buffer suitably formatted for reading with auditd. Therefore no
further formatting options (such as prefix or flags) are allowed in this mode.
This is a non-terminating statement, so the rule evaluation continues after the packet is
logged.

Table 59. log statement options

PPV 2??7???7?72??7??7?7??7?7??7?777

?Keyword ? Description ? Type ?

PPV 2??7???7?7?????7???7?7??7?777

?prefix ? Log message prefix ? quoted string ?

PP 7?7?72?72?77?7??7??7??7?7??7?77

?level ? Syslog level of logging ? string: emerg, alert, ?

? ? ? crit, err, warn ? Page 85/104

? ? ? [default], notice, info, ?
? ? ? debug, audit ?

PPV 7??77??7??7?7??7??7?77

2 2 ? 2
?group ? NFLOG group to send ? unsigned integer (16 ?
? ? messages to ? bit) ?

PPV 7??7???7?7?7?7?7?7??7?77

? ? ? ?
?snaplen ? Length of packet payload ? unsigned integer (32 ?
? ? to include in netlink ? bit) ?

? ? message ? ?

PPV 27?0??7??77???7???7?7?77?7?7?7?7??7?7??7?7?777

?queue-threshold ? Number of packets to ? unsigned integer (32 ?

? ? queue inside the kernel ? bit) ?
? ? before sending themto ? ?
? ? userspace ? ?

PPV 7???7???7?7??7?7?7?7?7?7?7?7??7?7?777

Table 60. log-flags

PPV ??7????77??7???7???7?7??7??7?7?77?7?7?7

?Flag ? Description ?

PPV 77??7???7?7??7?7??7?7?7?7?7?7?7?7?7

?tcp sequence ? Log TCP sequence numbers. ?

P00 ???7?7??7?7??7?77?7?7?7?7?7

?tcp options ? Log options from the TCP packet ?

? ? header. ?

PPV ???7?7??7?7??7?7?7?7?777?77

?ip options ? Log options from the IP/IPv6 ?

? ? packet header. ?

PP 72?7?2??7?7???7?7??7?7??7?7?27?7?7?7?7?77

Page 86/104

? ? ?
?skuid ? Log the userid of the process ?

? ? which generated the packet. ?

PPV ??7???7???2??7?7??7?7?7?7?727?7?777?7?7

2 ? ?
?ether ? Decode MAC addresses and ?
? ? protocol. ?

PP 7?77?2??7?7??7?7??7??277?7?7?7?77

2 2 ?
?all ? Enable all log flags listed ?
? ? above. ?

PPV 7?77?2??7?7?77?7??7?7?7?7?7?7?7?77

Using log statement.
log the UID which generated the packet and ip options
ip filter output log flags skuid flags ip options
log the tcp sequence numbers and tcp options from the TCP packet
ip filter output log flags tcp sequence,options
enable all supported log flags
ip6 filter output log flags all
REJECT STATEMENT
reject [with REJECT_WITH]
REJECT_WITH :=icmp icmp_code |
icmpv6 icmpv6_code |
icmpx icmpx_code |
tcp reset
A reject statement is used to send back an error packet in response to the matched packet
otherwise it is equivalent to drop so it is a terminating statement, ending rule
traversal. This statement is only valid in base chains using the input, forward or output
hooks, and user-defined chains which are only called from those chains.

Table 61. different ICMP reject variants are meant for use in different table families

P00 0??????????7?7?7?7?7?7?7?77?7?77

?Variant ? Family ? Type ?

bbb brvrobrvlrrvirlr i Page 87/104

? ? ? ?
?icmp ?ip ?icmp_code ?

PPV 7??7??7?77?7??7?7?7?7?7?7?7?7

?icmpv6 ?ip6 7?icmpv6_code ?

PP ???7???7?7??7??7?7?7?77?7?7

?icmpx ?inet ?icmpx_code ?

