
Rocky Enterprise Linux 9.2 Manual Pages on command 'nm-settings.5'

$ man nm-settings.5

NM-SETTINGS-NMCLI(5) Configuration NM-SETTINGS-NMCLI(5)

NAME

 nm-settings-nmcli - Description of settings and properties of NetworkManager connection

 profiles for nmcli

DESCRIPTION

 NetworkManager is based on a concept of connection profiles, sometimes referred to as

 connections only. These connection profiles contain a network configuration. When

 NetworkManager activates a connection profile on a network device the configuration will

 be applied and an active network connection will be established. Users are free to create

 as many connection profiles as they see fit. Thus they are flexible in having various

 network configurations for different networking needs.

 NetworkManager provides an API for configuring connection profiles, for activating them to

 configure the network, and inspecting the current network configuration. The command line

 tool nmcli is a client application to NetworkManager that uses this API. See nmcli(1) for

 details.

 With commands like nmcli connection add, nmcli connection modify and nmcli connection

 show, connection profiles can be created, modified and inspected. A profile consists of

 properties. On D-Bus this follows the format as described by nm-settings-dbus(5), while

 this manual page describes the settings format how they are expected by nmcli.

 The settings and properties shown in tables below list all available connection

 configuration options. However, note that not all settings are applicable to all

 connection types. nmcli connection editor has also a built-in describe command that can

 display description of particular settings and properties of this page. Page 1/91

 The setting and property can be abbreviated provided they are unique. The list below also

 shows aliases that can be used unqualified instead of the full name. For example

 connection.interface-name and ifname refer to the same property.

 connection setting

 General Connection Profile Settings.

 Properties:

 auth-retries

 The number of retries for the authentication. Zero means to try indefinitely; -1 means

 to use a global default. If the global default is not set, the authentication retries

 for 3 times before failing the connection. Currently, this only applies to 802-1x

 authentication.

 Format: int32

 autoconnect

 Alias: autoconnect

 Whether or not the connection should be automatically connected by NetworkManager when

 the resources for the connection are available. TRUE to automatically activate the

 connection, FALSE to require manual intervention to activate the connection.

 Autoconnect happens when the circumstances are suitable. That means for example that

 the device is currently managed and not active. Autoconnect thus never replaces or

 competes with an already active profile. Note that autoconnect is not implemented for

 VPN profiles. See "secondaries" as an alternative to automatically connect VPN

 profiles.

 Format: boolean

 autoconnect-priority

 The autoconnect priority in range -999 to 999. If the connection is set to

 autoconnect, connections with higher priority will be preferred. The higher number

 means higher priority. Defaults to 0. Note that this property only matters if there

 are more than one candidate profile to select for autoconnect. In case of equal

 priority, the profile used most recently is chosen.

 Format: int32

 autoconnect-retries

 The number of times a connection should be tried when autoactivating before giving up.

 Zero means forever, -1 means the global default (4 times if not overridden). Setting Page 2/91

 this to 1 means to try activation only once before blocking autoconnect. Note that

 after a timeout, NetworkManager will try to autoconnect again.

 Format: int32

 autoconnect-slaves

 Whether or not slaves of this connection should be automatically brought up when

 NetworkManager activates this connection. This only has a real effect for master

 connections. The properties "autoconnect", "autoconnect-priority" and

 "autoconnect-retries" are unrelated to this setting. The permitted values are: 0:

 leave slave connections untouched, 1: activate all the slave connections with this

 connection, -1: default. If -1 (default) is set, global connection.autoconnect-slaves

 is read to determine the real value. If it is default as well, this fallbacks to 0.

 Format: NMSettingConnectionAutoconnectSlaves (int32)

 dns-over-tls

 Whether DNSOverTls (dns-over-tls) is enabled for the connection. DNSOverTls is a

 technology which uses TLS to encrypt dns traffic. The permitted values are: "yes" (2)

 use DNSOverTls and disabled fallback, "opportunistic" (1) use DNSOverTls but allow

 fallback to unencrypted resolution, "no" (0) don't ever use DNSOverTls. If unspecified

 "default" depends on the plugin used. Systemd-resolved uses global setting. This

 feature requires a plugin which supports DNSOverTls. Otherwise, the setting has no

 effect. One such plugin is dns-systemd-resolved.

