
Rocky Enterprise Linux 9.2 Manual Pages on command 'nft.8'

$ man nft.8

NFT(8) NFT(8)

NAME

 nft - Administration tool of the nftables framework for packet filtering and

 classification

SYNOPSIS

 nft [-nNscaeSupyjt] [-I directory] [-f filename | -i | cmd ...]

 nft -h

 nft -v

DESCRIPTION

 nft is the command line tool used to set up, maintain and inspect packet filtering and

 classification rules in the Linux kernel, in the nftables framework. The Linux kernel

 subsystem is known as nf_tables, and ?nf? stands for Netfilter.

OPTIONS

 The command accepts several different options which are documented here in groups for

 better understanding of their meaning. You can get information about options by running

 nft --help.

 General options:

 -h, --help

 Show help message and all options.

 -v, --version

 Show version.

 -V

 Show long version information, including compile-time configuration. Page 1/104

 Ruleset input handling options that specify to how to load rulesets:

 -f, --file filename

 Read input from filename. If filename is -, read from stdin.

 -D, --define name=value

 Define a variable. You can only combine this option with -f.

 -i, --interactive

 Read input from an interactive readline CLI. You can use quit to exit, or use the EOF

 marker, normally this is CTRL-D.

 -I, --includepath directory

 Add the directory directory to the list of directories to be searched for included

 files. This option may be specified multiple times.

 -c, --check

 Check commands validity without actually applying the changes.

 -o, --optimize

 Optimize your ruleset. You can combine this option with -c to inspect the proposed

 optimizations.

 Ruleset list output formatting that modify the output of the list ruleset command:

 -a, --handle

 Show object handles in output.

 -s, --stateless

 Omit stateful information of rules and stateful objects.

 -t, --terse

 Omit contents of sets from output.

 -S, --service

 Translate ports to service names as defined by /etc/services.

 -N, --reversedns

 Translate IP address to names via reverse DNS lookup. This may slow down your listing

 since it generates network traffic.

 -u, --guid

 Translate numeric UID/GID to names as defined by /etc/passwd and /etc/group.

 -n, --numeric

 Print fully numerical output.

 -y, --numeric-priority Page 2/104

 Display base chain priority numerically.

 -p, --numeric-protocol

 Display layer 4 protocol numerically.

 -T, --numeric-time

 Show time, day and hour values in numeric format.

 Command output formatting:

 -e, --echo

 When inserting items into the ruleset using add, insert or replace commands, print

 notifications just like nft monitor.

 -j, --json

 Format output in JSON. See libnftables-json(5) for a schema description.

 -d, --debug level

 Enable debugging output. The debug level can be any of scanner, parser, eval, netlink,

 mnl, proto-ctx, segtree, all. You can combine more than one by separating by the ,

 symbol, for example -d eval,mnl.

INPUT FILE FORMATS

 LEXICAL CONVENTIONS

 Input is parsed line-wise. When the last character of a line, just before the newline

 character, is a non-quoted backslash (\), the next line is treated as a continuation.

 Multiple commands on the same line can be separated using a semicolon (;).

 A hash sign (#) begins a comment. All following characters on the same line are ignored.

 Identifiers begin with an alphabetic character (a-z,A-Z), followed by zero or more

 alphanumeric characters (a-z,A-Z,0-9) and the characters slash (/), backslash (\),

 underscore (_) and dot (.). Identifiers using different characters or clashing with a

 keyword need to be enclosed in double quotes (").

 INCLUDE FILES

 include filename

 Other files can be included by using the include statement. The directories to be searched

 for include files can be specified using the -I/--includepath option. You can override

 this behaviour either by prepending ?./? to your path to force inclusion of files located

 in the current working directory (i.e. relative path) or / for file location expressed as

 an absolute path.

 If -I/--includepath is not specified, then nft relies on the default directory that is Page 3/104

 specified at compile time. You can retrieve this default directory via the -h/--help

 option.

 Include statements support the usual shell wildcard symbols (,?,[]). Having no matches for

 an include statement is not an error, if wildcard symbols are used in the include

 statement. This allows having potentially empty include directories for statements like

 include "/etc/firewall/rules/". The wildcard matches are loaded in alphabetical order.

 Files beginning with dot (.) are not matched by include statements.

 SYMBOLIC VARIABLES

 define variable = expr

 undefine variable

 redefine variable = expr

 $variable

 Symbolic variables can be defined using the define statement. Variable references are

 expressions and can be used to initialize other variables. The scope of a definition is

 the current block and all blocks contained within. Symbolic variables can be undefined

 using the undefine statement, and modified using the redefine statement.

 Using symbolic variables.

 define int_if1 = eth0

 define int_if2 = eth1

 define int_ifs = { $int_if1, $int_if2 }

 redefine int_if2 = wlan0

 undefine int_if2

 filter input iif $int_ifs accept

ADDRESS FAMILIES

 Address families determine the type of packets which are processed. For each address

 family, the kernel contains so called hooks at specific stages of the packet processing

 paths, which invoke nftables if rules for these hooks exist.

 ip IPv4 address family.

 ip6 IPv6 address family.

 inet Internet (IPv4/IPv6) address

 family.

 arp ARP address family, handling

 IPv4 ARP packets. Page 4/104

 bridge Bridge address family, handling

 packets which traverse a bridge

 device.

 netdev Netdev address family, handling

 packets on ingress and egress.

 All nftables objects exist in address family specific namespaces, therefore all

 identifiers include an address family. If an identifier is specified without an address

 family, the ip family is used by default.

 IPV4/IPV6/INET ADDRESS FAMILIES

 The IPv4/IPv6/Inet address families handle IPv4, IPv6 or both types of packets. They

 contain five hooks at different packet processing stages in the network stack.

 Table 1. IPv4/IPv6/Inet address family hooks

 ???

 ?Hook ? Description ?

 ???

 ? ? ?

 ?prerouting ? All packets entering the system ?

 ? ? are processed by the prerouting ?

 ? ? hook. It is invoked before the ?

 ? ? routing process and is used for ?

 ? ? early filtering or changing ?

 ? ? packet attributes that affect ?

 ? ? routing. ?

 ???

 ? ? ?

 ?input ? Packets delivered to the local ?

 ? ? system are processed by the ?

 ? ? input hook. ?

 ???

 ? ? ?

 ?forward ? Packets forwarded to a different ?

 ? ? host are processed by the ?

 ? ? forward hook. ? Page 5/104

 ???

 ? ? ?

 ?output ? Packets sent by local processes ?

 ? ? are processed by the output ?

 ? ? hook. ?

 ???

 ? ? ?

 ?postrouting ? All packets leaving the system ?

 ? ? are processed by the postrouting ?

 ? ? hook. ?

 ???

 ? ? ?

 ?ingress ? All packets entering the system ?

 ? ? are processed by this hook. It ?

 ? ? is invoked before layer 3 ?

 ? ? protocol handlers, hence before ?

 ? ? the prerouting hook, and it can ?

 ? ? be used for filtering and ?

 ? ? policing. Ingress is only ?

 ? ? available for Inet family (since ?

 ? ? Linux kernel 5.10). ?

 ???

 ARP ADDRESS FAMILY

 The ARP address family handles ARP packets received and sent by the system. It is commonly

 used to mangle ARP packets for clustering.

 Table 2. ARP address family hooks

 ??

 ?Hook ? Description ?

 ??

 ? ? ?

 ?input ? Packets delivered to the local ?

 ? ? system are processed by the ?

 ? ? input hook. ? Page 6/104

 ??

 ? ? ?

 ?output ? Packets send by the local system ?

 ? ? are processed by the output ?

 ? ? hook. ?

 ??

 BRIDGE ADDRESS FAMILY

 The bridge address family handles Ethernet packets traversing bridge devices.

 The list of supported hooks is identical to IPv4/IPv6/Inet address families above.

 NETDEV ADDRESS FAMILY

 The Netdev address family handles packets from the device ingress and egress path. This

 family allows you to filter packets of any ethertype such as ARP, VLAN 802.1q, VLAN

 802.1ad (Q-in-Q) as well as IPv4 and IPv6 packets.

 Table 3. Netdev address family hooks

 ??

 ?Hook ? Description ?

 ??

 ? ? ?

 ?ingress ? All packets entering the system ?

 ? ? are processed by this hook. It ?

 ? ? is invoked after the network ?

 ? ? taps (ie. tcpdump), right after ?

 ? ? tc ingress and before layer 3 ?

 ? ? protocol handlers, it can be ?

 ? ? used for early filtering and ?

 ? ? policing. ?

 ??

 ? ? ?

 ?egress ? All packets leaving the system ?

 ? ? are processed by this hook. It ?

 ? ? is invoked after layer 3 ?

 ? ? protocol handlers and before tc ?

 ? ? egress. It can be used for late ? Page 7/104

 ? ? filtering and policing. ?

 ??

 Tunneled packets (such as vxlan) are processed by netdev family hooks both in decapsulated

 and encapsulated (tunneled) form. So a packet can be filtered on the overlay network as

 well as on the underlying network.

 Note that the order of netfilter and tc is mirrored on ingress versus egress. This ensures

 symmetry for NAT and other packet mangling.

 Ingress packets which are redirected out some other interface are only processed by

 netfilter on egress if they have passed through netfilter ingress processing before. Thus,

 ingress packets which are redirected by tc are not subjected to netfilter. But they are if

 they are redirected by netfilter on ingress. Conceptually, tc and netfilter can be thought

 of as layers, with netfilter layered above tc: If the packet hasn?t been passed up from

 the tc layer to the netfilter layer, it?s not subjected to netfilter on egress.

RULESET

 {list | flush} ruleset [family]

 The ruleset keyword is used to identify the whole set of tables, chains, etc. currently in

 place in kernel. The following ruleset commands exist:

 list Print the ruleset in

 human-readable format.

 flush Clear the whole ruleset. Note

 that, unlike iptables, this will

 remove all tables and whatever

 they contain, effectively

 leading to an empty ruleset - no

 packet filtering will happen

 anymore, so the kernel accepts

 any valid packet it receives.

 It is possible to limit list and flush to a specific address family only. For a list of

 valid family names, see the section called ?ADDRESS FAMILIES? above.

 By design, list ruleset command output may be used as input to nft -f. Effectively, this

 is the nft-equivalent of iptables-save and iptables-restore.

TABLES

 {add | create} table [family] table [{comment comment ;} { flags 'flags ; }] Page 8/104

 {delete | list | flush} table [family] table

 list tables [family]

 delete table [family] handle handle

 Tables are containers for chains, sets and stateful objects. They are identified by their

 address family and their name. The address family must be one of ip, ip6, inet, arp,

 bridge, netdev. The inet address family is a dummy family which is used to create hybrid

 IPv4/IPv6 tables. The meta expression nfproto keyword can be used to test which family

 (ipv4 or ipv6) context the packet is being processed in. When no address family is

 specified, ip is used by default. The only difference between add and create is that the

 former will not return an error if the specified table already exists while create will

 return an error.

 Table 4. Table flags

 ??

 ?Flag ? Description ?

 ??

 ? ? ?

 ?dormant ? table is not evaluated any more ?

 ? ? (base chains are unregistered). ?

 ??

 Add, change, delete a table.

 # start nft in interactive mode

 nft --interactive

 # create a new table.

 create table inet mytable

 # add a new base chain: get input packets

 add chain inet mytable myin { type filter hook input priority filter; }

 # add a single counter to the chain

 add rule inet mytable myin counter

 # disable the table temporarily -- rules are not evaluated anymore

 add table inet mytable { flags dormant; }

 # make table active again:

 add table inet mytable

 add Add a new table for the given Page 9/104

 family with the given name.

 delete Delete the specified table.

 list List all chains and rules of the

 specified table.

 flush Flush all chains and rules of

 the specified table.

CHAINS

 {add | create} chain [family] table chain [{ type type hook hook [device device] priority priority ; [policy policy ;]

[comment comment ;] }]

 {delete | list | flush} chain ['family] table chain

 list chains [family]

 delete chain [family] table handle handle

 rename chain [family] table chain newname

 Chains are containers for rules. They exist in two kinds, base chains and regular chains.

 A base chain is an entry point for packets from the networking stack, a regular chain may

 be used as jump target and is used for better rule organization.

 add Add a new chain in the specified

 table. When a hook and priority

 value are specified, the chain

 is created as a base chain and

 hooked up to the networking

 stack.

 create Similar to the add command, but

 returns an error if the chain

 already exists.

 delete Delete the specified chain. The

 chain must not contain any rules

 or be used as jump target.

 rename Rename the specified chain.

 list List all rules of the specified

 chain.

 flush Flush all rules of the specified

 chain. Page 10/104

 For base chains, type, hook and priority parameters are mandatory.

 Table 5. Supported chain types

 ???

 ?Type ? Families ? Hooks ? Description ?

 ???

 ? ? ? ? ?

 ?filter ? all ? all ? Standard chain type ?

 ? ? ? ? to use in doubt. ?

 ???

 ? ? ? ? ?

 ?nat ? ip, ip6, inet ? prerouting, input, ? Chains of this type ?

 ? ? ? output, postrouting ? perform Native ?

 ? ? ? ? Address Translation ?

 ? ? ? ? based on conntrack ?

 ? ? ? ? entries. Only the ?

 ? ? ? ? first packet of a ?

 ? ? ? ? connection actually ?

 ? ? ? ? traverses this ?

 ? ? ? ? chain - its rules ?

 ? ? ? ? usually define ?

 ? ? ? ? details of the ?

 ? ? ? ? created conntrack ?

 ? ? ? ? entry (NAT ?

 ? ? ? ? statements for ?

 ? ? ? ? instance). ?

 ???

 ? ? ? ? ?

 ?route ? ip, ip6 ? output ? If a packet has ?

 ? ? ? ? traversed a chain ?

 ? ? ? ? of this type and is ?

 ? ? ? ? about to be ?

 ? ? ? ? accepted, a new ?

 ? ? ? ? route lookup is ? Page 11/104

 ? ? ? ? performed if ?

 ? ? ? ? relevant parts of ?

 ? ? ? ? the IP header have ?

 ? ? ? ? changed. This ?

 ? ? ? ? allows to e.g. ?

 ? ? ? ? implement policy ?

 ? ? ? ? routing selectors ?

 ? ? ? ? in nftables. ?

 ???

 Apart from the special cases illustrated above (e.g. nat type not supporting forward hook

 or route type only supporting output hook), there are three further quirks worth noticing:

 ? The netdev family supports merely two combinations, namely filter type with ingress

 hook and filter type with egress hook. Base chains in this family also require the

 device parameter to be present since they exist per interface only.

 ? The arp family supports only the input and output hooks, both in chains of type

 filter.

 ? The inet family also supports the ingress hook (since Linux kernel 5.10), to filter

 IPv4 and IPv6 packet at the same location as the netdev ingress hook. This inet hook

 allows you to share sets and maps between the usual prerouting, input, forward,

 output, postrouting and this ingress hook.

 The priority parameter accepts a signed integer value or a standard priority name which

 specifies the order in which chains with the same hook value are traversed. The ordering

 is ascending, i.e. lower priority values have precedence over higher ones.

 Standard priority values can be replaced with easily memorizable names. Not all names make

 sense in every family with every hook (see the compatibility matrices below) but their

 numerical value can still be used for prioritizing chains.

 These names and values are defined and made available based on what priorities are used by

 xtables when registering their default chains.

 Most of the families use the same values, but bridge uses different ones from the others.

 See the following tables that describe the values and compatibility.

 Table 6. Standard priority names, family and hook compatibility matrix

 ???

 ?Name ? Value ? Families ? Hooks ? Page 12/104

 ???

 ? ? ? ? ?

 ?raw ? -300 ? ip, ip6, inet ? all ?

 ???

 ? ? ? ? ?

 ?mangle ? -150 ? ip, ip6, inet ? all ?

 ???

 ? ? ? ? ?

 ?dstnat ? -100 ? ip, ip6, inet ? prerouting ?