PPV 7??7??7?7?7??7??7?7?7?7?7?7

For a description of the different types and a list of supported keywords refer to DATA
TYPES section above. The common default reject value is port-unreachable.
Note that in bridge family, reject statement is only allowed in base chains which hook
into input or prerouting.
COUNTER STATEMENT
A counter statement sets the hit count of packets along with the number of bytes.
counter packets number bytes number
counter { packets number | bytes number }
CONNTRACK STATEMENT
The conntrack statement can be used to set the conntrack mark and conntrack labels.
ct {mark | event | label | zone} set value
The ct statement sets meta data associated with a connection. The zone id has to be
assigned before a conntrack lookup takes place, i.e. this has to be done in prerouting and
possibly output (if locally generated packets need to be placed in a distinct zone), with
a hook priority of raw (-300).
Unlike iptables, where the helper assignment happens in the raw table, the helper needs to
be assigned after a conntrack entry has been found, i.e. it will not work when used with
hook priorities equal or before -200.

Table 62. Conntrack statement types

PPV 7???7?72?7?72?7?72?7?7???7??7?7??7?7

?Keyword ? Description ? Value ?

PPV ??????7?72?7?72?7?27?7?72??7??7?7?7?7?7

?event ? conntrack event bits ? bitmask, integer (32 ? Page 88/104

2 7 2 bit) ?

PPV 7?????77?72?7?7?277??27?7?7???7??7?77?77

? ? ? ?

?helper ? name of ct helper object ? quoted string ?
? ? to assign to the ? ?

? ? connection ? ?

PP 7???7?????7????7??7??7??7??7??7?7?77?777?77

?mark ? Connection tracking mark ? mark ?

PP ?27?0?2??7?77??7???7?7??7?277??7?7?7?7??7?7?7?7??7?7

2 2 2 ?
?label ? Connection tracking ? label ?
? ? label ? ?

PPV 7?7??7?7277?7277?7???7?77?7??7?7

?zone ? conntrack zone ?integer (16 bit) ?

PP ?????7??7??7??7??7??7?7?7?77?77?

save packet nfmark in conntrack.
ct mark set meta mark
set zone mapped via interface.
table inet raw {
chain prerouting {
type filter hook prerouting priority raw;
ct zone set iif map { "eth1" : 1, "vethl": 2}
}
chain output {
type filter hook output priority raw;

ct zone set oif map { "eth1" : 1, "veth1": 2}

}

restrict events reported by ctnetlink.
ct event set new,related,destroy

NOTRACK STATEMENT Page 89/104

The notrack statement allows to disable connection tracking for certain packets.
notrack
Note that for this statement to be effective, it has to be applied to packets before a
conntrack lookup happens. Therefore, it needs to sit in a chain with either prerouting or
output hook and a hook priority of -300 (raw) or less.
See SYNPROXY STATEMENT for an example usage.
META STATEMENT
A meta statement sets the value of a meta expression. The existing meta fields are:
priority, mark, pkttype, nftrace.
meta {mark | priority | pkttype | nftrace} set value
A meta statement sets meta data associated with a packet.

Table 63. Meta statement types

PPV 7????????7?7??7??7??7??7?77?77

?Keyword ? Description ? Value ?

PPV ??????7???7?7??7??7??7?7?7?7?77?7

?priority ? TC packet priority ~ ? tc_handle ?

PP ??72??7?77??7??77?7?77?7???7?77?7?7?7?7

?mark ? Packet mark ? mark ?

PPV 2?????7?72?7?7???7?77?7?7?7

?pkttype ? packet type ? pkt_type ?

PPV 7?????????????7???7??7?7?7?777?77

?nftrace ? ruleset packet tracing?0,1 ?

? ? on/off. Use monitor ? ?
? ? trace command to watch ? ?
? ? traces ? ?

PPV 2?7????????????7???7??7?7?7?7?7?77?77

LIMIT STATEMENT
limit rate [over] packet_number / TIME_UNIT [burst packet_number packets]

limit rate [over] byte_number BYTE_UNIT / TIME_UNIT [burst byte_number BYTE_UNIT] Page 90/104

TIME_UNIT := second | minute | hour | day

BYTE_UNIT := bytes | kbytes | mbytes
A limit statement matches at a limited rate using a token bucket filter. A rule using this
statement will match until this limit is reached. It can be used in combination with the
log statement to give limited logging. The optional over keyword makes it match over the
specified rate. Default burst is 5. if you specify burst, it must be non-zero value.