 Format: int32

 gateway-ping-timeout

 If greater than zero, delay success of IP addressing until either the timeout is

 reached, or an IP gateway replies to a ping.

 Format: uint32

 id

 Alias: con-name

 A human readable unique identifier for the connection, like "Work Wi-Fi" or "T-Mobile

 3G".

 Format: string

 interface-name

 Alias: ifname

 The name of the network interface this connection is bound to. If not set, then the Page 3/91

 connection can be attached to any interface of the appropriate type (subject to

 restrictions imposed by other settings). For software devices this specifies the name

 of the created device. For connection types where interface names cannot easily be

 made persistent (e.g. mobile broadband or USB Ethernet), this property should not be

 used. Setting this property restricts the interfaces a connection can be used with,

 and if interface names change or are reordered the connection may be applied to the

 wrong interface.

 Format: string

 lldp

 Whether LLDP is enabled for the connection.

 Format: int32

 llmnr

 Whether Link-Local Multicast Name Resolution (LLMNR) is enabled for the connection.

 LLMNR is a protocol based on the Domain Name System (DNS) packet format that allows

 both IPv4 and IPv6 hosts to perform name resolution for hosts on the same local link.

 The permitted values are: "yes" (2) register hostname and resolving for the

 connection, "no" (0) disable LLMNR for the interface, "resolve" (1) do not register

 hostname but allow resolving of LLMNR host names If unspecified, "default" ultimately

 depends on the DNS plugin (which for systemd-resolved currently means "yes"). This

 feature requires a plugin which supports LLMNR. Otherwise, the setting has no effect.

 One such plugin is dns-systemd-resolved.

 Format: int32

 master

 Alias: master

 Interface name of the master device or UUID of the master connection.

 Format: string

 mdns

 Whether mDNS is enabled for the connection. The permitted values are: "yes" (2)

 register hostname and resolving for the connection, "no" (0) disable mDNS for the

 interface, "resolve" (1) do not register hostname but allow resolving of mDNS host

 names and "default" (-1) to allow lookup of a global default in NetworkManager.conf.

 If unspecified, "default" ultimately depends on the DNS plugin (which for

 systemd-resolved currently means "no"). This feature requires a plugin which supports Page 4/91

 mDNS. Otherwise, the setting has no effect. One such plugin is dns-systemd-resolved.

 Format: int32

 metered

 Whether the connection is metered. When updating this property on a currently

 activated connection, the change takes effect immediately.

 Format: NMMetered (int32)

 mud-url

 If configured, set to a Manufacturer Usage Description (MUD) URL that points to

 manufacturer-recommended network policies for IoT devices. It is transmitted as a

 DHCPv4 or DHCPv6 option. The value must be a valid URL starting with "https://". The

 special value "none" is allowed to indicate that no MUD URL is used. If the

 per-profile value is unspecified (the default), a global connection default gets

 consulted. If still unspecified, the ultimate default is "none".

 Format: string

 multi-connect

 Specifies whether the profile can be active multiple times at a particular moment. The

 value is of type NMConnectionMultiConnect.

 Format: int32

 permissions

 An array of strings defining what access a given user has to this connection. If this

 is NULL or empty, all users are allowed to access this connection; otherwise users are

 allowed if and only if they are in this list. When this is not empty, the connection

 can be active only when one of the specified users is logged into an active session.

 Each entry is of the form "[type]:[id]:[reserved]"; for example, "user:dcbw:blah". At

 this time only the "user" [type] is allowed. Any other values are ignored and reserved

 for future use. [id] is the username that this permission refers to, which may not

 contain the ":" character. Any [reserved] information present must be ignored and is

 reserved for future use. All of [type], [id], and [reserved] must be valid UTF-8.