 ???

 ? ? ? ? ?

 ?filter ? 0 ? ip, ip6, inet, arp, ? all ?

 ? ? ? netdev ? ?

 ???

 ? ? ? ? ?

 ?security ? 50 ? ip, ip6, inet ? all ?

 ???

 ? ? ? ? ?

 ?srcnat ? 100 ? ip, ip6, inet ? postrouting ?

 ???

 Table 7. Standard priority names and hook compatibility for the bridge family

 ???????????????????????????????

 ? ? ? ?

 ?Name ? Value ? Hooks ?

 ???????????????????????????????

 ? ? ? ?

 ?dstnat ? -300 ? prerouting ?

 ???????????????????????????????

 ? ? ? ?

 ?filter ? -200 ? all ?

 ???????????????????????????????

 ? ? ? ?

 ?out ? 100 ? output ? Page 13/104

 ???????????????????????????????

 ? ? ? ?

 ?srcnat ? 300 ? postrouting ?

 ???????????????????????????????

 Basic arithmetic expressions (addition and subtraction) can also be achieved with these

 standard names to ease relative prioritizing, e.g. mangle - 5 stands for -155. Values will

 also be printed like this until the value is not further than 10 from the standard value.

 Base chains also allow to set the chain?s policy, i.e. what happens to packets not

 explicitly accepted or refused in contained rules. Supported policy values are accept

 (which is the default) or drop.

RULES

 {add | insert} rule [family] table chain [handle handle | index index] statement ... [comment comment]

 replace rule [family] table chain handle handle statement ... [comment comment]

 delete rule [family] table chain handle handle

 Rules are added to chains in the given table. If the family is not specified, the ip

 family is used. Rules are constructed from two kinds of components according to a set of

 grammatical rules: expressions and statements.

 The add and insert commands support an optional location specifier, which is either a

 handle or the index (starting at zero) of an existing rule. Internally, rule locations are

 always identified by handle and the translation from index happens in userspace. This has

 two potential implications in case a concurrent ruleset change happens after the

 translation was done: The effective rule index might change if a rule was inserted or

 deleted before the referred one. If the referred rule was deleted, the command is rejected

 by the kernel just as if an invalid handle was given.

 A comment is a single word or a double-quoted (") multi-word string which can be used to

 make notes regarding the actual rule. Note: If you use bash for adding rules, you have to

 escape the quotation marks, e.g. \"enable ssh for servers\".

 add Add a new rule described by the

 list of statements. The rule is

 appended to the given chain

 unless a location is specified,

 in which case the rule is

 inserted after the specified Page 14/104

 rule.

 insert Same as add except the rule is

 inserted at the beginning of the

 chain or before the specified

 rule.

 replace Similar to add, but the rule

 replaces the specified rule.

 delete Delete the specified rule.

 add a rule to ip table output chain.

 nft add rule filter output ip daddr 192.168.0.0/24 accept # 'ip filter' is assumed

 # same command, slightly more verbose

 nft add rule ip filter output ip daddr 192.168.0.0/24 accept

 delete rule from inet table.

 # nft -a list ruleset

 table inet filter {

 chain input {

 type filter hook input priority filter; policy accept;

 ct state established,related accept # handle 4

 ip saddr 10.1.1.1 tcp dport ssh accept # handle 5

 ...

 # delete the rule with handle 5

 nft delete rule inet filter input handle 5

SETS

 nftables offers two kinds of set concepts. Anonymous sets are sets that have no specific

 name. The set members are enclosed in curly braces, with commas to separate elements when

 creating the rule the set is used in. Once that rule is removed, the set is removed as

 well. They cannot be updated, i.e. once an anonymous set is declared it cannot be changed

 anymore except by removing/altering the rule that uses the anonymous set.

 Using anonymous sets to accept particular subnets and ports.

 nft add rule filter input ip saddr { 10.0.0.0/8, 192.168.0.0/16 } tcp dport { 22, 443 } accept

 Named sets are sets that need to be defined first before they can be referenced in rules.

 Unlike anonymous sets, elements can be added to or removed from a named set at any time.

 Sets are referenced from rules using an @ prefixed to the sets name. Page 15/104

 Using named sets to accept addresses and ports.

 nft add rule filter input ip saddr @allowed_hosts tcp dport @allowed_ports accept

 The sets allowed_hosts and allowed_ports need to be created first. The next section

 describes nft set syntax in more detail.

 add set [family] table set { type type | typeof expression ; [flags flags ;] [timeout timeout ;] [gc-interval gc-interval ;]

[elements = { element[, ...] } ;] [size size ;] [comment comment ;] [policy 'policy ;] [auto-merge ;] }

 {delete | list | flush} set [family] table set

 list sets [family]

 delete set [family] table handle handle

 {add | delete} element [family] table set { element[, ...] }

 Sets are element containers of a user-defined data type, they are uniquely identified by a

 user-defined name and attached to tables. Their behaviour can be tuned with the flags that

 can be specified at set creation time.

 add Add a new set in the specified

 table. See the Set specification

 table below for more information

 about how to specify properties

 of a set.

 delete Delete the specified set.

 list Display the elements in the

 specified set.

 flush Remove all elements from the

 specified set.

 Table 8. Set specifications

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?type ? data type of set ? string: ipv4_addr, ?

 ? ? elements ? ipv6_addr, ether_addr, ?

 ? ? ? inet_proto, ?

 ? ? ? inet_service, mark ?

 ?? Page 16/104

 ? ? ? ?

 ?typeof ? data type of set element ? expression to derive the ?

 ? ? ? data type from ?

 ??

 ? ? ? ?

 ?flags ? set flags ? string: constant, ?

 ? ? ? dynamic, interval, ?

 ? ? ? timeout ?

 ??

 ? ? ? ?

 ?timeout ? time an element stays in ? string, decimal followed ?

 ? ? the set, mandatory if ? by unit. Units are: d, ?

 ? ? set is added to from the ? h, m, s ?

 ? ? packet path (ruleset) ? ?

 ??

 ? ? ? ?

 ?gc-interval ? garbage collection ? string, decimal followed ?

 ? ? interval, only available ? by unit. Units are: d, ?

 ? ? when timeout or flag ? h, m, s ?

 ? ? timeout are active ? ?

 ??

 ? ? ? ?

 ?elements ? elements contained by ? set data type ?

 ? ? the set ? ?

 ??

 ? ? ? ?

 ?size ? maximum number of ? unsigned integer (64 ?

 ? ? elements in the set, ? bit) ?

 ? ? mandatory if set is ? ?

 ? ? added to from the packet ? ?

 ? ? path (ruleset) ? ?

 ??

 ? ? ? ? Page 17/104

 ?policy ? set policy ? string: performance ?

 ? ? ? [default], memory ?

 ??

 ? ? ? ?

 ?auto-merge ? automatic merge of ? ?

 ? ? adjacent/overlapping set ? ?

 ? ? elements (only for ? ?

 ? ? interval sets) ? ?

 ??

MAPS

 add map [family] table map { type type | typeof expression [flags flags ;] [elements = { element[, ...] } ;] [size size ;]

[comment comment ;] [policy 'policy ;] }

 {delete | list | flush} map [family] table map

 list maps [family]

 Maps store data based on some specific key used as input. They are uniquely identified by

 a user-defined name and attached to tables.

 add Add a new map in the specified

 table.

 delete Delete the specified map.

 list Display the elements in the

 specified map.

 flush Remove all elements from the

 specified map.

 add element Comma-separated list of elements

 to add into the specified map.

 delete element Comma-separated list of element

 keys to delete from the

 specified map.

 Table 9. Map specifications

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ? Page 18/104

 ?type ? data type of map ? string: ipv4_addr, ?

 ? ? elements ? ipv6_addr, ether_addr, ?

 ? ? ? inet_proto, ?

 ? ? ? inet_service, mark, ?

 ? ? ? counter, quota. Counter ?

 ? ? ? and quota can?t be used ?

 ? ? ? as keys ?

 ???

 ? ? ? ?

 ?typeof ? data type of set element ? expression to derive the ?

 ? ? ? data type from ?

 ???

 ? ? ? ?

 ?flags ? map flags ? string: constant, ?

 ? ? ? interval ?

 ???

 ? ? ? ?

 ?elements ? elements contained by ? map data type ?

 ? ? the map ? ?

 ???

 ? ? ? ?

 ?size ? maximum number of ? unsigned integer (64 ?

 ? ? elements in the map ? bit) ?

 ???

 ? ? ? ?

 ?policy ? map policy ? string: performance ?

 ? ? ? [default], memory ?

 ???

ELEMENTS

 {add | create | delete | get } element [family] table set { ELEMENT[, ...] }

 ELEMENT := key_expression OPTIONS [: value_expression]

 OPTIONS := [timeout TIMESPEC] [expires TIMESPEC] [comment string]

 TIMESPEC := [numd][numh][numm][num[s]] Page 19/104

 Element-related commands allow to change contents of named sets and maps. key_expression

 is typically a value matching the set type. value_expression is not allowed in sets but

 mandatory when adding to maps, where it matches the data part in its type definition. When

 deleting from maps, it may be specified but is optional as key_expression uniquely

 identifies the element.

 create command is similar to add with the exception that none of the listed elements may

 already exist.

 get command is useful to check if an element is contained in a set which may be

 non-trivial in very large and/or interval sets. In the latter case, the containing

 interval is returned instead of just the element itself.

 Table 10. Element options

 ???

 ?Option ? Description ?

 ???

 ? ? ?

 ?timeout ? timeout value for sets/maps with ?

 ? ? flag timeout ?

 ???

 ? ? ?

 ?expires ? the time until given element ?

 ? ? expires, useful for ruleset ?

 ? ? replication only ?

 ???

 ? ? ?

 ?comment ? per element comment field ?

 ???

FLOWTABLES

 {add | create} flowtable [family] table flowtable { hook hook priority priority ; devices = { device[, ...] } ; }

 list flowtables [family]

 {delete | list} flowtable [family] table flowtable

 delete flowtable [family] table handle handle

 Flowtables allow you to accelerate packet forwarding in software. Flowtables entries are

 represented through a tuple that is composed of the input interface, source and Page 20/104

 destination address, source and destination port; and layer 3/4 protocols. Each entry also

 caches the destination interface and the gateway address - to update the destination

 link-layer address - to forward packets. The ttl and hoplimit fields are also decremented.

 Hence, flowtables provides an alternative path that allow packets to bypass the classic

 forwarding path. Flowtables reside in the ingress hook that is located before the

 prerouting hook. You can select which flows you want to offload through the flow

 expression from the forward chain. Flowtables are identified by their address family and

 their name. The address family must be one of ip, ip6, or inet. The inet address family is

 a dummy family which is used to create hybrid IPv4/IPv6 tables. When no address family is

 specified, ip is used by default.

 The priority can be a signed integer or filter which stands for 0. Addition and

 subtraction can be used to set relative priority, e.g. filter + 5 equals to 5.

 add Add a new flowtable for the

 given family with the given

 name.

 delete Delete the specified flowtable.

 list List all flowtables.

LISTING

 list { secmarks | synproxys | flow tables | meters | hooks } [family]

 list { secmarks | synproxys | flow tables | meters | hooks } table [family] table

 list ct { timeout | expectation | helper | helpers } table [family] table

 Inspect configured objects. list hooks shows the full hook pipeline, including those

 registered by kernel modules, such as nf_conntrack.

STATEFUL OBJECTS

 {add | delete | list | reset} type [family] table object

 delete type [family] table handle handle

 list counters [family]

 list quotas [family]

 list limits [family]

 Stateful objects are attached to tables and are identified by a unique name. They group

 stateful information from rules, to reference them in rules the keywords "type name" are

 used e.g. "counter name".

 add Add a new stateful object in the Page 21/104

 specified table.

 delete Delete the specified object.

 list Display stateful information the

 object holds.

 reset List-and-reset stateful object.

 CT HELPER

 add ct helper [family] table name { type type protocol protocol ; [l3proto family ;] }

 delete ct helper [family] table name

 list ct helpers

 Ct helper is used to define connection tracking helpers that can then be used in

 combination with the ct helper set statement. type and protocol are mandatory, l3proto is

 derived from the table family by default, i.e. in the inet table the kernel will try to

 load both the ipv4 and ipv6 helper backends, if they are supported by the kernel.

 Table 11. conntrack helper specifications

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?type ? name of helper type ? quoted string (e.g. ?

 ? ? ? "ftp") ?

 ??

 ? ? ? ?

 ?protocol ? layer 4 protocol of the ? string (e.g. ip) ?

 ? ? helper ? ?

 ??

 ? ? ? ?

 ?l3proto ? layer 3 protocol of the ? address family (e.g. ip) ?

 ? ? helper ? ?

 ??

 ? ? ? ?

 ?comment ? per ct helper comment ? string ?

 ? ? field ? ?

 ?? Page 22/104

 defining and assigning ftp helper.

 Unlike iptables, helper assignment needs to be performed after the conntrack

 lookup has completed, for example with the default 0 hook priority.

 table inet myhelpers {

 ct helper ftp-standard {

 type "ftp" protocol tcp

 }

 chain prerouting {

 type filter hook prerouting priority filter;

 tcp dport 21 ct helper set "ftp-standard"

 }

 }

 CT TIMEOUT

 add ct timeout [family] table name { protocol protocol ; policy = { state: value [, ...] } ; [l3proto family ;] }

 delete ct timeout [family] table name

 list ct timeouts

 Ct timeout is used to update connection tracking timeout values.Timeout policies are

 assigned with the ct timeout set statement. protocol and policy are mandatory, l3proto is

 derived from the table family by default.

 Table 12. conntrack timeout specifications

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?protocol ? layer 4 protocol of the ? string (e.g. ip) ?

 ? ? timeout object ? ?

 ??

 ? ? ? ?

 ?state ? connection state name ? string (e.g. ?

 ? ? ? "established") ?

 ??

 ? ? ? ?

 ?value ? timeout value for ? unsigned integer ? Page 23/104

 ? ? connection state ? ?

 ??

 ? ? ? ?

 ?l3proto ? layer 3 protocol of the ? address family (e.g. ip) ?

 ? ? timeout object ? ?

 ??

 ? ? ? ?

 ?comment ? per ct timeout comment ? string ?

 ? ? field ? ?

 ??

 tcp connection state names that can have a specific timeout value are:

 close, close_wait, established, fin_wait, last_ack, retrans, syn_recv, syn_sent, time_wait

 and unack.

 You can use sysctl -a |grep net.netfilter.nf_conntrack_tcp_timeout_ to view and change the

 system-wide defaults. ct timeout allows for flow-specific settings, without changing the

 global timeouts.

 For example, tcp port 53 could have much lower settings than other traffic.

 udp state names that can have a specific timeout value are replied and unreplied.

 defining and assigning ct timeout policy.

 table ip filter {

 ct timeout customtimeout {

 protocol tcp;

 l3proto ip

 policy = { established: 120, close: 20 }

 }

 chain output {

 type filter hook output priority filter; policy accept;

 ct timeout set "customtimeout"

 }

 }

 testing the updated timeout policy.

 % conntrack -E

 It should display: Page 24/104

 [UPDATE] tcp 6 120 ESTABLISHED src=172.16.19.128 dst=172.16.19.1

 sport=22 dport=41360 [UNREPLIED] src=172.16.19.1 dst=172.16.19.128

 sport=41360 dport=22

 CT EXPECTATION

 add ct expectation [family] table name { protocol protocol ; dport dport ; timeout timeout ; size size ; [*l3proto family ;]

}

 delete ct expectation [family] table name

 list ct expectations

 Ct expectation is used to create connection expectations. Expectations are assigned with

 the ct expectation set statement. protocol, dport, timeout and size are mandatory, l3proto

 is derived from the table family by default.

 Table 13. conntrack expectation specifications

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?protocol ? layer 4 protocol of the ? string (e.g. ip) ?

 ? ? expectation object ? ?