Table 64. limit statement values

PPV 2?72??7?27??7???7??77?7??7??7?7?7???7??7?7?7?7

?Value ? Description ? Type ?

PP 7?7?7?7???7?277?7??7?7?7?7?7??7?7??7?7?7?7

?packet_number ? Number of packets ? unsigned integer (32 ?
? ? ? bit) ?

PPV 277?7??7???7?7???7??7?7?7?7

?byte_number ? Number of bytes ? unsigned integer (32 ?
? ? ? bit) ?
N S A A N A A A N A A o
NAT STATEMENTS
snat [[ip | ip6] to] ADDR_SPEC [:PORT_SPEC] [FLAGS]
dnat [[ip | ip6] to] ADDR_SPEC [:PORT_SPEC] [FLAGS]
masquerade [to :PORT_SPEC] [FLAGS]
redirect [to :PORT_SPEC] [FLAGS]
ADDR_SPEC := address | address - address
PORT_SPEC := port | port - port
FLAGS :=FLAG [, FLAGS]
FLAG := persistent | random | fully-random
The nat statements are only valid from nat chain types.
The snat and masquerade statements specify that the source address of the packet should be
modified. While snat is only valid in the postrouting and input chains, masquerade makes
sense only in postrouting. The dnat and redirect statements are only valid in the

prerouting and output chains, they specify that the destination address of the packet

should be modified. You can use non-base chains which are called from base chains of nat

Page 91/104

chain type too. All future packets in this connection will also be mangled, and rules
should cease being examined.

The masquerade statement is a special form of snat which always uses the outgoing
interface?s IP address to translate to. It is particularly useful on gateways with dynamic
(public) IP addresses.

The redirect statement is a special form of dnat which always translates the destination
address to the local host?s one. It comes in handy if one only wants to alter the
destination port of incoming traffic on different interfaces.

When used in the inet family (available with kernel 5.2), the dnat and snat statements
require the use of the ip and ip6 keyword in case an address is provided, see the examples
below.

Before kernel 4.18 nat statements require both prerouting and postrouting base chains to
be present since otherwise packets on the return path won?t be seen by netfilter and
therefore no reverse translation will take place.

Table 65. NAT statement values

PP 7?77?2??7?7??7?7??7??7?7?7?77?7??7?7?77?7

?Expression ? Description ? Type ?

PP 7?72????7?77??7?7??7?7??7??7?7?7?7??7??7?7?77?7

?address ? Specifies that the ? ipv4_addr, ipv6_addr, ?

? ? source/destination ? e.g. abcd::1234, or you ?

? ? address of the packet ? can use a mapping, e.g. ?
? ? should be modified. You ? metamark map {10: ?
? ? may specify a mapping to ? 192.168.1.2, 20 : ?
? ? relate a list of tuples ? 192.168.1.3 } ?

? ? composed of arbitrary ? ?

? ? expression key with ~ ? ?

? ? address value. ? ?

A o il A i A il
?port ? Specifies that the ? port number (16 bit) ?
? ? source/destination ? ?

? ? address of the packet ? ? Page 92/104

? ? should be modified. ? ?

PP 7?2???77?7??7?7??7?7?77??7?7?7?7??7??7?777

Table 66. NAT statement flags

PP 7?7?77???7?7?77?7?77?7?77

?Flag ? Description ?

PP 277?2??7?7?77???7?7?77?7?7?7?7?77

2 ? ?
?persistent ? Gives a client the same ?
? ? source-/destination-address for ?
? ? each connection. ?

PPV ?????7??7??7??7??7??7?7?7?7?7?77?7

?random ? In kernel 5.0 and newer this is ?

? ? the same as fully-random. In~ ?

? ? earlier kernels the port mapping ?

? ? will be randomized using a ?

? ? seeded MD5 hash mix using source ?
? ? and destination address and ~ ?

? ? destination port. ?

PPV ??77?7??????2?7?2??7??77???7??77?7?7?7?7?7?7

?fully-random ? If used then port mapping is ?
? ? generated based on a 32-bit ?

? ? pseudo-random algorithm. ?