 Format: array of string

 read-only

 FALSE if the connection can be modified using the provided settings service's D-Bus

 interface with the right privileges, or TRUE if the connection is read-only and cannot

 be modified. Page 5/91

 Format: boolean

 secondaries

 List of connection UUIDs that should be activated when the base connection itself is

 activated. Currently, only VPN connections are supported.

 Format: array of string

 slave-type

 Alias: slave-type

 Setting name of the device type of this slave's master connection (eg, "bond"), or

 NULL if this connection is not a slave.

 Format: string

 stable-id

 This represents the identity of the connection used for various purposes. It allows to

 configure multiple profiles to share the identity. Also, the stable-id can contain

 placeholders that are substituted dynamically and deterministically depending on the

 context. The stable-id is used for generating IPv6 stable private addresses with

 ipv6.addr-gen-mode=stable-privacy. It is also used to seed the generated cloned MAC

 address for ethernet.cloned-mac-address=stable and wifi.cloned-mac-address=stable. It

 is also used as DHCP client identifier with ipv4.dhcp-client-id=stable and to derive

 the DHCP DUID with ipv6.dhcp-duid=stable-[llt,ll,uuid]. Note that depending on the

 context where it is used, other parameters are also seeded into the generation

 algorithm. For example, a per-host key is commonly also included, so that different

 systems end up generating different IDs. Or with ipv6.addr-gen-mode=stable-privacy,

 also the device's name is included, so that different interfaces yield different

 addresses. The per-host key is the identity of your machine and stored in

 /var/lib/NetworkManager/secret-key. The '$' character is treated special to perform

 dynamic substitutions at runtime. Currently, supported are "${CONNECTION}",

 "${DEVICE}", "${MAC}", "${BOOT}", "${RANDOM}". These effectively create unique IDs

 per-connection, per-device, per-boot, or every time. Note that "${DEVICE}" corresponds

 to the interface name of the device and "${MAC}" is the permanent MAC address of the

 device. Any unrecognized patterns following '$' are treated verbatim, however are

 reserved for future use. You are thus advised to avoid '$' or escape it as "$$". For

 example, set it to "${CONNECTION}-${BOOT}-${DEVICE}" to create a unique id for this

 connection that changes with every reboot and differs depending on the interface where Page 6/91

 the profile activates. If the value is unset, a global connection default is

 consulted. If the value is still unset, the default is similar to "${CONNECTION}" and

 uses a unique, fixed ID for the connection.

 Format: string

 timestamp

 The time, in seconds since the Unix Epoch, that the connection was last _successfully_

 fully activated. NetworkManager updates the connection timestamp periodically when the

 connection is active to ensure that an active connection has the latest timestamp. The

 property is only meant for reading (changes to this property will not be preserved).

 Format: uint64

 type

 Alias: type

 Base type of the connection. For hardware-dependent connections, should contain the

 setting name of the hardware-type specific setting (ie, "802-3-ethernet" or

 "802-11-wireless" or "bluetooth", etc), and for non-hardware dependent connections

 like VPN or otherwise, should contain the setting name of that setting type (ie, "vpn"

 or "bridge", etc).

 Format: string

 uuid

 A universally unique identifier for the connection, for example generated with

 libuuid. It should be assigned when the connection is created, and never changed as

 long as the connection still applies to the same network. For example, it should not

 be changed when the "id" property or NMSettingIP4Config changes, but might need to be

 re-created when the Wi-Fi SSID, mobile broadband network provider, or "type" property

 changes. The UUID must be in the format "2815492f-7e56-435e-b2e9-246bd7cdc664" (ie,

 contains only hexadecimal characters and "-").

 Format: string

 wait-device-timeout

 Timeout in milliseconds to wait for device at startup. During boot, devices may take a

 while to be detected by the driver. This property will cause to delay

 NetworkManager-wait-online.service and nm-online to give the device a chance to

 appear. This works by waiting for the given timeout until a compatible device for the

 profile is available and managed. The value 0 means no wait time. The default value is Page 7/91

 -1, which currently has the same meaning as no wait time.