 ??

 ? ? ? ?

 ?dport ? destination port of ? unsigned integer ?

 ? ? expected connection ? ?

 ??

 ? ? ? ?

 ?timeout ? timeout value for ? unsigned integer ?

 ? ? expectation ? ?

 ??

 ? ? ? ?

 ?size ? size value for ? unsigned integer ?

 ? ? expectation ? ?

 ??

 ? ? ? ?

 ?l3proto ? layer 3 protocol of the ? address family (e.g. ip) ? Page 25/104

 ? ? expectation object ? ?

 ??

 ? ? ? ?

 ?comment ? per ct expectation ? string ?

 ? ? comment field ? ?

 ??

 defining and assigning ct expectation policy.

 table ip filter {

 ct expectation expect {

 protocol udp

 dport 9876

 timeout 2m

 size 8

 l3proto ip

 }

 chain input {

 type filter hook input priority filter; policy accept;

 ct expectation set "expect"

 }

 }

 COUNTER

 add counter [family] table name [{ [packets packets bytes bytes ;] [comment comment ; }]

 delete counter [family] table name

 list counters

 Table 14. Counter specifications

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?packets ? initial count of packets ? unsigned integer (64 ?

 ? ? ? bit) ?

 ??

 ? ? ? ? Page 26/104

 ?bytes ? initial count of bytes ? unsigned integer (64 ?

 ? ? ? bit) ?

 ??

 ? ? ? ?

 ?comment ? per counter comment ? string ?

 ? ? field ? ?

 ??

 Using named counters.

 nft add counter filter http

 nft add rule filter input tcp dport 80 counter name \"http\"

 Using named counters with maps.

 nft add counter filter http

 nft add counter filter https

 nft add rule filter input counter name tcp dport map { 80 : \"http\", 443 : \"https\" }

 QUOTA

 add quota [family] table name { [over|until] bytes BYTE_UNIT [used bytes BYTE_UNIT] ; [comment comment ;] }

 BYTE_UNIT := bytes | kbytes | mbytes

 delete quota [family] table name

 list quotas

 Table 15. Quota specifications

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?quota ? quota limit, used as the ? Two arguments, unsigned ?

 ? ? quota name ? integer (64 bit) and ?

 ? ? ? string: bytes, kbytes, ?

 ? ? ? mbytes. "over" and ?

 ? ? ? "until" go before these ?

 ? ? ? arguments ?

 ???

 ? ? ? ?

 ?used ? initial value of used ? Two arguments, unsigned ? Page 27/104

 ? ? quota ? integer (64 bit) and ?

 ? ? ? string: bytes, kbytes, ?

 ? ? ? mbytes ?

 ???

 ? ? ? ?

 ?comment ? per quota comment field ? string ?

 ???

 Using named quotas.

 nft add quota filter user123 { over 20 mbytes }

 nft add rule filter input ip saddr 192.168.10.123 quota name \"user123\"

 Using named quotas with maps.

 nft add quota filter user123 { over 20 mbytes }

 nft add quota filter user124 { over 20 mbytes }

 nft add rule filter input quota name ip saddr map { 192.168.10.123 : \"user123\", 192.168.10.124 : \"user124\" }

EXPRESSIONS

 Expressions represent values, either constants like network addresses, port numbers, etc.,

 or data gathered from the packet during ruleset evaluation. Expressions can be combined

 using binary, logical, relational and other types of expressions to form complex or

 relational (match) expressions. They are also used as arguments to certain types of

 operations, like NAT, packet marking etc.

 Each expression has a data type, which determines the size, parsing and representation of

 symbolic values and type compatibility with other expressions.

 DESCRIBE COMMAND

 describe expression | data type

 The describe command shows information about the type of an expression and its data type.

 A data type may also be given, in which nft will display more information about the type.

 The describe command.

 $ nft describe tcp flags

 payload expression, datatype tcp_flag (TCP flag) (basetype bitmask, integer), 8 bits

 predefined symbolic constants:

 fin 0x01

 syn 0x02

 rst 0x04 Page 28/104

 psh 0x08

 ack 0x10

 urg 0x20

 ecn 0x40

 cwr 0x80

DATA TYPES

 Data types determine the size, parsing and representation of symbolic values and type

 compatibility of expressions. A number of global data types exist, in addition some

 expression types define further data types specific to the expression type. Most data

 types have a fixed size, some however may have a dynamic size, f.i. the string type. Some

 types also have predefined symbolic constants. Those can be listed using the nft describe

 command:

 $ nft describe ct_state

 datatype ct_state (conntrack state) (basetype bitmask, integer), 32 bits

 pre-defined symbolic constants (in hexadecimal):

 invalid 0x00000001

 new ...

 Types may be derived from lower order types, f.i. the IPv4 address type is derived from

 the integer type, meaning an IPv4 address can also be specified as an integer value.

 In certain contexts (set and map definitions), it is necessary to explicitly specify a

 data type. Each type has a name which is used for this.

 INTEGER TYPE

 ???

 ?Name ? Keyword ? Size ? Base type ?

 ???

 ? ? ? ? ?

 ?Integer ? integer ? variable ? - ?

 ???

 The integer type is used for numeric values. It may be specified as a decimal, hexadecimal

 or octal number. The integer type does not have a fixed size, its size is determined by

 the expression for which it is used.

 BITMASK TYPE

 ??? Page 29/104

 ?Name ? Keyword ? Size ? Base type ?

 ???

 ? ? ? ? ?

 ?Bitmask ? bitmask ? variable ? integer ?

 ???

 The bitmask type (bitmask) is used for bitmasks.

 STRING TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?String ? string ? variable ? - ?

 ??

 The string type is used for character strings. A string begins with an alphabetic

 character (a-zA-Z) followed by zero or more alphanumeric characters or the characters /,

 -, _ and .. In addition, anything enclosed in double quotes (") is recognized as a string.

 String specification.

 # Interface name

 filter input iifname eth0

 # Weird interface name

 filter input iifname "(eth0)"

 LINK LAYER ADDRESS TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?Link layer address ? lladdr ? variable ? integer ?

 ??

 The link layer address type is used for link layer addresses. Link layer addresses are

 specified as a variable amount of groups of two hexadecimal digits separated using colons

 (:).

 Link layer address specification.

 # Ethernet destination MAC address Page 30/104

 filter input ether daddr 20:c9:d0:43:12:d9

 IPV4 ADDRESS TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?IPV4 address ? ipv4_addr ? 32 bit ? integer ?

 ??

 The IPv4 address type is used for IPv4 addresses. Addresses are specified in either dotted

 decimal, dotted hexadecimal, dotted octal, decimal, hexadecimal, octal notation or as a

 host name. A host name will be resolved using the standard system resolver.

 IPv4 address specification.

 # dotted decimal notation

 filter output ip daddr 127.0.0.1

 # host name

 filter output ip daddr localhost

 IPV6 ADDRESS TYPE

 ???

 ?Name ? Keyword ? Size ? Base type ?

 ???

 ? ? ? ? ?

 ?IPv6 address ? ipv6_addr ? 128 bit ? integer ?

 ???

 The IPv6 address type is used for IPv6 addresses. Addresses are specified as a host name

 or as hexadecimal halfwords separated by colons. Addresses might be enclosed in square

 brackets ("[]") to differentiate them from port numbers.

 IPv6 address specification.

 # abbreviated loopback address

 filter output ip6 daddr ::1

 IPv6 address specification with bracket notation.

 # without [] the port number (22) would be parsed as part of the

 # ipv6 address

 ip6 nat prerouting tcp dport 2222 dnat to [1ce::d0]:22 Page 31/104

 BOOLEAN TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?Boolean ? boolean ? 1 bit ? integer ?

 ??

 The boolean type is a syntactical helper type in userspace. Its use is in the right-hand

 side of a (typically implicit) relational expression to change the expression on the

 left-hand side into a boolean check (usually for existence).

 Table 16. The following keywords will automatically resolve into a boolean type with given

 value

 ??????????????????

 ?Keyword ? Value ?

 ??????????????????

 ? ? ?

 ?exists ? 1 ?

 ??????????????????

 ? ? ?

 ?missing ? 0 ?

 ??????????????????

 Table 17. expressions support a boolean comparison

 ???

 ?Expression ? Behaviour ?

 ???

 ? ? ?

 ?fib ? Check route existence. ?

 ???

 ? ? ?

 ?exthdr ? Check IPv6 extension header ?

 ? ? existence. ?

 ???

 ? ? ? Page 32/104

 ?tcp option ? Check TCP option header ?

 ? ? existence. ?

 ???

 Boolean specification.

 # match if route exists

 filter input fib daddr . iif oif exists

 # match only non-fragmented packets in IPv6 traffic

 filter input exthdr frag missing

 # match if TCP timestamp option is present

 filter input tcp option timestamp exists

 ICMP TYPE TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?ICMP Type ? icmp_type ? 8 bit ? integer ?

 ??

 The ICMP Type type is used to conveniently specify the ICMP header?s type field.

 Table 18. Keywords may be used when specifying the ICMP type

 ??????????????????????????????????

 ?Keyword ? Value ?

 ??????????????????????????????????

 ? ? ?

 ?echo-reply ? 0 ?

 ??????????????????????????????????

 ? ? ?

 ?destination-unreachable ? 3 ?

 ??????????????????????????????????

 ? ? ?

 ?source-quench ? 4 ?

 ??????????????????????????????????

 ? ? ?

 ?redirect ? 5 ? Page 33/104

 ??????????????????????????????????

 ? ? ?

 ?echo-request ? 8 ?

 ??????????????????????????????????

 ? ? ?

 ?router-advertisement ? 9 ?

 ??????????????????????????????????

 ? ? ?

 ?router-solicitation ? 10 ?

 ??????????????????????????????????

 ? ? ?

 ?time-exceeded ? 11 ?

 ??????????????????????????????????

 ? ? ?

 ?parameter-problem ? 12 ?

 ??????????????????????????????????

 ? ? ?

 ?timestamp-request ? 13 ?

 ??????????????????????????????????

 ? ? ?

 ?timestamp-reply ? 14 ?

 ??????????????????????????????????

 ? ? ?

 ?info-request ? 15 ?

 ??????????????????????????????????

 ? ? ?

 ?info-reply ? 16 ?

 ??????????????????????????????????

 ? ? ?

 ?address-mask-request ? 17 ?

 ??????????????????????????????????

 ? ? ?

 ?address-mask-reply ? 18 ? Page 34/104

 ??????????????????????????????????

 ICMP Type specification.

 # match ping packets

 filter output icmp type { echo-request, echo-reply }

 ICMP CODE TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?ICMP Code ? icmp_code ? 8 bit ? integer ?

 ??

 The ICMP Code type is used to conveniently specify the ICMP header?s code field.

 Table 19. Keywords may be used when specifying the ICMP code

 ???????????????????????????

 ?Keyword ? Value ?

 ???????????????????????????

 ? ? ?

 ?net-unreachable ? 0 ?

 ???????????????????????????

 ? ? ?

 ?host-unreachable ? 1 ?

 ???????????????????????????

 ? ? ?

 ?prot-unreachable ? 2 ?

 ???????????????????????????

 ? ? ?

 ?port-unreachable ? 3 ?

 ???????????????????????????

 ? ? ?

 ?frag-needed ? 4 ?

 ???????????????????????????

 ? ? ?

 ?net-prohibited ? 9 ? Page 35/104

 ???????????????????????????

 ? ? ?

 ?host-prohibited ? 10 ?

 ???????????????????????????

 ? ? ?

 ?admin-prohibited ? 13 ?

 ???????????????????????????

 ICMPV6 TYPE TYPE

 ???

 ?Name ? Keyword ? Size ? Base type ?

 ???

 ? ? ? ? ?

 ?ICMPv6 Type ? icmpx_code ? 8 bit ? integer ?

 ???

 The ICMPv6 Type type is used to conveniently specify the ICMPv6 header?s type field.

 Table 20. keywords may be used when specifying the ICMPv6 type:

 ??????????????????????????????????

 ?Keyword ? Value ?

 ??????????????????????????????????

 ? ? ?

 ?destination-unreachable ? 1 ?

 ??????????????????????????????????

 ? ? ?

 ?packet-too-big ? 2 ?

 ??????????????????????????????????

 ? ? ?

 ?time-exceeded ? 3 ?

 ??????????????????????????????????

 ? ? ?

 ?parameter-problem ? 4 ?

 ??????????????????????????????????

 ? ? ?

 ?echo-request ? 128 ? Page 36/104

 ??????????????????????????????????

 ? ? ?

 ?echo-reply ? 129 ?

 ??????????????????????????????????

 ? ? ?

 ?mld-listener-query ? 130 ?

 ??????????????????????????????????

 ? ? ?

 ?mld-listener-report ? 131 ?

 ??????????????????????????????????

 ? ? ?

 ?mld-listener-done ? 132 ?

 ??????????????????????????????????

 ? ? ?

 ?mld-listener-reduction ? 132 ?

 ??????????????????????????????????

 ? ? ?

 ?nd-router-solicit ? 133 ?

 ??????????????????????????????????

 ? ? ?

 ?nd-router-advert ? 134 ?

 ??????????????????????????????????

 ? ? ?

 ?nd-neighbor-solicit ? 135 ?

 ??????????????????????????????????

 ? ? ?

 ?nd-neighbor-advert ? 136 ?

 ??????????????????????????????????

 ? ? ?

 ?nd-redirect ? 137 ?

 ??????????????????????????????????

 ? ? ?

 ?router-renumbering ? 138 ? Page 37/104

 ??????????????????????????????????

 ? ? ?

 ?ind-neighbor-solicit ? 141 ?

 ??????????????????????????????????

 ? ? ?

 ?ind-neighbor-advert ? 142 ?

 ??????????????????????????????????

 ? ? ?

 ?mld2-listener-report ? 143 ?

 ??????????????????????????????????

 ICMPv6 Type specification.

 # match ICMPv6 ping packets

 filter output icmpv6 type { echo-request, echo-reply }

 ICMPV6 CODE TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?ICMPv6 Code ? icmpv6_code ? 8 bit ? integer ?

 ??

 The ICMPv6 Code type is used to conveniently specify the ICMPv6 header?s code field.

 Table 21. keywords may be used when specifying the ICMPv6 code

 ???????????????????????????

 ?Keyword ? Value ?

 ???????????????????????????

 ? ? ?

 ?no-route ? 0 ?

 ???????????????????????????

 ? ? ?

 ?admin-prohibited ? 1 ?

 ???????????????????????????

 ? ? ?

 ?addr-unreachable ? 3 ? Page 38/104

 ???????????????????????????

 ? ? ?

 ?port-unreachable ? 4 ?

 ???????????????????????????

 ? ? ?

 ?policy-fail ? 5 ?

 ???????????????????????????

 ? ? ?

 ?reject-route ? 6 ?

 ???????????????????????????

 ICMPVX CODE TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?ICMPvX Code ? icmpv6_type ? 8 bit ? integer ?

 ??

 The ICMPvX Code type abstraction is a set of values which overlap between ICMP and ICMPv6

 Code types to be used from the inet family.

 Table 22. keywords may be used when specifying the ICMPvX code

 ???????????????????????????

 ?Keyword ? Value ?

 ???????????????????????????

 ? ? ?

 ?no-route ? 0 ?

 ???????????????????????????

 ? ? ?

 ?port-unreachable ? 1 ?

 ???????????????????????????

 ? ? ?

 ?host-unreachable ? 2 ?

 ???????????????????????????

 ? ? ? Page 39/104

 ?admin-prohibited ? 3 ?

 ???????????????????????????

 CONNTRACK TYPES

 Table 23. overview of types used in ct expression and statement

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?conntrack state ? ct_state ? 4 byte ? bitmask ?

 ??

 ? ? ? ? ?

 ?conntrack direction ? ct_dir ? 8 bit ? integer ?

 ??

 ? ? ? ? ?

 ?conntrack status ? ct_status ? 4 byte ? bitmask ?