P00 7??7???7?7?7?7?7?7?7?77?7

Using NAT statements.
create a suitable table/chain setup for all further examples
add table nat
add chain nat prerouting { type nat hook prerouting priority dstnat; }
add chain nat postrouting { type nat hook postrouting priority srcnat; }
translate source addresses of all packets leaving via eth0 to address 1.2.3.4
add rule nat postrouting oif ethO snat to 1.2.3.4

redirect all traffic entering via ethO to destination address 192.168.1.120 Page 93/104

add rule nat prerouting iif ethO dnat to 192.168.1.120

translate source addresses of all packets leaving via ethO to whatever

locally generated packets would use as source to reach the same destination

add rule nat postrouting oif ethO masquerade

redirect incoming TCP traffic for port 22 to port 2222

add rule nat prerouting tcp dport 22 redirect to :2222

inet family:

handle ip dnat:

add rule inet nat prerouting dnat ip to 10.0.2.99

handle ip6 dnat:

add rule inet nat prerouting dnat ip6 to fe80::dead

this masquerades both ipv4 and ipv6:

add rule inet nat postrouting meta oif ppp0O masquerade

TPROXY STATEMENT

Tproxy redirects the packet to a local socket without changing the packet header in any
way. If any of the arguments is missing the data of the incoming packet is used as
parameter. Tproxy matching requires another rule that ensures the presence of transport
protocol header is specified.

tproxy to address:port

tproxy to {address | :port}
This syntax can be used in ip/ip6 tables where network layer protocol is obvious. Either
IP address or port can be specified, but at least one of them is necessary.

tproxy {ip | ip6} to address|[:port]

tproxy to :port
This syntax can be used in inet tables. The ip/ip6 parameter defines the family the rule
will match. The address parameter must be of this family. When only port is defined, the
address family should not be specified. In this case the rule will match for both
families.

Table 67. tproxy attributes

PPV 77?77?7?7?77?7??7??7??7???7?77?7

?Name ? Description ?

PPV 77?77?7?7?77?7??7??7??7???7?77?7

? ? ? Page 94/104

?address ? IP address the listening socket ?
? ? with IP_TRANSPARENT option is ?

? ? bound to. ?

P07 2????7?77??7?7??77?7?7?7?7?77

?port ? Port the listening socket with ?
? ? IP_TRANSPARENT option is bound ?
? ? to. ?

PP 7?77??7?7?7?7??7?7?7?77?7

Example ruleset for tproxy statement.
table ip x {
chainy {
type filter hook prerouting priority mangle; policy accept;
tcp dport ntp tproxy to 1.1.1.1

udp dport ssh tproxy to :2222

}
}
table ip6 x {
chainy {
type filter hook prerouting priority mangle; policy accept;
tcp dport ntp tproxy to [dead::beef]
udp dport ssh tproxy to :2222
}
}
table inet x {
chainy {
type filter hook prerouting priority mangle; policy accept;
tcp dport 321 tproxy to :ssh
tcp dport 99 tproxy ip to 1.1.1.1:999
udp dport 155 tproxy ip6 to [dead::beef]:smux
}
}

SYNPROXY STATEMENT Page 95/104

This statement will process TCP three-way-handshake parallel in netfilter context to
protect either local or backend system. This statement requires connection tracking
because sequence numbers need to be translated.

synproxy [mss mss_value] [wscale wscale_value] [SYNPROXY_ FLAGS]

Table 68. synproxy statement attributes

PPV ????27?77???7?7?77??7?7??7?7?7?77?7?77

?Name ? Description ?

PPV ????27?77???7?7??7??7?7??77?7?77?7?77

?mss ? Maximum segment size announced ?
? ? to clients. This must match the ?

? ? backend. ?

PPV 7??????7???7??7??7??7

?wscale ? Window scale announced to ?
? ? clients. This must match the ?

? ? backend. ?

PPV ????7?7?7?7?2?77?7??7??7?7??77?7?77?7?77

Table 69. synproxy statement flags

PPV 7???????0??7???7???7?7??7??77?7??7?7??7?77??7

?Flag ? Description ?

PPV 7?????????77???7?7??7?7??7?7?77?7??7?7??7?7?7?7

2 2 2
?sack-perm ? Pass client selective ?
? ? acknowledgement option to ?
? ? backend (will be disabled if not ?
? ? present). ?