 Format: int32

 zone

 The trust level of a the connection. Free form case-insensitive string (for example

 "Home", "Work", "Public"). NULL or unspecified zone means the connection will be

 placed in the default zone as defined by the firewall. When updating this property on

 a currently activated connection, the change takes effect immediately.

 Format: string

 6lowpan setting

 6LoWPAN Settings.

 Properties:

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID from which

 this 6LowPAN interface should be created.

 Format: string

 802-1x setting

 IEEE 802.1x Authentication Settings.

 Properties:

 altsubject-matches

 List of strings to be matched against the altSubjectName of the certificate presented

 by the authentication server. If the list is empty, no verification of the server

 certificate's altSubjectName is performed.

 Format: array of string

 anonymous-identity

 Anonymous identity string for EAP authentication methods. Used as the unencrypted

 identity with EAP types that support different tunneled identity like EAP-TTLS.

 Format: string

 auth-timeout

 A timeout for the authentication. Zero means the global default; if the global default

 is not set, the authentication timeout is 25 seconds.

 Format: int32

 ca-cert Page 8/91

 Contains the CA certificate if used by the EAP method specified in the "eap" property.

 Certificate data is specified using a "scheme"; three are currently supported: blob,

 path and pkcs#11 URL. When using the blob scheme this property should be set to the

 certificate's DER encoded data. When using the path scheme, this property should be

 set to the full UTF-8 encoded path of the certificate, prefixed with the string

 "file://" and ending with a terminating NUL byte. This property can be unset even if

 the EAP method supports CA certificates, but this allows man-in-the-middle attacks and

 is NOT recommended. Note that enabling NMSetting8021x:system-ca-certs will override

 this setting to use the built-in path, if the built-in path is not a directory.

 Format: byte array

 ca-cert-password

 The password used to access the CA certificate stored in "ca-cert" property. Only

 makes sense if the certificate is stored on a PKCS#11 token that requires a login.

 Format: string

 ca-cert-password-flags

 Flags indicating how to handle the "ca-cert-password" property. See the section called

 ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 ca-path

 UTF-8 encoded path to a directory containing PEM or DER formatted certificates to be

 added to the verification chain in addition to the certificate specified in the

 "ca-cert" property. If NMSetting8021x:system-ca-certs is enabled and the built-in CA

 path is an existing directory, then this setting is ignored.

 Format: string

 client-cert

 Contains the client certificate if used by the EAP method specified in the "eap"

 property. Certificate data is specified using a "scheme"; two are currently supported:

 blob and path. When using the blob scheme (which is backwards compatible with NM

 0.7.x) this property should be set to the certificate's DER encoded data. When using

 the path scheme, this property should be set to the full UTF-8 encoded path of the

 certificate, prefixed with the string "file://" and ending with a terminating NUL

 byte.

 Format: byte array Page 9/91

 client-cert-password

 The password used to access the client certificate stored in "client-cert" property.

 Only makes sense if the certificate is stored on a PKCS#11 token that requires a

 login.

 Format: string

 client-cert-password-flags

 Flags indicating how to handle the "client-cert-password" property. See the section

 called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 domain-match

 Constraint for server domain name. If set, this list of FQDNs is used as a match

 requirement for dNSName element(s) of the certificate presented by the authentication

 server. If a matching dNSName is found, this constraint is met. If no dNSName values

 are present, this constraint is matched against SubjectName CN using the same

 comparison. Multiple valid FQDNs can be passed as a ";" delimited list.

 Format: string

 domain-suffix-match

 Constraint for server domain name. If set, this FQDN is used as a suffix match

 requirement for dNSName element(s) of the certificate presented by the authentication

 server. If a matching dNSName is found, this constraint is met. If no dNSName values

 are present, this constraint is matched against SubjectName CN using same suffix match

 comparison. Since version 1.24, multiple valid FQDNs can be passed as a ";" delimited

 list.

 Format: string

 eap

 The allowed EAP method to be used when authenticating to the network with 802.1x.