 ??

 ? ? ? ? ?

 ?conntrack event ? ct_event ? 4 byte ? bitmask ?

 ?bits ? ? ? ?

 ??

 ? ? ? ? ?

 ?conntrack label ? ct_label ? 128 bit ? bitmask ?

 ??

 For each of the types above, keywords are available for convenience:

 Table 24. conntrack state (ct_state)

 ??????????????????????

 ?Keyword ? Value ?

 ??????????????????????

 ? ? ?

 ?invalid ? 1 ?

 ??????????????????????

 ? ? ?

 ?established ? 2 ? Page 40/104

 ??????????????????????

 ? ? ?

 ?related ? 4 ?

 ??????????????????????

 ? ? ?

 ?new ? 8 ?

 ??????????????????????

 ? ? ?

 ?untracked ? 64 ?

 ??????????????????????

 Table 25. conntrack direction (ct_dir)

 ???????????????????

 ?Keyword ? Value ?

 ???????????????????

 ? ? ?

 ?original ? 0 ?

 ???????????????????

 ? ? ?

 ?reply ? 1 ?

 ???????????????????

 Table 26. conntrack status (ct_status)

 ?????????????????????

 ?Keyword ? Value ?

 ?????????????????????

 ? ? ?

 ?expected ? 1 ?

 ?????????????????????

 ? ? ?

 ?seen-reply ? 2 ?

 ?????????????????????

 ? ? ?

 ?assured ? 4 ?

 ????????????????????? Page 41/104

 ? ? ?

 ?confirmed ? 8 ?

 ?????????????????????

 ? ? ?

 ?snat ? 16 ?

 ?????????????????????

 ? ? ?

 ?dnat ? 32 ?

 ?????????????????????

 ? ? ?

 ?dying ? 512 ?

 ?????????????????????

 Table 27. conntrack event bits (ct_event)

 ????????????????????

 ?Keyword ? Value ?

 ????????????????????

 ? ? ?

 ?new ? 1 ?

 ????????????????????

 ? ? ?

 ?related ? 2 ?

 ????????????????????

 ? ? ?

 ?destroy ? 4 ?

 ????????????????????

 ? ? ?

 ?reply ? 8 ?

 ????????????????????

 ? ? ?

 ?assured ? 16 ?

 ????????????????????

 ? ? ?

 ?protoinfo ? 32 ? Page 42/104

 ????????????????????

 ? ? ?

 ?helper ? 64 ?

 ????????????????????

 ? ? ?

 ?mark ? 128 ?

 ????????????????????

 ? ? ?

 ?seqadj ? 256 ?

 ????????????????????

 ? ? ?

 ?secmark ? 512 ?

 ????????????????????

 ? ? ?

 ?label ? 1024 ?

 ????????????????????

 Possible keywords for conntrack label type (ct_label) are read at runtime from

 /etc/connlabel.conf.

 DCCP PKTTYPE TYPE

 ??

 ?Name ? Keyword ? Size ? Base type ?

 ??

 ? ? ? ? ?

 ?DCCP packet type ? dccp_pkttype ? 4 bit ? integer ?

 ??

 The DCCP packet type abstracts the different legal values of the respective four bit field

 in the DCCP header, as stated by RFC4340. Note that possible values 10-15 are considered

 reserved and therefore not allowed to be used. In iptables' dccp match, these values are

 aliased INVALID. With nftables, one may simply match on the numeric value range, i.e.

 10-15.

 Table 28. keywords may be used when specifying the DCCP packet type

 ???????????????????

 ?Keyword ? Value ? Page 43/104

 ???????????????????

 ? ? ?

 ?request ? 0 ?

 ???????????????????

 ? ? ?

 ?response ? 1 ?

 ???????????????????

 ? ? ?

 ?data ? 2 ?

 ???????????????????

 ? ? ?

 ?ack ? 3 ?

 ???????????????????

 ? ? ?

 ?dataack ? 4 ?

 ???????????????????

 ? ? ?

 ?closereq ? 5 ?

 ???????????????????

 ? ? ?

 ?close ? 6 ?

 ???????????????????

 ? ? ?

 ?reset ? 7 ?

 ???????????????????

 ? ? ?

 ?sync ? 8 ?

 ???????????????????

 ? ? ?

 ?syncack ? 9 ?

 ???????????????????

PRIMARY EXPRESSIONS

 The lowest order expression is a primary expression, representing either a constant or a Page 44/104

 single datum from a packet?s payload, meta data or a stateful module.

 META EXPRESSIONS

 meta {length | nfproto | l4proto | protocol | priority}

 [meta] {mark | iif | iifname | iiftype | oif | oifname | oiftype | skuid | skgid | nftrace | rtclassid | ibrname | obrname |

pkttype | cpu | iifgroup | oifgroup | cgroup | random | ipsec | iifkind | oifkind | time | hour | day }

 A meta expression refers to meta data associated with a packet.

 There are two types of meta expressions: unqualified and qualified meta expressions.

 Qualified meta expressions require the meta keyword before the meta key, unqualified meta

 expressions can be specified by using the meta key directly or as qualified meta

 expressions. Meta l4proto is useful to match a particular transport protocol that is part

 of either an IPv4 or IPv6 packet. It will also skip any IPv6 extension headers present in

 an IPv6 packet.

 meta iif, oif, iifname and oifname are used to match the interface a packet arrived on or

 is about to be sent out on.

 iif and oif are used to match on the interface index, whereas iifname and oifname are used

 to match on the interface name. This is not the same ? assuming the rule

 filter input meta iif "foo"

 Then this rule can only be added if the interface "foo" exists. Also, the rule will

 continue to match even if the interface "foo" is renamed to "bar".

 This is because internally the interface index is used. In case of dynamically created

 interfaces, such as tun/tap or dialup interfaces (ppp for example), it might be better to

 use iifname or oifname instead.

 In these cases, the name is used so the interface doesn?t have to exist to add such a

 rule, it will stop matching if the interface gets renamed and it will match again in case

 interface gets deleted and later a new interface with the same name is created.

 Like with iptables, wildcard matching on interface name prefixes is available for iifname

 and oifname matches by appending an asterisk (*) character. Note however that unlike

 iptables, nftables does not accept interface names consisting of the wildcard character

 only - users are supposed to just skip those always matching expressions. In order to

 match on literal asterisk character, one may escape it using backslash (\).

 Table 29. Meta expression types

 ???

 ?Keyword ? Description ? Type ? Page 45/104

 ???

 ? ? ? ?

 ?length ? Length of the packet in ? integer (32-bit) ?

 ? ? bytes ? ?

 ???

 ? ? ? ?

 ?nfproto ? real hook protocol ? integer (32 bit) ?

 ? ? family, useful only in ? ?

 ? ? inet table ? ?

 ???

 ? ? ? ?

 ?l4proto ? layer 4 protocol, skips ? integer (8 bit) ?

 ? ? ipv6 extension headers ? ?

 ???

 ? ? ? ?

 ?protocol ? EtherType protocol value ? ether_type ?

 ???

 ? ? ? ?

 ?priority ? TC packet priority ? tc_handle ?

 ???

 ? ? ? ?

 ?mark ? Packet mark ? mark ?

 ???

 ? ? ? ?

 ?iif ? Input interface index ? iface_index ?

 ???

 ? ? ? ?

 ?iifname ? Input interface name ? ifname ?

 ???

 ? ? ? ?

 ?iiftype ? Input interface type ? iface_type ?

 ???

 ? ? ? ? Page 46/104

 ?oif ? Output interface index ? iface_index ?

 ???

 ? ? ? ?

 ?oifname ? Output interface name ? ifname ?

 ???

 ? ? ? ?

 ?oiftype ? Output interface ? iface_type ?

 ? ? hardware type ? ?

 ???

 ? ? ? ?

 ?sdif ? Slave device input ? iface_index ?

 ? ? interface index ? ?

 ???

 ? ? ? ?

 ?sdifname ? Slave device interface ? ifname ?

 ? ? name ? ?

 ???

 ? ? ? ?

 ?skuid ? UID associated with ? uid ?

 ? ? originating socket ? ?

 ???

 ? ? ? ?

 ?skgid ? GID associated with ? gid ?

 ? ? originating socket ? ?

 ???

 ? ? ? ?

 ?rtclassid ? Routing realm ? realm ?

 ???

 ? ? ? ?

 ?ibrname ? Input bridge interface ? ifname ?

 ? ? name ? ?

 ???

 ? ? ? ? Page 47/104

 ?obrname ? Output bridge interface ? ifname ?

 ? ? name ? ?

 ???

 ? ? ? ?

 ?pkttype ? packet type ? pkt_type ?

 ???

 ? ? ? ?

 ?cpu ? cpu number processing ? integer (32 bit) ?

 ? ? the packet ? ?

 ???

 ? ? ? ?

 ?iifgroup ? incoming device group ? devgroup ?

 ???

 ? ? ? ?

 ?oifgroup ? outgoing device group ? devgroup ?

 ???

 ? ? ? ?

 ?cgroup ? control group id ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?random ? pseudo-random number ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?ipsec ? true if packet was ipsec ? boolean (1 bit) ?

 ? ? encrypted ? ?

 ???

 ? ? ? ?

 ?iifkind ? Input interface kind ? ?

 ???

 ? ? ? ?

 ?oifkind ? Output interface kind ? ?

 ???

 ? ? ? ? Page 48/104

 ?time ? Absolute time of packet ? Integer (32 bit) or ?

 ? ? reception ? string ?

 ???

 ? ? ? ?

 ?day ? Day of week ? Integer (8 bit) or ?

 ? ? ? string ?

 ???

 ? ? ? ?

 ?hour ? Hour of day ? String ?

 ???

 Table 30. Meta expression specific types

 ???

 ?Type ? Description ?

 ???

 ? ? ?

 ?iface_index ? Interface index (32 bit number). ?

 ? ? Can be specified numerically or ?

 ? ? as name of an existing ?

 ? ? interface. ?

 ???

 ? ? ?

 ?ifname ? Interface name (16 byte string). ?

 ? ? Does not have to exist. ?

 ???

 ? ? ?

 ?iface_type ? Interface type (16 bit number). ?

 ???

 ? ? ?

 ?uid ? User ID (32 bit number). Can be ?

 ? ? specified numerically or as user ?

 ? ? name. ?

 ???

 ? ? ? Page 49/104

 ?gid ? Group ID (32 bit number). Can be ?

 ? ? specified numerically or as ?

 ? ? group name. ?

 ???

 ? ? ?

 ?realm ? Routing Realm (32 bit number). ?

 ? ? Can be specified numerically or ?

 ? ? as symbolic name defined in ?

 ? ? /etc/iproute2/rt_realms. ?

 ???

 ? ? ?

 ?devgroup_type ? Device group (32 bit number). ?

 ? ? Can be specified numerically or ?

 ? ? as symbolic name defined in ?

 ? ? /etc/iproute2/group. ?

 ???

 ? ? ?

 ?pkt_type ? Packet type: host (addressed to ?

 ? ? local host), broadcast (to all), ?

 ? ? multicast (to group), other ?

 ? ? (addressed to another host). ?

 ???

 ? ? ?

 ?ifkind ? Interface kind (16 byte string). ?

 ? ? See TYPES in ip-link(8) for a ?

 ? ? list. ?

 ???

 ? ? ?

 ?time ? Either an integer or a date in ?

 ? ? ISO format. For example: ?

 ? ? "2019-06-06 17:00". Hour and ?

 ? ? seconds are optional and can be ?

 ? ? omitted if desired. If omitted, ? Page 50/104

 ? ? midnight will be assumed. The ?

 ? ? following three would be ?

 ? ? equivalent: "2019-06-06", ?

 ? ? "2019-06-06 00:00" and ?

 ? ? "2019-06-06 00:00:00". When an ?

 ? ? integer is given, it is assumed ?

 ? ? to be a UNIX timestamp. ?

 ???

 ? ? ?

 ?day ? Either a day of week ("Monday", ?

 ? ? "Tuesday", etc.), or an integer ?

 ? ? between 0 and 6. Strings are ?

 ? ? matched case-insensitively, and ?

 ? ? a full match is not expected ?

 ? ? (e.g. "Mon" would match ?

 ? ? "Monday"). When an integer is ?

 ? ? given, 0 is Sunday and 6 is ?

 ? ? Saturday. ?

 ???

 ? ? ?

 ?hour ? A string representing an hour in ?

 ? ? 24-hour format. Seconds can ?

 ? ? optionally be specified. For ?

 ? ? example, 17:00 and 17:00:00 ?

 ? ? would be equivalent. ?

 ???

 Using meta expressions.

 # qualified meta expression

 filter output meta oif eth0

 filter forward meta iifkind { "tun", "veth" }

 # unqualified meta expression

 filter output oif eth0

 # incoming packet was subject to ipsec processing Page 51/104

 raw prerouting meta ipsec exists accept

 SOCKET EXPRESSION

 socket {transparent | mark | wildcard}

 socket cgroupv2 level NUM

 Socket expression can be used to search for an existing open TCP/UDP socket and its

 attributes that can be associated with a packet. It looks for an established or non-zero

 bound listening socket (possibly with a non-local address). You can also use it to match

 on the socket cgroupv2 at a given ancestor level, e.g. if the socket belongs to cgroupv2

 a/b, ancestor level 1 checks for a matching on cgroup a and ancestor level 2 checks for a

 matching on cgroup b.

 Table 31. Available socket attributes

 ???

 ?Name ? Description ? Type ?

 ???

 ? ? ? ?

 ?transparent ? Value of the ? boolean (1 bit) ?

 ? ? IP_TRANSPARENT socket ? ?

 ? ? option in the found ? ?

 ? ? socket. It can be 0 or ? ?

 ? ? 1. ? ?

 ???

 ? ? ? ?

 ?mark ? Value of the socket mark ? mark ?

 ? ? (SOL_SOCKET, SO_MARK). ? ?

 ???

 ? ? ? ?

 ?wildcard ? Indicates whether the ? boolean (1 bit) ?

 ? ? socket is wildcard-bound ? ?

 ? ? (e.g. 0.0.0.0 or ::0). ? ?

 ???

 ? ? ? ?

 ?cgroupv2 ? cgroup version 2 for ? cgroupv2 ?

 ? ? this socket (path from ? ? Page 52/104

 ? ? /sys/fs/cgroup) ? ?

 ???

 Using socket expression.

 # Mark packets that correspond to a transparent socket. "socket wildcard 0"

 # means that zero-bound listener sockets are NOT matched (which is usually

 # exactly what you want).

 table inet x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 socket transparent 1 socket wildcard 0 mark set 0x00000001 accept

 }

 }

 # Trace packets that corresponds to a socket with a mark value of 15

 table inet x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 socket mark 0x0000000f nftrace set 1

 }

 }

 # Set packet mark to socket mark

 table inet x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 tcp dport 8080 mark set socket mark

 }

 }

 # Count packets for cgroupv2 "user.slice" at level 1

 table inet x {

 chain y {

 type filter hook input priority filter; policy accept;

 socket cgroupv2 level 1 "user.slice" counter

 }

 } Page 53/104

 OSF EXPRESSION

 osf [ttl {loose | skip}] {name | version}

 The osf expression does passive operating system fingerprinting. This expression compares

 some data (Window Size, MSS, options and their order, DF, and others) from packets with

 the SYN bit set.

 Table 32. Available osf attributes

 ??

 ?Name ? Description ? Type ?

 ??

 ? ? ? ?

 ?ttl ? Do TTL checks on the ? string ?

 ? ? packet to determine the ? ?

 ? ? operating system. ? ?

 ??

 ? ? ? ?

 ?version ? Do OS version checks on ? ?

 ? ? the packet. ? ?

 ??

 ? ? ? ?

 ?name ? Name of the OS signature ? string ?

 ? ? to match. All signatures ? ?

 ? ? can be found at pf.os ? ?

 ? ? file. Use "unknown" for ? ?