PPV 70?7??7??77?72?7??7??7?7??7?7?7

?timestamp ? Pass client timestamp option to ?

? ? backend (will be disabled if not ?

? ? present, also needed for ?

? ? selective acknowledgementand ?

Page 96/104

? ? window scaling). ?

PPV 2?7???7?7??7?7??7??77?7??7?7??77?7?7

Example ruleset for synproxy statement.
Determine tcp options used by backend, from an external system
tcpdump -pni ethO -c 1 ‘tcp[tepflags] == (tcp-syn|tcp-ack)'
port 80 &
telnet 192.0.2.42 80
18:57:24.693307 IP 192.0.2.42.80 > 192.0.2.43.48757:
Flags [S.], seq 360414582, ack 788841994, win 14480,
options [mss 1460,sackOK,
TS val 1409056151 ecr 9690221,
nop,wscale 9],
length O
Switch tcp_loose mode off, so conntrack will mark out-of-flow packets as state INVALID.
echo 0 > /proc/sys/net/netfilter/nf_conntrack tcp_loose
Make SYN packets untracked.
table ip x {
chainy {
type filter hook prerouting priority raw; policy accept;

tcp flags syn notrack

}

Catch UNTRACKED (SYN packets) and INVALID (3WHS ACK packets) states and send
them to SYNPROXY. This rule will respond to SYN packets with SYN+ACK
syncookies, create ESTABLISHED for valid client response (SWHS ACK packets) and
drop incorrect cookies. Flags combinations not expected during 3WHS will not
match and continue (e.g. SYN+FIN, SYN+ACK). Finally, drop invalid packets, this
will be out-of-flow packets that were not matched by SYNPROXY.
table ip x {
chain z {
type filter hook input priority filter; policy accept;
ct state invalid, untracked synproxy mss 1460 wscale 9 timestamp sack-perm

ct state invalid drop Page 97/104

}
FLOW STATEMENT

A flow statement allows us to select what flows you want to accelerate forwarding through
layer 3 network stack bypass. You have to specify the flowtable name where you want to
offload this flow.
flow add @flowtable
QUEUE STATEMENT

This statement passes the packet to userspace using the nfnetlink_queue handler. The
packet is put into the queue identified by its 16-bit queue number. Userspace can inspect
and modify the packet if desired. Userspace must then drop or re-inject the packet into
the kernel. See libnetfilter_queue documentation for details.

queue [flags QUEUE_FLAGS] [to queue_number]

queue [flags QUEUE_FLAGS] [to queue_number_from - queue_number_to]

queue [flags QUEUE_FLAGS] [to QUEUE_EXPRESSION]

QUEUE_FLAGS = QUEUE_FLAG [, QUEUE_FLAGS]

QUEUE_FLAG := bypass | fanout

QUEUE_EXPRESSION := numgen | hash | symhash | MAP STATEMENT
QUEUE_EXPRESSION can be used to compute a queue number at run-time with the hash or numgen
expressions. It also allows to use the map statement to assign fixed queue numbers based
on external inputs such as the source ip address or interface names.

Table 70. queue statement values

PPV ???7?72?272??72?7?77??72????7?7??2?7?777?77?7

?Value ? Description ? Type ?

PPV 7?72?7?72??72?7?77??72????7?7??2?7?7?7?7?77?7

?queue_number ? Sets queue number, ? unsigned integer (16 ?
? ? default is 0. ? bit) ?

PPV ?72??72?777??7??7??7?7???7?777?77?7

?queue_number_from ? Sets initial queue in ? unsigned integer (16 ?
? ? the range, if fanout is ? bit) ?

? ? used. ? ? Page 98/104

PP 777?77?7??7??7???????7?777

?queue_number_to ? Sets closing queue in ? unsigned integer (16 ?
? ? the range, if fanout is ? bit) ?
? ? used. ? ?

PP 7???7?7277?2?7?72?7?72??7?7?7?7??7?7??7?7?7?77?7?77

Table 71. queue statement flags

PPV 7???7??????7??7??7???7?7?77??77

?Flag ? Description ?

PP 7???7?7?????7??7?7?7???7??7?7??77

?bypass ? Let packets go through if ?
? ? userspace application cannot ?
? ? back off. Before using this ?

? ? flag, read libnetfilter_queue ?

? ? documentation for performance ?

? ? tuning recommendations. ?

PP 7???7??7???7??7??7???7??77??77

?fanout ? Distribute packets between ?

? ? several queues. ?

PPV ???7???7?7??7??7??7???7??77??77

DUP STATEMENT
The dup statement is used to duplicate a packet and send the copy to a different
destination.
dup to device
dup to address device device

Table 72. Dup statement values

PPV 2??2??7?2??7?7??7?7??7?7???7??7?777

?Expression ? Description ? Type ?

PP 77?????7?72??2??2?72?7?7?7??7?7?????7?7?7?7?7??7?77?7

?address ? Specifies that the copy ? ipv4_addr, ipv6_addr, ? Page 99/104

? ? of the packet should be ? e.g. abcd::1234, or you ?

? ? sent to a new gateway. ? can use a mapping, e.g. ?
? ? ? ip saddr map { ?
? ? ?192.168.1.2:10.1.1.1}?

PPV 7??7?7???7?7?7?7?7?7??7?7?7

? ? ? ?
?device ? Specifies that the copy ? string ?
? ? should be transmitted ? ?

? ? via device. ? ?

PP 72??7??77?72?7?72???77??2?7?7?7??7?7??7??7?7?7?7?7?7??7?7?77?7

Using the dup statement.

send to machine with ip address 10.2.3.4 on ethO

ip filter forward dup to 10.2.3.4 device "eth0"

copy raw frame to another interface

netdev ingress dup to "eth0"

dup to "eth0"

combine with map dst addr to gateways

dup to ip daddr map { 192.168.7.1 : "eth0", 192.168.7.2 : "eth1" }

FWD STATEMENT
The fwd statement is used to redirect a raw packet to another interface. It is only
available in the netdev family ingress and egress hooks. It is similar to the dup
statement except that no copy is made.
fwd to device
SET STATEMENT

The set statement is used to dynamically add or update elements in a set from the packet
path. The set setname must already exist in the given table and must have been created
with one or both of the dynamic and the timeout flags. The dynamic flag is required if the
set statement expression includes a stateful object. The timeout flag is implied if the
set is created with a timeout, and is required if the set statement updates elements,
rather than adding them. Furthermore, these sets should specify both a maximum set size
(to prevent memory exhaustion), and their elements should have a timeout (so their number
will not grow indefinitely) either from the set definition or from the statement that adds

or updates them. The set statement can be used to e.g. create dynamic blacklists. Page 100/104

{add | update} @setname { expression [timeout timeout] [comment string] }
Example for simple blacklist.

declare a set, bound to table "filter", in family "ip".

Timeout and size are mandatory because we will add elements from packet path.

Entries will timeout after one minute, after which they might be
re-added if limit condition persists.
nft add set ip filter blackhole \
"{ type ipv4_addr; flags dynamic; timeout 1m; size 65536; }"
declare a set to store the limit per saddr.
This must be separate from blackhole since the timeout is different
nft add set ip filter flood \
"{ type ipv4_addr; flags dynamic; timeout 10s; size 128000; }"
whitelist internal interface.
nft add rule ip filter input meta iifname "internal" accept
drop packets coming from blacklisted ip addresses.
nft add rule ip filter input ip saddr @blackhole counter drop
add source ip addresses to the blacklist if more than 10 tcp connection
requests occurred per second and ip address.
nft add rule ip filter input tcp flags syn tcp dport ssh \
add @flood { ip saddr limit rate over 10/second } \
add @blackhole {ip saddr } \
drop
inspect state of the sets.
nft list set ip filter flood
nft list set ip filter blackhole
manually add two addresses to the blackhole.
nft add element filter blackhole { 10.2.3.4, 10.23.1.42 }
MAP STATEMENT
The map statement is used to lookup data based on some specific input key.
expression map { MAP_ELEMENTS }
MAP_ELEMENTS := MAP_ELEMENT [, MAP_ELEMENTS]
MAP_ELEMENT :=key : value

The key is a value returned by expression.