 ? ? OS signatures that the ? ?

 ? ? expression could not ? ?

 ? ? detect. ? ?

 ??

 Available ttl values.

 If no TTL attribute is passed, make a true IP header and fingerprint TTL true comparison. This generally works for

LANs.

 * loose: Check if the IP header's TTL is less than the fingerprint one. Works for globally-routable addresses.

 * skip: Do not compare the TTL at all.

 Using osf expression. Page 54/104

 # Accept packets that match the "Linux" OS genre signature without comparing TTL.

 table inet x {

 chain y {

 type filter hook input priority filter; policy accept;

 osf ttl skip name "Linux"

 }

 }

 FIB EXPRESSIONS

 fib {saddr | daddr | mark | iif | oif} [. ...] {oif | oifname | type}

 A fib expression queries the fib (forwarding information base) to obtain information such

 as the output interface index a particular address would use. The input is a tuple of

 elements that is used as input to the fib lookup functions.

 Table 33. fib expression specific types

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?oif ? Output interface index ? integer (32 bit) ?

 ??

 ? ? ? ?

 ?oifname ? Output interface name ? string ?

 ??

 ? ? ? ?

 ?type ? Address type ? fib_addrtype ?

 ??

 Use nft describe fib_addrtype to get a list of all address types.

 Using fib expressions.

 # drop packets without a reverse path

 filter prerouting fib saddr . iif oif missing drop

 In this example, 'saddr . iif' looks up routing information based on the source address and the input interface.

 oif picks the output interface index from the routing information.

 If no route was found for the source address/input interface combination, the output interface index is zero.

 In case the input interface is specified as part of the input key, the output interface index is always the same as thePage 55/104

input interface index or zero.

 If only 'saddr oif' is given, then oif can be any interface index or zero.

 # drop packets to address not configured on incoming interface

 filter prerouting fib daddr . iif type != { local, broadcast, multicast } drop

 # perform lookup in a specific 'blackhole' table (0xdead, needs ip appropriate ip rule)

 filter prerouting meta mark set 0xdead fib daddr . mark type vmap { blackhole : drop, prohibit : jump prohibited,

unreachable : drop }

 ROUTING EXPRESSIONS

 rt [ip | ip6] {classid | nexthop | mtu | ipsec}

 A routing expression refers to routing data associated with a packet.

 Table 34. Routing expression types

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?classid ? Routing realm ? realm ?

 ???

 ? ? ? ?

 ?nexthop ? Routing nexthop ? ipv4_addr/ipv6_addr ?

 ???

 ? ? ? ?

 ?mtu ? TCP maximum segment size ? integer (16 bit) ?

 ? ? of route ? ?

 ???

 ? ? ? ?

 ?ipsec ? route via ipsec tunnel ? boolean ?

 ? ? or transport ? ?

 ???

 Table 35. Routing expression specific types

 ??

 ?Type ? Description ?

 ??

 ? ? ? Page 56/104

 ?realm ? Routing Realm (32 bit number). ?

 ? ? Can be specified numerically or ?

 ? ? as symbolic name defined in ?

 ? ? /etc/iproute2/rt_realms. ?

 ??

 Using routing expressions.

 # IP family independent rt expression

 filter output rt classid 10

 # IP family dependent rt expressions

 ip filter output rt nexthop 192.168.0.1

 ip6 filter output rt nexthop fd00::1

 inet filter output rt ip nexthop 192.168.0.1

 inet filter output rt ip6 nexthop fd00::1

 # outgoing packet will be encapsulated/encrypted by ipsec

 filter output rt ipsec exists

 IPSEC EXPRESSIONS

 ipsec {in | out} [spnum NUM] {reqid | spi}

 ipsec {in | out} [spnum NUM] {ip | ip6} {saddr | daddr}

 An ipsec expression refers to ipsec data associated with a packet.

 The in or out keyword needs to be used to specify if the expression should examine inbound

 or outbound policies. The in keyword can be used in the prerouting, input and forward

 hooks. The out keyword applies to forward, output and postrouting hooks. The optional

 keyword spnum can be used to match a specific state in a chain, it defaults to 0.

 Table 36. Ipsec expression types

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?reqid ? Request ID ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?spi ? Security Parameter Index ? integer (32 bit) ?

 ??? Page 57/104

 ? ? ? ?

 ?saddr ? Source address of the ? ipv4_addr/ipv6_addr ?

 ? ? tunnel ? ?

 ???

 ? ? ? ?

 ?daddr ? Destination address of ? ipv4_addr/ipv6_addr ?

 ? ? the tunnel ? ?

 ???

 NUMGEN EXPRESSION

 numgen {inc | random} mod NUM [offset NUM]

 Create a number generator. The inc or random keywords control its operation mode: In inc

 mode, the last returned value is simply incremented. In random mode, a new random number

 is returned. The value after mod keyword specifies an upper boundary (read: modulus) which

 is not reached by returned numbers. The optional offset allows to increment the returned

 value by a fixed offset.

 A typical use-case for numgen is load-balancing:

 Using numgen expression.

 # round-robin between 192.168.10.100 and 192.168.20.200:

 add rule nat prerouting dnat to numgen inc mod 2 map \

 { 0 : 192.168.10.100, 1 : 192.168.20.200 }

 # probability-based with odd bias using intervals:

 add rule nat prerouting dnat to numgen random mod 10 map \

 { 0-2 : 192.168.10.100, 3-9 : 192.168.20.200 }

 HASH EXPRESSIONS

 jhash {ip saddr | ip6 daddr | tcp dport | udp sport | ether saddr} [. ...] mod NUM [seed NUM] [offset NUM]

 symhash mod NUM [offset NUM]

 Use a hashing function to generate a number. The functions available are jhash, known as

 Jenkins Hash, and symhash, for Symmetric Hash. The jhash requires an expression to

 determine the parameters of the packet header to apply the hashing, concatenations are

 possible as well. The value after mod keyword specifies an upper boundary (read: modulus)

 which is not reached by returned numbers. The optional seed is used to specify an init

 value used as seed in the hashing function. The optional offset allows to increment the

 returned value by a fixed offset. Page 58/104

 A typical use-case for jhash and symhash is load-balancing:

 Using hash expressions.

 # load balance based on source ip between 2 ip addresses:

 add rule nat prerouting dnat to jhash ip saddr mod 2 map \

 { 0 : 192.168.10.100, 1 : 192.168.20.200 }

 # symmetric load balancing between 2 ip addresses:

 add rule nat prerouting dnat to symhash mod 2 map \

 { 0 : 192.168.10.100, 1 : 192.168.20.200 }

PAYLOAD EXPRESSIONS

 Payload expressions refer to data from the packet?s payload.

 ETHERNET HEADER EXPRESSION

 ether {daddr | saddr | type}

 Table 37. Ethernet header expression types

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?daddr ? Destination MAC address ? ether_addr ?

 ???

 ? ? ? ?

 ?saddr ? Source MAC address ? ether_addr ?

 ???

 ? ? ? ?

 ?type ? EtherType ? ether_type ?

 ???

 VLAN HEADER EXPRESSION

 vlan {id | dei | pcp | type}

 Table 38. VLAN header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?id ? VLAN ID (VID) ? integer (12 bit) ? Page 59/104

 ???

 ? ? ? ?

 ?dei ? Drop Eligible Indicator ? integer (1 bit) ?

 ???

 ? ? ? ?

 ?pcp ? Priority code point ? integer (3 bit) ?

 ???

 ? ? ? ?

 ?type ? EtherType ? ether_type ?

 ???

 ARP HEADER EXPRESSION

 arp {htype | ptype | hlen | plen | operation | saddr { ip | ether } | daddr { ip | ether }

 Table 39. ARP header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?htype ? ARP hardware type ? integer (16 bit) ?

 ???

 ? ? ? ?

 ?ptype ? EtherType ? ether_type ?

 ???

 ? ? ? ?

 ?hlen ? Hardware address len ? integer (8 bit) ?

 ???

 ? ? ? ?

 ?plen ? Protocol address len ? integer (8 bit) ?

 ???

 ? ? ? ?

 ?operation ? Operation ? arp_op ?

 ???

 ? ? ? ?

 ?saddr ether ? Ethernet sender address ? ether_addr ? Page 60/104

 ???

 ? ? ? ?

 ?daddr ether ? Ethernet target address ? ether_addr ?

 ???

 ? ? ? ?

 ?saddr ip ? IPv4 sender address ? ipv4_addr ?

 ???

 ? ? ? ?

 ?daddr ip ? IPv4 target address ? ipv4_addr ?

 ???

 IPV4 HEADER EXPRESSION

 ip {version | hdrlength | dscp | ecn | length | id | frag-off | ttl | protocol | checksum | saddr | daddr }

 Table 40. IPv4 header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?version ? IP header version (4) ? integer (4 bit) ?

 ??

 ? ? ? ?

 ?hdrlength ? IP header length ? integer (4 bit) FIXME ?

 ? ? including options ? scaling ?

 ??

 ? ? ? ?

 ?dscp ? Differentiated Services ? dscp ?

 ? ? Code Point ? ?

 ??

 ? ? ? ?

 ?ecn ? Explicit Congestion ? ecn ?

 ? ? Notification ? ?

 ??

 ? ? ? ?

 ?length ? Total packet length ? integer (16 bit) ? Page 61/104

 ??

 ? ? ? ?

 ?id ? IP ID ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?frag-off ? Fragment offset ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?ttl ? Time to live ? integer (8 bit) ?

 ??

 ? ? ? ?

 ?protocol ? Upper layer protocol ? inet_proto ?

 ??

 ? ? ? ?

 ?checksum ? IP header checksum ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?saddr ? Source address ? ipv4_addr ?

 ??

 ? ? ? ?

 ?daddr ? Destination address ? ipv4_addr ?

 ??

 ICMP HEADER EXPRESSION

 icmp {type | code | checksum | id | sequence | gateway | mtu}

 This expression refers to ICMP header fields. When using it in inet, bridge or netdev

 families, it will cause an implicit dependency on IPv4 to be created. To match on unusual

 cases like ICMP over IPv6, one has to add an explicit meta protocol ip6 match to the rule.

 Table 41. ICMP header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?type ? ICMP type field ? icmp_type ? Page 62/104

 ??

 ? ? ? ?

 ?code ? ICMP code field ? integer (8 bit) ?

 ??

 ? ? ? ?

 ?checksum ? ICMP checksum field ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?id ? ID of echo ? integer (16 bit) ?

 ? ? request/response ? ?

 ??

 ? ? ? ?

 ?sequence ? sequence number of echo ? integer (16 bit) ?

 ? ? request/response ? ?

 ??

 ? ? ? ?

 ?gateway ? gateway of redirects ? integer (32 bit) ?

 ??

 ? ? ? ?

 ?mtu ? MTU of path MTU ? integer (16 bit) ?

 ? ? discovery ? ?

 ??

 IGMP HEADER EXPRESSION

 igmp {type | mrt | checksum | group}

 This expression refers to IGMP header fields. When using it in inet, bridge or netdev

 families, it will cause an implicit dependency on IPv4 to be created. To match on unusual

 cases like IGMP over IPv6, one has to add an explicit meta protocol ip6 match to the rule.

 Table 42. IGMP header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?type ? IGMP type field ? igmp_type ? Page 63/104

 ??

 ? ? ? ?

 ?mrt ? IGMP maximum response ? integer (8 bit) ?

 ? ? time field ? ?

 ??

 ? ? ? ?

 ?checksum ? IGMP checksum field ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?group ? Group address ? integer (32 bit) ?

 ??

 IPV6 HEADER EXPRESSION

 ip6 {version | dscp | ecn | flowlabel | length | nexthdr | hoplimit | saddr | daddr}

 This expression refers to the ipv6 header fields. Caution when using ip6 nexthdr, the

 value only refers to the next header, i.e. ip6 nexthdr tcp will only match if the ipv6

 packet does not contain any extension headers. Packets that are fragmented or e.g. contain

 a routing extension headers will not be matched. Please use meta l4proto if you wish to

 match the real transport header and ignore any additional extension headers instead.

 Table 43. IPv6 header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?version ? IP header version (6) ? integer (4 bit) ?

 ???

 ? ? ? ?

 ?dscp ? Differentiated Services ? dscp ?

 ? ? Code Point ? ?

 ???

 ? ? ? ?

 ?ecn ? Explicit Congestion ? ecn ?

 ? ? Notification ? ?

 ??? Page 64/104

 ? ? ? ?

 ?flowlabel ? Flow label ? integer (20 bit) ?

 ???

 ? ? ? ?

 ?length ? Payload length ? integer (16 bit) ?

 ???

 ? ? ? ?

 ?nexthdr ? Nexthdr protocol ? inet_proto ?

 ???

 ? ? ? ?

 ?hoplimit ? Hop limit ? integer (8 bit) ?

 ???

 ? ? ? ?

 ?saddr ? Source address ? ipv6_addr ?

 ???

 ? ? ? ?

 ?daddr ? Destination address ? ipv6_addr ?

 ???

 Using ip6 header expressions.

 # matching if first extension header indicates a fragment

 ip6 nexthdr ipv6-frag

 ICMPV6 HEADER EXPRESSION

 icmpv6 {type | code | checksum | parameter-problem | packet-too-big | id | sequence | max-delay}

 This expression refers to ICMPv6 header fields. When using it in inet, bridge or netdev

 families, it will cause an implicit dependency on IPv6 to be created. To match on unusual

 cases like ICMPv6 over IPv4, one has to add an explicit meta protocol ip match to the

 rule.

 Table 44. ICMPv6 header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?type ? ICMPv6 type field ? icmpv6_type ? Page 65/104

 ???

 ? ? ? ?

 ?code ? ICMPv6 code field ? integer (8 bit) ?

 ???

 ? ? ? ?

 ?checksum ? ICMPv6 checksum field ? integer (16 bit) ?

 ???

 ? ? ? ?

 ?parameter-problem ? pointer to problem ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?packet-too-big ? oversized MTU ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?id ? ID of echo ? integer (16 bit) ?

 ? ? request/response ? ?

 ???

 ? ? ? ?

 ?sequence ? sequence number of echo ? integer (16 bit) ?

 ? ? request/response ? ?

 ???

 ? ? ? ?

 ?max-delay ? maximum response delay ? integer (16 bit) ?

 ? ? of MLD queries ? ?

 ???

 TCP HEADER EXPRESSION

 tcp {sport | dport | sequence | ackseq | doff | reserved | flags | window | checksum | urgptr}

 Table 45. TCP header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?sport ? Source port ? inet_service ? Page 66/104

 ??

 ? ? ? ?

 ?dport ? Destination port ? inet_service ?

 ??

 ? ? ? ?

 ?sequence ? Sequence number ? integer (32 bit) ?

 ??

 ? ? ? ?

 ?ackseq ? Acknowledgement number ? integer (32 bit) ?

 ??

 ? ? ? ?

 ?doff ? Data offset ? integer (4 bit) FIXME ?

 ? ? ? scaling ?

 ??

 ? ? ? ?

 ?reserved ? Reserved area ? integer (4 bit) ?

 ??

 ? ? ? ?

 ?flags ? TCP flags ? tcp_flag ?

 ??

 ? ? ? ?

 ?window ? Window ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?checksum ? Checksum ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?urgptr ? Urgent pointer ? integer (16 bit) ?

 ??

 UDP HEADER EXPRESSION

 udp {sport | dport | length | checksum}

 Table 46. UDP header expression

 ?? Page 67/104

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?sport ? Source port ? inet_service ?

 ??

 ? ? ? ?

 ?dport ? Destination port ? inet_service ?

 ??

 ? ? ? ?

 ?length ? Total packet length ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?checksum ? Checksum ? integer (16 bit) ?

 ??

 UDP-LITE HEADER EXPRESSION

 udplite {sport | dport | checksum}

 Table 47. UDP-Lite header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?sport ? Source port ? inet_service ?

 ???

 ? ? ? ?

 ?dport ? Destination port ? inet_service ?

 ???

 ? ? ? ?

 ?checksum ? Checksum ? integer (16 bit) ?

 ???

 SCTP HEADER EXPRESSION

 sctp {sport | dport | vtag | checksum}

 sctp chunk CHUNK [FIELD]

 CHUNK := data | init | init-ack | sack | heartbeat | Page 68/104

 heartbeat-ack | abort | shutdown | shutdown-ack | error |

 cookie-echo | cookie-ack | ecne | cwr | shutdown-complete

 | asconf-ack | forward-tsn | asconf

 FIELD := COMMON_FIELD | DATA_FIELD | INIT_FIELD | INIT_ACK_FIELD |

 SACK_FIELD | SHUTDOWN_FIELD | ECNE_FIELD | CWR_FIELD |

 ASCONF_ACK_FIELD | FORWARD_TSN_FIELD | ASCONF_FIELD

 COMMON_FIELD := type | flags | length

 DATA_FIELD := tsn | stream | ssn | ppid

 INIT_FIELD := init-tag | a-rwnd | num-outbound-streams |

 num-inbound-streams | initial-tsn

 INIT_ACK_FIELD := INIT_FIELD

 SACK_FIELD := cum-tsn-ack | a-rwnd | num-gap-ack-blocks |

 num-dup-tsns

 SHUTDOWN_FIELD := cum-tsn-ack

 ECNE_FIELD := lowest-tsn

 CWR_FIELD := lowest-tsn

 ASCONF_ACK_FIELD := seqno

 FORWARD_TSN_FIELD := new-cum-tsn

 ASCONF_FIELD := seqno

 Table 48. SCTP header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?sport ? Source port ? inet_service ?

 ???

 ? ? ? ?

 ?dport ? Destination port ? inet_service ?

 ???

 ? ? ? ?

 ?vtag ? Verification Tag ? integer (32 bit) ?

 ???

 ? ? ? ? Page 69/104

 ?checksum ? Checksum ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?chunk ? Search chunk in packet ? without FIELD, boolean ?

 ? ? ? indicating existence ?

 ???

 Table 49. SCTP chunk fields

 ??

 ?Name ? Width in bits ? Chunk ? Notes ?

 ??

 ? ? ? ? ?

 ?type ? 8 ? all ? not useful, defined ?

 ? ? ? ? by chunk type ?

 ??

 ? ? ? ? ?

 ?flags ? 8 ? all ? semantics defined ?

 ? ? ? ? on per-chunk basis ?

 ??

 ? ? ? ? ?

 ?length ? 16 ? all ? length of this ?

 ? ? ? ? chunk in bytes ?

 ? ? ? ? excluding padding ?

 ??

 ? ? ? ? ?

 ?tsn ? 32 ? data ? transmission ?

 ? ? ? ? sequence number ?

 ??

 ? ? ? ? ?

 ?stream ? 16 ? data ? stream identifier ?

 ??

 ? ? ? ? ?

 ?ssn ? 16 ? data ? stream sequence ?

 ? ? ? ? number ? Page 70/104

 ??

 ? ? ? ? ?

 ?ppid ? 32 ? data ? payload protocol ?

 ? ? ? ? identifier ?

 ??

 ? ? ? ? ?

 ?init-tag ? 32 ? init, init-ack ? initiate tag ?

 ??

 ? ? ? ? ?

 ?a-rwnd ? 32 ? init, init-ack, ? advertised receiver ?

 ? ? ? sack ? window credit ?

 ??

 ? ? ? ? ?

 ?num-outbound-streams ? 16 ? init, init-ack ? number of outbound ?

 ? ? ? ? streams ?

 ??

 ? ? ? ? ?

 ?num-inbound-streams ? 16 ? init, init-ack ? number of inbound ?

 ? ? ? ? streams ?

 ??

 ? ? ? ? ?

 ?initial-tsn ? 32 ? init, init-ack ? initial transmit ?

 ? ? ? ? sequence number ?

 ??

 ? ? ? ? ?

 ?cum-tsn-ack ? 32 ? sack, shutdown ? cumulative ?

 ? ? ? ? transmission ?

 ? ? ? ? sequence number ?

 ? ? ? ? acknowledged ?

 ??

 ? ? ? ? ?

 ?num-gap-ack-blocks ? 16 ? sack ? number of Gap Ack ?

 ? ? ? ? Blocks included ? Page 71/104

 ??

 ? ? ? ? ?

 ?num-dup-tsns ? 16 ? sack ? number of duplicate ?

 ? ? ? ? transmission ?

 ? ? ? ? sequence numbers ?

 ? ? ? ? received ?

 ??

 ? ? ? ? ?

 ?lowest-tsn ? 32 ? ecne, cwr ? lowest transmission ?

 ? ? ? ? sequence number ?

 ??

 ? ? ? ? ?

 ?seqno ? 32 ? asconf-ack, asconf ? sequence number ?

 ??

 ? ? ? ? ?

 ?new-cum-tsn ? 32 ? forward-tsn ? new cumulative ?

 ? ? ? ? transmission ?

 ? ? ? ? sequence number ?

 ??

 DCCP HEADER EXPRESSION

 dccp {sport | dport | type}

 Table 50. DCCP header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?sport ? Source port ? inet_service ?

 ??

 ? ? ? ?

 ?dport ? Destination port ? inet_service ?

 ??

 ? ? ? ?

 ?type ? Packet type ? dccp_pkttype ? Page 72/104

 ??

 AUTHENTICATION HEADER EXPRESSION

 ah {nexthdr | hdrlength | reserved | spi | sequence}

 Table 51. AH header expression

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?nexthdr ? Next header protocol ? inet_proto ?

 ??

 ? ? ? ?

 ?hdrlength ? AH Header length ? integer (8 bit) ?

 ??

 ? ? ? ?

 ?reserved ? Reserved area ? integer (16 bit) ?

 ??

 ? ? ? ?

 ?spi ? Security Parameter Index ? integer (32 bit) ?

 ??

 ? ? ? ?

 ?sequence ? Sequence number ? integer (32 bit) ?

 ??

 ENCRYPTED SECURITY PAYLOAD HEADER EXPRESSION

 esp {spi | sequence}

 Table 52. ESP header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?spi ? Security Parameter Index ? integer (32 bit) ?

 ???

 ? ? ? ?

 ?sequence ? Sequence number ? integer (32 bit) ? Page 73/104

 ???

 IPCOMP HEADER EXPRESSION

 comp {nexthdr | flags | cpi}

 Table 53. IPComp header expression

 ???

 ?Keyword ? Description ? Type ?

 ???

 ? ? ? ?

 ?nexthdr ? Next header protocol ? inet_proto ?

 ???

 ? ? ? ?

 ?flags ? Flags ? bitmask ?

 ???

 ? ? ? ?

 ?cpi ? compression Parameter ? integer (16 bit) ?

 ? ? Index ? ?

 ???

 RAW PAYLOAD EXPRESSION

 @base,offset,length

 The raw payload expression instructs to load length bits starting at offset bits. Bit 0

 refers to the very first bit ? in the C programming language, this corresponds to the

 topmost bit, i.e. 0x80 in case of an octet. They are useful to match headers that do not

 have a human-readable template expression yet. Note that nft will not add dependencies for

 Raw payload expressions. If you e.g. want to match protocol fields of a transport header

 with protocol number 5, you need to manually exclude packets that have a different

 transport header, for instance by using meta l4proto 5 before the raw expression.

 Table 54. Supported payload protocol bases

 ??

 ?Base ? Description ?

 ??

 ? ? ?

 ?ll ? Link layer, for example the ?

 ? ? Ethernet header ? Page 74/104

 ??

 ? ? ?

 ?nh ? Network header, for example IPv4 ?

 ? ? or IPv6 ?

 ??

 ? ? ?

 ?th ? Transport Header, for example ?

 ? ? TCP ?

 ??

 Matching destination port of both UDP and TCP.

 inet filter input meta l4proto {tcp, udp} @th,16,16 { 53, 80 }

 The above can also be written as

 inet filter input meta l4proto {tcp, udp} th dport { 53, 80 }

 it is more convenient, but like the raw expression notation no dependencies are created or

 checked. It is the users responsibility to restrict matching to those header types that

 have a notion of ports. Otherwise, rules using raw expressions will errnously match

 unrelated packets, e.g. mis-interpreting ESP packets SPI field as a port.

 Rewrite arp packet target hardware address if target protocol address matches a given

 address.

 input meta iifname enp2s0 arp ptype 0x0800 arp htype 1 arp hlen 6 arp plen 4 @nh,192,32 0xc0a88f10 @nh,144,48

set 0x112233445566 accept

 EXTENSION HEADER EXPRESSIONS

 Extension header expressions refer to data from variable-sized protocol headers, such as

 IPv6 extension headers, TCP options and IPv4 options.

 nftables currently supports matching (finding) a given ipv6 extension header, TCP option

 or IPv4 option.

 hbh {nexthdr | hdrlength}

 frag {nexthdr | frag-off | more-fragments | id}

 rt {nexthdr | hdrlength | type | seg-left}

 dst {nexthdr | hdrlength}

 mh {nexthdr | hdrlength | checksum | type}

 srh {flags | tag | sid | seg-left}

 tcp option {eol | nop | maxseg | window | sack-perm | sack | sack0 | sack1 | sack2 | sack3 | timestamp}Page 75/104

tcp_option_field

 ip option { lsrr | ra | rr | ssrr } ip_option_field

 The following syntaxes are valid only in a relational expression with boolean type on

 right-hand side for checking header existence only:

 exthdr {hbh | frag | rt | dst | mh}

 tcp option {eol | nop | maxseg | window | sack-perm | sack | sack0 | sack1 | sack2 | sack3 | timestamp}

 ip option { lsrr | ra | rr | ssrr }

 Table 55. IPv6 extension headers

 ???????????????????????????????????

 ?Keyword ? Description ?

 ???????????????????????????????????

 ? ? ?

 ?hbh ? Hop by Hop ?

 ???????????????????????????????????

 ? ? ?

 ?rt ? Routing Header ?

 ???????????????????????????????????

 ? ? ?

 ?frag ? Fragmentation header ?

 ???????????????????????????????????

 ? ? ?

 ?dst ? dst options ?

 ???????????????????????????????????

 ? ? ?

 ?mh ? Mobility Header ?

 ???????????????????????????????????

 ? ? ?

 ?srh ? Segment Routing Header ?

 ???????????????????????????????????

 Table 56. TCP Options

 ??

 ?Keyword ? Description ? TCP option fields ?

 ?? Page 76/104

 ? ? ? ?

 ?eol ? End if option list ? - ?

 ??

 ? ? ? ?

 ?nop ? 1 Byte TCP Nop padding ? - ?

 ? ? option ? ?

 ??

 ? ? ? ?

 ?maxseg ? TCP Maximum Segment Size ? length, size ?

 ??

 ? ? ? ?

 ?window ? TCP Window Scaling ? length, count ?

 ??

 ? ? ? ?

 ?sack-perm ? TCP SACK permitted ? length ?

 ??

 ? ? ? ?

 ?sack ? TCP Selective ? length, left, right ?

 ? ? Acknowledgement (alias ? ?

 ? ? of block 0) ? ?

 ??

 ? ? ? ?

 ?sack0 ? TCP Selective ? length, left, right ?

 ? ? Acknowledgement (block ? ?

 ? ? 0) ? ?

 ??

 ? ? ? ?

 ?sack1 ? TCP Selective ? length, left, right ?

 ? ? Acknowledgement (block ? ?

 ? ? 1) ? ?

 ??

 ? ? ? ?

 ?sack2 ? TCP Selective ? length, left, right ? Page 77/104

 ? ? Acknowledgement (block ? ?

 ? ? 2) ? ?

 ??

 ? ? ? ?

 ?sack3 ? TCP Selective ? length, left, right ?

 ? ? Acknowledgement (block ? ?

 ? ? 3) ? ?

 ??

 ? ? ? ?

 ?timestamp ? TCP Timestamps ? length, tsval, tsecr ?

 ??

 TCP option matching also supports raw expression syntax to access arbitrary options:

 tcp option

 tcp option @number,offset,length

 Table 57. IP Options

 ??

 ?Keyword ? Description ? IP option fields ?

 ??

 ? ? ? ?

 ?lsrr ? Loose Source Route ? type, length, ptr, addr ?

 ??

 ? ? ? ?

 ?ra ? Router Alert ? type, length, value ?

 ??

 ? ? ? ?

 ?rr ? Record Route ? type, length, ptr, addr ?

 ??

 ? ? ? ?

 ?ssrr ? Strict Source Route ? type, length, ptr, addr ?

 ??

 finding TCP options.

 filter input tcp option sack-perm exists counter

 matching TCP options. Page 78/104

 filter input tcp option maxseg size lt 536

 matching IPv6 exthdr.

 ip6 filter input frag more-fragments 1 counter

 finding IP option.

 filter input ip option lsrr exists counter

 CONNTRACK EXPRESSIONS

 Conntrack expressions refer to meta data of the connection tracking entry associated with

 a packet.

 There are three types of conntrack expressions. Some conntrack expressions require the

 flow direction before the conntrack key, others must be used directly because they are

 direction agnostic. The packets, bytes and avgpkt keywords can be used with or without a

 direction. If the direction is omitted, the sum of the original and the reply direction is

 returned. The same is true for the zone, if a direction is given, the zone is only matched

 if the zone id is tied to the given direction.

 ct {state | direction | status | mark | expiration | helper | label | count | id}

 ct [original | reply] {l3proto | protocol | bytes | packets | avgpkt | zone}

 ct {original | reply} {proto-src | proto-dst}

 ct {original | reply} {ip | ip6} {saddr | daddr}

 The conntrack-specific types in this table are described in the sub-section CONNTRACK

 TYPES above.

 Table 58. Conntrack expressions

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?state ? State of the connection ? ct_state ?

 ??

 ? ? ? ?

 ?direction ? Direction of the packet ? ct_dir ?

 ? ? relative to the ? ?

 ? ? connection ? ?

 ??

 ? ? ? ? Page 79/104

 ?status ? Status of the connection ? ct_status ?

 ??

 ? ? ? ?

 ?mark ? Connection mark ? mark ?

 ??

 ? ? ? ?

 ?expiration ? Connection expiration ? time ?

 ? ? time ? ?

 ??

 ? ? ? ?

 ?helper ? Helper associated with ? string ?

 ? ? the connection ? ?

 ??

 ? ? ? ?

 ?label ? Connection tracking ? ct_label ?

 ? ? label bit or symbolic ? ?

 ? ? name defined in ? ?

 ? ? connlabel.conf in the ? ?

 ? ? nftables include path ? ?

 ??

 ? ? ? ?

 ?l3proto ? Layer 3 protocol of the ? nf_proto ?

 ? ? connection ? ?

 ??

 ? ? ? ?

 ?saddr ? Source address of the ? ipv4_addr/ipv6_addr ?

 ? ? connection for the given ? ?

 ? ? direction ? ?

 ??

 ? ? ? ?

 ?daddr ? Destination address of ? ipv4_addr/ipv6_addr ?

 ? ? the connection for the ? ?

 ? ? given direction ? ? Page 80/104

 ??

 ? ? ? ?

 ?protocol ? Layer 4 protocol of the ? inet_proto ?

 ? ? connection for the given ? ?

 ? ? direction ? ?

 ??

 ? ? ? ?

 ?proto-src ? Layer 4 protocol source ? integer (16 bit) ?

 ? ? for the given direction ? ?

 ??

 ? ? ? ?

 ?proto-dst ? Layer 4 protocol ? integer (16 bit) ?

 ? ? destination for the ? ?

 ? ? given direction ? ?

 ??

 ? ? ? ?

 ?packets ? packet count seen in the ? integer (64 bit) ?

 ? ? given direction or sum ? ?

 ? ? of original and reply ? ?

 ??

 ? ? ? ?