Page 101/104

Using the map statement.

select DNAT target based on TCP dport:

connections to port 80 are redirected to 192.168.1.100,

connections to port 8888 are redirected to 192.168.1.101

nft add rule ip nat prerouting dnat tcp dport map { 80 : 192.168.1.100, 8888 : 192.168.1.101 }

source address based SNAT:

packets from net 192.168.1.0/24 will appear as originating from 10.0.0.1,

packets from net 192.168.2.0/24 will appear as originating from 10.0.0.2

nft add rule ip nat postrouting snat to ip saddr map { 192.168.1.0/24 : 10.0.0.1, 192.168.2.0/24 : 10.0.0.2 }

VMAP STATEMENT

The verdict map (vmap) statement works analogous to the map statement, but contains
verdicts as values.

expression vmap { VMAP_ELEMENTS }

VMAP_ELEMENTS := VMAP_ELEMENT [, VMAP_ELEMENTS]

VMAP_ELEMENT := key : verdict
Using the vmap statement.

jump to different chains depending on layer 4 protocol type:

nft add rule ip filter input ip protocol vmap { tcp : jump tcp-chain, udp : jump udp-chain , icmp : jump icmp-chain }

ADDITIONAL COMMANDS
These are some additional commands included in nft.
MONITOR

The monitor command allows you to listen to Netlink events produced by the nf_tables
subsystem. These are either related to creation and deletion of objects or to packets for
which meta nftrace was enabled. When they occur, nft will print to stdout the monitored
events in either JSON or native nft format.

monitor [new | destroy] MONITOR_OBJECT

monitor trace

MONITOR_OBJECT :=tables | chains | sets | rules | elements | ruleset
To filter events related to a concrete object, use one of the keywords in MONITOR_OBJECT.
To filter events related to a concrete action, use keyword new or destroy.
The second form of invocation takes no further options and exclusively prints events
generated for packets with nftrace enabled.

Hit ~C to finish the monitor operation. Page 102/104

Listen to all events, report in native nft format.
% nft monitor
Listen to deleted rules, report in JSON format.
% nft -j monitor destroy rules
Listen to both new and destroyed chains, in native nft format.
% nft monitor chains
Listen to ruleset events such as table, chain, rule, set, counters and quotas, in native
nft format.
% nft monitor ruleset
Trace incoming packets from host 10.0.0.1.
% nft add rule filter input ip saddr 10.0.0.1 meta nftrace set 1

% nft monitor trace

ERROR REPORTING

When an error is detected, nft shows the line(s) containing the error, the position of the
erroneous parts in the input stream and marks up the erroneous parts using carets (?). If
the error results from the combination of two expressions or statements, the part imposing
the constraints which are violated is marked using tildes (~).
For errors returned by the kernel, nft cannot detect which parts of the input caused the
error and the entire command is marked.
Error caused by single incorrect expression.

<cmdline>:1:19-22: Error: Interface does not exist

filter output oif ethO

AAAA

Error caused by invalid combination of two expressions.

<cmdline>:1:28-36: Error: Right hand side of relational expression (==) must be constant

filter output tcp dport == tcp dport

e AAAAAAAAA

Error returned by the kernel.

<cmdline>:0:0-23: Error: Could not process rule: Operation not permitted

filter output oif wlanO

NANNNNNNNNNNNNNNNNNNNNNN

EXIT STATUS

On success, nft exits with a status of 0. Unspecified errors cause it to exit with a

Page 103/104

status of 1, memory allocation errors with a status of 2, unable to open Netlink socket
with 3.
SEE ALSO
libnftables(3), libnftables-json(5), iptables(8), ip6tables(8), arptables(8), ebtables(8), ip(8), tc(8)
There is an official wiki at: https://wiki.nftables.org
AUTHORS
nftables was written by Patrick McHardy and Pablo Neira Ayuso, among many other
contributors from the Netfilter community.
COPYRIGHT
Copyright ? 2008-2014 Patrick McHardy <kaber@trash.net> Copyright ? 2013-2018 Pablo Neira
Ayuso <pablo@netfilter.org>
nftables is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 2 as published by the Free Software Foundation.
This documentation is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 license, CC BY-SA 4.0
http://creativecommons.org/licenses/by-sa/4.0/.

08/10/2022 NFT(8)

Page 104/104