 ?bytes ? byte count seen, see ? integer (64 bit) ?

 ? ? description for packets ? ?

 ? ? keyword ? ?

 ??

 ? ? ? ?

 ?avgpkt ? average bytes per ? integer (64 bit) ?

 ? ? packet, see description ? ?

 ? ? for packets keyword ? ?

 ??

 ? ? ? ?

 ?zone ? conntrack zone ? integer (16 bit) ?

 ?? Page 81/104

 ? ? ? ?

 ?count ? number of current ? integer (32 bit) ?

 ? ? connections ? ?

 ??

 ? ? ? ?

 ?id ? Connection id ? ct_id ?

 ??

 restrict the number of parallel connections to a server.

 nft add set filter ssh_flood '{ type ipv4_addr; flags dynamic; }'

 nft add rule filter input tcp dport 22 add @ssh_flood '{ ip saddr ct count over 2 }' reject

STATEMENTS

 Statements represent actions to be performed. They can alter control flow (return, jump to

 a different chain, accept or drop the packet) or can perform actions, such as logging,

 rejecting a packet, etc.

 Statements exist in two kinds. Terminal statements unconditionally terminate evaluation of

 the current rule, non-terminal statements either only conditionally or never terminate

 evaluation of the current rule, in other words, they are passive from the ruleset

 evaluation perspective. There can be an arbitrary amount of non-terminal statements in a

 rule, but only a single terminal statement as the final statement.

 VERDICT STATEMENT

 The verdict statement alters control flow in the ruleset and issues policy decisions for

 packets.

 {accept | drop | queue | continue | return}

 {jump | goto} chain

 accept and drop are absolute verdicts ? they terminate ruleset evaluation immediately.

 accept Terminate ruleset evaluation and

 accept the packet. The packet

 can still be dropped later by

 another hook, for instance

 accept in the forward hook still

 allows to drop the packet later

 in the postrouting hook, or

 another forward base chain that Page 82/104

 has a higher priority number and

 is evaluated afterwards in the

 processing pipeline.

 drop Terminate ruleset evaluation and

 drop the packet. The drop occurs

 instantly, no further chains or

 hooks are evaluated. It is not

 possible to accept the packet in

 a later chain again, as those

 are not evaluated anymore for

 the packet.

 queue Terminate ruleset evaluation and

 queue the packet to userspace.

 Userspace must provide a drop or

 accept verdict. In case of

 accept, processing resumes with

 the next base chain hook, not

 the rule following the queue

 verdict.

 continue Continue ruleset evaluation with

 the next rule. This is the

 default behaviour in case a rule

 issues no verdict.

 return Return from the current chain

 and continue evaluation at the

 next rule in the last chain. If

 issued in a base chain, it is

 equivalent to the base chain

 policy.

 jump chain Continue evaluation at the first

 rule in chain. The current

 position in the ruleset is

 pushed to a call stack and Page 83/104

 evaluation will continue there

 when the new chain is entirely

 evaluated or a return verdict is

 issued. In case an absolute

 verdict is issued by a rule in

 the chain, ruleset evaluation

 terminates immediately and the

 specific action is taken.

 goto chain Similar to jump, but the current

 position is not pushed to the

 call stack, meaning that after

 the new chain evaluation will

 continue at the last chain

 instead of the one containing

 the goto statement.

 Using verdict statements.

 # process packets from eth0 and the internal network in from_lan

 # chain, drop all packets from eth0 with different source addresses.

 filter input iif eth0 ip saddr 192.168.0.0/24 jump from_lan

 filter input iif eth0 drop

 PAYLOAD STATEMENT

 payload_expression set value

 The payload statement alters packet content. It can be used for example to set ip DSCP

 (diffserv) header field or ipv6 flow labels.

 route some packets instead of bridging.

 # redirect tcp:http from 192.160.0.0/16 to local machine for routing instead of bridging

 # assumes 00:11:22:33:44:55 is local MAC address.

 bridge input meta iif eth0 ip saddr 192.168.0.0/16 tcp dport 80 meta pkttype set unicast ether daddr set

00:11:22:33:44:55

 Set IPv4 DSCP header field.

 ip forward ip dscp set 42

 EXTENSION HEADER STATEMENT

 extension_header_expression set value Page 84/104

 The extension header statement alters packet content in variable-sized headers. This can

 currently be used to alter the TCP Maximum segment size of packets, similar to TCPMSS.

 change tcp mss.

 tcp flags syn tcp option maxseg size set 1360

 # set a size based on route information:

 tcp flags syn tcp option maxseg size set rt mtu

 LOG STATEMENT

 log [prefix quoted_string] [level syslog-level] [flags log-flags]

 log group nflog_group [prefix quoted_string] [queue-threshold value] [snaplen size]

 log level audit

 The log statement enables logging of matching packets. When this statement is used from a

 rule, the Linux kernel will print some information on all matching packets, such as header

 fields, via the kernel log (where it can be read with dmesg(1) or read in the syslog).

 In the second form of invocation (if nflog_group is specified), the Linux kernel will pass

 the packet to nfnetlink_log which will send the log through a netlink socket to the

 specified group. One userspace process may subscribe to the group to receive the logs, see

 man(8) ulogd for the Netfilter userspace log daemon and libnetfilter_log documentation for

 details in case you would like to develop a custom program to digest your logs.

 In the third form of invocation (if level audit is specified), the Linux kernel writes a

 message into the audit buffer suitably formatted for reading with auditd. Therefore no

 further formatting options (such as prefix or flags) are allowed in this mode.

 This is a non-terminating statement, so the rule evaluation continues after the packet is

 logged.

 Table 59. log statement options

 ??

 ?Keyword ? Description ? Type ?

 ??

 ? ? ? ?

 ?prefix ? Log message prefix ? quoted string ?

 ??

 ? ? ? ?

 ?level ? Syslog level of logging ? string: emerg, alert, ?

 ? ? ? crit, err, warn ? Page 85/104

 ? ? ? [default], notice, info, ?

 ? ? ? debug, audit ?

 ??

 ? ? ? ?

 ?group ? NFLOG group to send ? unsigned integer (16 ?

 ? ? messages to ? bit) ?

 ??

 ? ? ? ?

 ?snaplen ? Length of packet payload ? unsigned integer (32 ?

 ? ? to include in netlink ? bit) ?

 ? ? message ? ?

 ??

 ? ? ? ?

 ?queue-threshold ? Number of packets to ? unsigned integer (32 ?

 ? ? queue inside the kernel ? bit) ?

 ? ? before sending them to ? ?

 ? ? userspace ? ?

 ??

 Table 60. log-flags

 ???

 ?Flag ? Description ?

 ???

 ? ? ?

 ?tcp sequence ? Log TCP sequence numbers. ?

 ???

 ? ? ?

 ?tcp options ? Log options from the TCP packet ?

 ? ? header. ?

 ???

 ? ? ?

 ?ip options ? Log options from the IP/IPv6 ?

 ? ? packet header. ?

 ??? Page 86/104

 ? ? ?

 ?skuid ? Log the userid of the process ?

 ? ? which generated the packet. ?

 ???

 ? ? ?

 ?ether ? Decode MAC addresses and ?

 ? ? protocol. ?

 ???

 ? ? ?

 ?all ? Enable all log flags listed ?

 ? ? above. ?

 ???

 Using log statement.

 # log the UID which generated the packet and ip options

 ip filter output log flags skuid flags ip options

 # log the tcp sequence numbers and tcp options from the TCP packet

 ip filter output log flags tcp sequence,options

 # enable all supported log flags

 ip6 filter output log flags all

 REJECT STATEMENT

 reject [with REJECT_WITH]

 REJECT_WITH := icmp icmp_code |

 icmpv6 icmpv6_code |

 icmpx icmpx_code |

 tcp reset

 A reject statement is used to send back an error packet in response to the matched packet

 otherwise it is equivalent to drop so it is a terminating statement, ending rule

 traversal. This statement is only valid in base chains using the input, forward or output

 hooks, and user-defined chains which are only called from those chains.

 Table 61. different ICMP reject variants are meant for use in different table families

 ?????????????????????????????????

 ?Variant ? Family ? Type ?

 ????????????????????????????????? Page 87/104

 ? ? ? ?

 ?icmp ? ip ? icmp_code ?

 ?????????????????????????????????

 ? ? ? ?

 ?icmpv6 ? ip6 ? icmpv6_code ?

 ?????????????????????????????????

 ? ? ? ?

 ?icmpx ? inet ? icmpx_code ?

 ?????????????????????????????????

 For a description of the different types and a list of supported keywords refer to DATA

 TYPES section above. The common default reject value is port-unreachable.

 Note that in bridge family, reject statement is only allowed in base chains which hook

 into input or prerouting.

 COUNTER STATEMENT

 A counter statement sets the hit count of packets along with the number of bytes.

 counter packets number bytes number

 counter { packets number | bytes number }

 CONNTRACK STATEMENT

 The conntrack statement can be used to set the conntrack mark and conntrack labels.

 ct {mark | event | label | zone} set value

 The ct statement sets meta data associated with a connection. The zone id has to be

 assigned before a conntrack lookup takes place, i.e. this has to be done in prerouting and

 possibly output (if locally generated packets need to be placed in a distinct zone), with

 a hook priority of raw (-300).

 Unlike iptables, where the helper assignment happens in the raw table, the helper needs to

 be assigned after a conntrack entry has been found, i.e. it will not work when used with

 hook priorities equal or before -200.

 Table 62. Conntrack statement types

 ??

 ?Keyword ? Description ? Value ?

 ??

 ? ? ? ?

 ?event ? conntrack event bits ? bitmask, integer (32 ? Page 88/104

 ? ? ? bit) ?

 ??

 ? ? ? ?

 ?helper ? name of ct helper object ? quoted string ?

 ? ? to assign to the ? ?

 ? ? connection ? ?

 ??

 ? ? ? ?

 ?mark ? Connection tracking mark ? mark ?

 ??

 ? ? ? ?

 ?label ? Connection tracking ? label ?

 ? ? label ? ?

 ??

 ? ? ? ?

 ?zone ? conntrack zone ? integer (16 bit) ?

 ??

 save packet nfmark in conntrack.

 ct mark set meta mark

 set zone mapped via interface.

 table inet raw {

 chain prerouting {

 type filter hook prerouting priority raw;

 ct zone set iif map { "eth1" : 1, "veth1" : 2 }

 }

 chain output {

 type filter hook output priority raw;

 ct zone set oif map { "eth1" : 1, "veth1" : 2 }

 }

 }

 restrict events reported by ctnetlink.

 ct event set new,related,destroy

 NOTRACK STATEMENT Page 89/104

 The notrack statement allows to disable connection tracking for certain packets.

 notrack

 Note that for this statement to be effective, it has to be applied to packets before a

 conntrack lookup happens. Therefore, it needs to sit in a chain with either prerouting or

 output hook and a hook priority of -300 (raw) or less.

 See SYNPROXY STATEMENT for an example usage.

 META STATEMENT

 A meta statement sets the value of a meta expression. The existing meta fields are:

 priority, mark, pkttype, nftrace.

 meta {mark | priority | pkttype | nftrace} set value

 A meta statement sets meta data associated with a packet.

 Table 63. Meta statement types

 ??

 ?Keyword ? Description ? Value ?

 ??

 ? ? ? ?

 ?priority ? TC packet priority ? tc_handle ?

 ??

 ? ? ? ?

 ?mark ? Packet mark ? mark ?

 ??

 ? ? ? ?

 ?pkttype ? packet type ? pkt_type ?

 ??

 ? ? ? ?

 ?nftrace ? ruleset packet tracing ? 0, 1 ?

 ? ? on/off. Use monitor ? ?

 ? ? trace command to watch ? ?

 ? ? traces ? ?

 ??

 LIMIT STATEMENT

 limit rate [over] packet_number / TIME_UNIT [burst packet_number packets]

 limit rate [over] byte_number BYTE_UNIT / TIME_UNIT [burst byte_number BYTE_UNIT] Page 90/104

 TIME_UNIT := second | minute | hour | day

 BYTE_UNIT := bytes | kbytes | mbytes

 A limit statement matches at a limited rate using a token bucket filter. A rule using this

 statement will match until this limit is reached. It can be used in combination with the

 log statement to give limited logging. The optional over keyword makes it match over the

 specified rate. Default burst is 5. if you specify burst, it must be non-zero value.

 Table 64. limit statement values

 ???

 ?Value ? Description ? Type ?

 ???

 ? ? ? ?

 ?packet_number ? Number of packets ? unsigned integer (32 ?

 ? ? ? bit) ?

 ???

 ? ? ? ?

 ?byte_number ? Number of bytes ? unsigned integer (32 ?

 ? ? ? bit) ?

 ???

 NAT STATEMENTS

 snat [[ip | ip6] to] ADDR_SPEC [:PORT_SPEC] [FLAGS]

 dnat [[ip | ip6] to] ADDR_SPEC [:PORT_SPEC] [FLAGS]

 masquerade [to :PORT_SPEC] [FLAGS]

 redirect [to :PORT_SPEC] [FLAGS]

 ADDR_SPEC := address | address - address

 PORT_SPEC := port | port - port

 FLAGS := FLAG [, FLAGS]

 FLAG := persistent | random | fully-random

 The nat statements are only valid from nat chain types.

 The snat and masquerade statements specify that the source address of the packet should be

 modified. While snat is only valid in the postrouting and input chains, masquerade makes

 sense only in postrouting. The dnat and redirect statements are only valid in the

 prerouting and output chains, they specify that the destination address of the packet

 should be modified. You can use non-base chains which are called from base chains of nat Page 91/104

 chain type too. All future packets in this connection will also be mangled, and rules

 should cease being examined.

 The masquerade statement is a special form of snat which always uses the outgoing

 interface?s IP address to translate to. It is particularly useful on gateways with dynamic

 (public) IP addresses.

 The redirect statement is a special form of dnat which always translates the destination

 address to the local host?s one. It comes in handy if one only wants to alter the

 destination port of incoming traffic on different interfaces.

 When used in the inet family (available with kernel 5.2), the dnat and snat statements

 require the use of the ip and ip6 keyword in case an address is provided, see the examples

 below.

 Before kernel 4.18 nat statements require both prerouting and postrouting base chains to

 be present since otherwise packets on the return path won?t be seen by netfilter and

 therefore no reverse translation will take place.

 Table 65. NAT statement values

 ??

 ?Expression ? Description ? Type ?

 ??

 ? ? ? ?

 ?address ? Specifies that the ? ipv4_addr, ipv6_addr, ?

 ? ? source/destination ? e.g. abcd::1234, or you ?

 ? ? address of the packet ? can use a mapping, e.g. ?

 ? ? should be modified. You ? meta mark map { 10 : ?

 ? ? may specify a mapping to ? 192.168.1.2, 20 : ?

 ? ? relate a list of tuples ? 192.168.1.3 } ?

 ? ? composed of arbitrary ? ?

 ? ? expression key with ? ?

 ? ? address value. ? ?

 ??

 ? ? ? ?

 ?port ? Specifies that the ? port number (16 bit) ?

 ? ? source/destination ? ?

 ? ? address of the packet ? ? Page 92/104

 ? ? should be modified. ? ?

 ??

 Table 66. NAT statement flags

 ??

 ?Flag ? Description ?

 ??

 ? ? ?

 ?persistent ? Gives a client the same ?

 ? ? source-/destination-address for ?

 ? ? each connection. ?

 ??

 ? ? ?

 ?random ? In kernel 5.0 and newer this is ?

 ? ? the same as fully-random. In ?

 ? ? earlier kernels the port mapping ?

 ? ? will be randomized using a ?

 ? ? seeded MD5 hash mix using source ?

 ? ? and destination address and ?

 ? ? destination port. ?

 ??

 ? ? ?

 ?fully-random ? If used then port mapping is ?

 ? ? generated based on a 32-bit ?

 ? ? pseudo-random algorithm. ?

 ??

 Using NAT statements.

 # create a suitable table/chain setup for all further examples

 add table nat

 add chain nat prerouting { type nat hook prerouting priority dstnat; }

 add chain nat postrouting { type nat hook postrouting priority srcnat; }

 # translate source addresses of all packets leaving via eth0 to address 1.2.3.4

 add rule nat postrouting oif eth0 snat to 1.2.3.4

 # redirect all traffic entering via eth0 to destination address 192.168.1.120 Page 93/104

 add rule nat prerouting iif eth0 dnat to 192.168.1.120

 # translate source addresses of all packets leaving via eth0 to whatever

 # locally generated packets would use as source to reach the same destination

 add rule nat postrouting oif eth0 masquerade

 # redirect incoming TCP traffic for port 22 to port 2222

 add rule nat prerouting tcp dport 22 redirect to :2222

 # inet family:

 # handle ip dnat:

 add rule inet nat prerouting dnat ip to 10.0.2.99

 # handle ip6 dnat:

 add rule inet nat prerouting dnat ip6 to fe80::dead

 # this masquerades both ipv4 and ipv6:

 add rule inet nat postrouting meta oif ppp0 masquerade

 TPROXY STATEMENT

 Tproxy redirects the packet to a local socket without changing the packet header in any

 way. If any of the arguments is missing the data of the incoming packet is used as

 parameter. Tproxy matching requires another rule that ensures the presence of transport

 protocol header is specified.

 tproxy to address:port

 tproxy to {address | :port}

 This syntax can be used in ip/ip6 tables where network layer protocol is obvious. Either

 IP address or port can be specified, but at least one of them is necessary.

 tproxy {ip | ip6} to address[:port]

 tproxy to :port

 This syntax can be used in inet tables. The ip/ip6 parameter defines the family the rule

 will match. The address parameter must be of this family. When only port is defined, the

 address family should not be specified. In this case the rule will match for both

 families.

 Table 67. tproxy attributes

 ??

 ?Name ? Description ?

 ??

 ? ? ? Page 94/104

 ?address ? IP address the listening socket ?

 ? ? with IP_TRANSPARENT option is ?

 ? ? bound to. ?

 ??

 ? ? ?

 ?port ? Port the listening socket with ?

 ? ? IP_TRANSPARENT option is bound ?

 ? ? to. ?

 ??

 Example ruleset for tproxy statement.

 table ip x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 tcp dport ntp tproxy to 1.1.1.1

 udp dport ssh tproxy to :2222

 }

 }

 table ip6 x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 tcp dport ntp tproxy to [dead::beef]

 udp dport ssh tproxy to :2222

 }

 }

 table inet x {

 chain y {

 type filter hook prerouting priority mangle; policy accept;

 tcp dport 321 tproxy to :ssh

 tcp dport 99 tproxy ip to 1.1.1.1:999

 udp dport 155 tproxy ip6 to [dead::beef]:smux

 }

 }

 SYNPROXY STATEMENT Page 95/104

 This statement will process TCP three-way-handshake parallel in netfilter context to

 protect either local or backend system. This statement requires connection tracking

 because sequence numbers need to be translated.

 synproxy [mss mss_value] [wscale wscale_value] [SYNPROXY_FLAGS]

 Table 68. synproxy statement attributes

 ???

 ?Name ? Description ?

 ???

 ? ? ?

 ?mss ? Maximum segment size announced ?

 ? ? to clients. This must match the ?

 ? ? backend. ?

 ???

 ? ? ?

 ?wscale ? Window scale announced to ?

 ? ? clients. This must match the ?

 ? ? backend. ?

 ???

 Table 69. synproxy statement flags

 ???

 ?Flag ? Description ?

 ???

 ? ? ?

 ?sack-perm ? Pass client selective ?

 ? ? acknowledgement option to ?

 ? ? backend (will be disabled if not ?

 ? ? present). ?

 ???

 ? ? ?

 ?timestamp ? Pass client timestamp option to ?

 ? ? backend (will be disabled if not ?

 ? ? present, also needed for ?

 ? ? selective acknowledgement and ? Page 96/104

 ? ? window scaling). ?

 ???

 Example ruleset for synproxy statement.

 Determine tcp options used by backend, from an external system

 tcpdump -pni eth0 -c 1 'tcp[tcpflags] == (tcp-syn|tcp-ack)'

 port 80 &

 telnet 192.0.2.42 80

 18:57:24.693307 IP 192.0.2.42.80 > 192.0.2.43.48757:

 Flags [S.], seq 360414582, ack 788841994, win 14480,

 options [mss 1460,sackOK,

 TS val 1409056151 ecr 9690221,

 nop,wscale 9],

 length 0

 Switch tcp_loose mode off, so conntrack will mark out-of-flow packets as state INVALID.

 echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

 Make SYN packets untracked.

 table ip x {

 chain y {

 type filter hook prerouting priority raw; policy accept;

 tcp flags syn notrack

 }

 }

 Catch UNTRACKED (SYN packets) and INVALID (3WHS ACK packets) states and send

 them to SYNPROXY. This rule will respond to SYN packets with SYN+ACK

 syncookies, create ESTABLISHED for valid client response (3WHS ACK packets) and

 drop incorrect cookies. Flags combinations not expected during 3WHS will not

 match and continue (e.g. SYN+FIN, SYN+ACK). Finally, drop invalid packets, this

 will be out-of-flow packets that were not matched by SYNPROXY.

 table ip x {

 chain z {

 type filter hook input priority filter; policy accept;

 ct state invalid, untracked synproxy mss 1460 wscale 9 timestamp sack-perm

 ct state invalid drop Page 97/104

 }

 }

 FLOW STATEMENT

 A flow statement allows us to select what flows you want to accelerate forwarding through

 layer 3 network stack bypass. You have to specify the flowtable name where you want to

 offload this flow.

 flow add @flowtable

 QUEUE STATEMENT

 This statement passes the packet to userspace using the nfnetlink_queue handler. The

 packet is put into the queue identified by its 16-bit queue number. Userspace can inspect

 and modify the packet if desired. Userspace must then drop or re-inject the packet into

 the kernel. See libnetfilter_queue documentation for details.

 queue [flags QUEUE_FLAGS] [to queue_number]

 queue [flags QUEUE_FLAGS] [to queue_number_from - queue_number_to]

 queue [flags QUEUE_FLAGS] [to QUEUE_EXPRESSION]

 QUEUE_FLAGS := QUEUE_FLAG [, QUEUE_FLAGS]

 QUEUE_FLAG := bypass | fanout

 QUEUE_EXPRESSION := numgen | hash | symhash | MAP STATEMENT

 QUEUE_EXPRESSION can be used to compute a queue number at run-time with the hash or numgen

 expressions. It also allows to use the map statement to assign fixed queue numbers based

 on external inputs such as the source ip address or interface names.

 Table 70. queue statement values

 ???

 ?Value ? Description ? Type ?

 ???

 ? ? ? ?

 ?queue_number ? Sets queue number, ? unsigned integer (16 ?

 ? ? default is 0. ? bit) ?

 ???

 ? ? ? ?

 ?queue_number_from ? Sets initial queue in ? unsigned integer (16 ?

 ? ? the range, if fanout is ? bit) ?

 ? ? used. ? ? Page 98/104

 ???

 ? ? ? ?

 ?queue_number_to ? Sets closing queue in ? unsigned integer (16 ?

 ? ? the range, if fanout is ? bit) ?

 ? ? used. ? ?

 ???

 Table 71. queue statement flags

 ???

 ?Flag ? Description ?

 ???

 ? ? ?

 ?bypass ? Let packets go through if ?

 ? ? userspace application cannot ?

 ? ? back off. Before using this ?

 ? ? flag, read libnetfilter_queue ?

 ? ? documentation for performance ?

 ? ? tuning recommendations. ?

 ???

 ? ? ?

 ?fanout ? Distribute packets between ?

 ? ? several queues. ?

 ???

 DUP STATEMENT

 The dup statement is used to duplicate a packet and send the copy to a different

 destination.

 dup to device

 dup to address device device

 Table 72. Dup statement values

 ??

 ?Expression ? Description ? Type ?

 ??

 ? ? ? ?

 ?address ? Specifies that the copy ? ipv4_addr, ipv6_addr, ? Page 99/104

 ? ? of the packet should be ? e.g. abcd::1234, or you ?

 ? ? sent to a new gateway. ? can use a mapping, e.g. ?

 ? ? ? ip saddr map { ?

 ? ? ? 192.168.1.2 : 10.1.1.1 } ?

 ??

 ? ? ? ?

 ?device ? Specifies that the copy ? string ?

 ? ? should be transmitted ? ?

 ? ? via device. ? ?

 ??

 Using the dup statement.

 # send to machine with ip address 10.2.3.4 on eth0

 ip filter forward dup to 10.2.3.4 device "eth0"

 # copy raw frame to another interface

 netdev ingress dup to "eth0"

 dup to "eth0"

 # combine with map dst addr to gateways

 dup to ip daddr map { 192.168.7.1 : "eth0", 192.168.7.2 : "eth1" }

 FWD STATEMENT

 The fwd statement is used to redirect a raw packet to another interface. It is only

 available in the netdev family ingress and egress hooks. It is similar to the dup

 statement except that no copy is made.

 fwd to device

 SET STATEMENT

 The set statement is used to dynamically add or update elements in a set from the packet

 path. The set setname must already exist in the given table and must have been created

 with one or both of the dynamic and the timeout flags. The dynamic flag is required if the

 set statement expression includes a stateful object. The timeout flag is implied if the

 set is created with a timeout, and is required if the set statement updates elements,

 rather than adding them. Furthermore, these sets should specify both a maximum set size

 (to prevent memory exhaustion), and their elements should have a timeout (so their number

 will not grow indefinitely) either from the set definition or from the statement that adds

 or updates them. The set statement can be used to e.g. create dynamic blacklists. Page 100/104

 {add | update} @setname { expression [timeout timeout] [comment string] }

 Example for simple blacklist.

 # declare a set, bound to table "filter", in family "ip".

 # Timeout and size are mandatory because we will add elements from packet path.

 # Entries will timeout after one minute, after which they might be

 # re-added if limit condition persists.

 nft add set ip filter blackhole \

 "{ type ipv4_addr; flags dynamic; timeout 1m; size 65536; }"

 # declare a set to store the limit per saddr.

 # This must be separate from blackhole since the timeout is different

 nft add set ip filter flood \

 "{ type ipv4_addr; flags dynamic; timeout 10s; size 128000; }"

 # whitelist internal interface.

 nft add rule ip filter input meta iifname "internal" accept

 # drop packets coming from blacklisted ip addresses.

 nft add rule ip filter input ip saddr @blackhole counter drop

 # add source ip addresses to the blacklist if more than 10 tcp connection

 # requests occurred per second and ip address.

 nft add rule ip filter input tcp flags syn tcp dport ssh \

 add @flood { ip saddr limit rate over 10/second } \

 add @blackhole { ip saddr } \

 drop

 # inspect state of the sets.

 nft list set ip filter flood

 nft list set ip filter blackhole

 # manually add two addresses to the blackhole.

 nft add element filter blackhole { 10.2.3.4, 10.23.1.42 }

 MAP STATEMENT

 The map statement is used to lookup data based on some specific input key.

 expression map { MAP_ELEMENTS }

 MAP_ELEMENTS := MAP_ELEMENT [, MAP_ELEMENTS]

 MAP_ELEMENT := key : value

 The key is a value returned by expression. Page 101/104

 Using the map statement.

 # select DNAT target based on TCP dport:

 # connections to port 80 are redirected to 192.168.1.100,

 # connections to port 8888 are redirected to 192.168.1.101

 nft add rule ip nat prerouting dnat tcp dport map { 80 : 192.168.1.100, 8888 : 192.168.1.101 }

 # source address based SNAT:

 # packets from net 192.168.1.0/24 will appear as originating from 10.0.0.1,

 # packets from net 192.168.2.0/24 will appear as originating from 10.0.0.2

 nft add rule ip nat postrouting snat to ip saddr map { 192.168.1.0/24 : 10.0.0.1, 192.168.2.0/24 : 10.0.0.2 }

 VMAP STATEMENT

 The verdict map (vmap) statement works analogous to the map statement, but contains

 verdicts as values.

 expression vmap { VMAP_ELEMENTS }

 VMAP_ELEMENTS := VMAP_ELEMENT [, VMAP_ELEMENTS]

 VMAP_ELEMENT := key : verdict

 Using the vmap statement.

 # jump to different chains depending on layer 4 protocol type:

 nft add rule ip filter input ip protocol vmap { tcp : jump tcp-chain, udp : jump udp-chain , icmp : jump icmp-chain }

ADDITIONAL COMMANDS

 These are some additional commands included in nft.

 MONITOR

 The monitor command allows you to listen to Netlink events produced by the nf_tables

 subsystem. These are either related to creation and deletion of objects or to packets for

 which meta nftrace was enabled. When they occur, nft will print to stdout the monitored

 events in either JSON or native nft format.

 monitor [new | destroy] MONITOR_OBJECT

 monitor trace

 MONITOR_OBJECT := tables | chains | sets | rules | elements | ruleset

 To filter events related to a concrete object, use one of the keywords in MONITOR_OBJECT.

 To filter events related to a concrete action, use keyword new or destroy.

 The second form of invocation takes no further options and exclusively prints events

 generated for packets with nftrace enabled.

 Hit ^C to finish the monitor operation. Page 102/104

 Listen to all events, report in native nft format.

 % nft monitor

 Listen to deleted rules, report in JSON format.

 % nft -j monitor destroy rules

 Listen to both new and destroyed chains, in native nft format.

 % nft monitor chains

 Listen to ruleset events such as table, chain, rule, set, counters and quotas, in native

 nft format.

 % nft monitor ruleset

 Trace incoming packets from host 10.0.0.1.

 % nft add rule filter input ip saddr 10.0.0.1 meta nftrace set 1

 % nft monitor trace

ERROR REPORTING

 When an error is detected, nft shows the line(s) containing the error, the position of the

 erroneous parts in the input stream and marks up the erroneous parts using carets (^). If

 the error results from the combination of two expressions or statements, the part imposing

 the constraints which are violated is marked using tildes (~).

 For errors returned by the kernel, nft cannot detect which parts of the input caused the

 error and the entire command is marked.

 Error caused by single incorrect expression.

 <cmdline>:1:19-22: Error: Interface does not exist

 filter output oif eth0

 ^^^^

 Error caused by invalid combination of two expressions.

 <cmdline>:1:28-36: Error: Right hand side of relational expression (==) must be constant

 filter output tcp dport == tcp dport

 ~~ ^^^^^^^^^

 Error returned by the kernel.

 <cmdline>:0:0-23: Error: Could not process rule: Operation not permitted

 filter output oif wlan0

 ^^^^^^^^^^^^^^^^^^^^^^^

EXIT STATUS

 On success, nft exits with a status of 0. Unspecified errors cause it to exit with a Page 103/104

 status of 1, memory allocation errors with a status of 2, unable to open Netlink socket

 with 3.

SEE ALSO

 libnftables(3), libnftables-json(5), iptables(8), ip6tables(8), arptables(8), ebtables(8), ip(8), tc(8)

 There is an official wiki at: https://wiki.nftables.org

AUTHORS

 nftables was written by Patrick McHardy and Pablo Neira Ayuso, among many other

 contributors from the Netfilter community.

COPYRIGHT

 Copyright ? 2008-2014 Patrick McHardy <kaber@trash.net> Copyright ? 2013-2018 Pablo Neira

 Ayuso <pablo@netfilter.org>

 nftables is free software; you can redistribute it and/or modify it under the terms of the

 GNU General Public License version 2 as published by the Free Software Foundation.

 This documentation is licensed under the terms of the Creative Commons

 Attribution-ShareAlike 4.0 license, CC BY-SA 4.0

 http://creativecommons.org/licenses/by-sa/4.0/.

 08/10/2022 NFT(8)

Page 104/104