 Valid methods are: "leap", "md5", "tls", "peap", "ttls", "pwd", and "fast". Each

 method requires different configuration using the properties of this setting; refer to

 wpa_supplicant documentation for the allowed combinations.

 Format: array of string

 identity

 Identity string for EAP authentication methods. Often the user's user or login name.

 Format: string Page 10/91

 optional

 Whether the 802.1X authentication is optional. If TRUE, the activation will continue

 even after a timeout or an authentication failure. Setting the property to TRUE is

 currently allowed only for Ethernet connections. If set to FALSE, the activation can

 continue only after a successful authentication.

 Format: boolean

 pac-file

 UTF-8 encoded file path containing PAC for EAP-FAST.

 Format: string

 password

 UTF-8 encoded password used for EAP authentication methods. If both the "password"

 property and the "password-raw" property are specified, "password" is preferred.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property. See the section called ?Secret

 flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 password-raw

 Password used for EAP authentication methods, given as a byte array to allow passwords

 in other encodings than UTF-8 to be used. If both the "password" property and the

 "password-raw" property are specified, "password" is preferred.

 Format: byte array

 password-raw-flags

 Flags indicating how to handle the "password-raw" property. See the section called

 ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 phase1-auth-flags

 Specifies authentication flags to use in "phase 1" outer authentication using

 NMSetting8021xAuthFlags options. The individual TLS versions can be explicitly

 disabled. If a certain TLS disable flag is not set, it is up to the supplicant to

 allow or forbid it. The TLS options map to tls_disable_tlsv1_x settings. See the

 wpa_supplicant documentation for more details.

 Format: uint32 Page 11/91

 phase1-fast-provisioning

 Enables or disables in-line provisioning of EAP-FAST credentials when FAST is

 specified as the EAP method in the "eap" property. Recognized values are "0"

 (disabled), "1" (allow unauthenticated provisioning), "2" (allow authenticated

 provisioning), and "3" (allow both authenticated and unauthenticated provisioning).

 See the wpa_supplicant documentation for more details.

 Format: string

 phase1-peaplabel

 Forces use of the new PEAP label during key derivation. Some RADIUS servers may

 require forcing the new PEAP label to interoperate with PEAPv1. Set to "1" to force

 use of the new PEAP label. See the wpa_supplicant documentation for more details.

 Format: string

 phase1-peapver

 Forces which PEAP version is used when PEAP is set as the EAP method in the "eap"

 property. When unset, the version reported by the server will be used. Sometimes when

 using older RADIUS servers, it is necessary to force the client to use a particular

 PEAP version. To do so, this property may be set to "0" or "1" to force that specific

 PEAP version.

 Format: string

 phase2-altsubject-matches

 List of strings to be matched against the altSubjectName of the certificate presented

 by the authentication server during the inner "phase 2" authentication. If the list is

 empty, no verification of the server certificate's altSubjectName is performed.

 Format: array of string

 phase2-auth

 Specifies the allowed "phase 2" inner authentication method when an EAP method that

 uses an inner TLS tunnel is specified in the "eap" property. For TTLS this property

 selects one of the supported non-EAP inner methods: "pap", "chap", "mschap",

 "mschapv2" while "phase2-autheap" selects an EAP inner method. For PEAP this selects

 an inner EAP method, one of: "gtc", "otp", "md5" and "tls". Each "phase 2" inner

 method requires specific parameters for successful authentication; see the

 wpa_supplicant documentation for more details. Both "phase2-auth" and "phase2-autheap"

 cannot be specified. Page 12/91

 Format: string

 phase2-autheap

 Specifies the allowed "phase 2" inner EAP-based authentication method when TTLS is

 specified in the "eap" property. Recognized EAP-based "phase 2" methods are "md5",

 "mschapv2", "otp", "gtc", and "tls". Each "phase 2" inner method requires specific

 parameters for successful authentication; see the wpa_supplicant documentation for

 more details.

 Format: string

 phase2-ca-cert

 Contains the "phase 2" CA certificate if used by the EAP method specified in the

 "phase2-auth" or "phase2-autheap" properties. Certificate data is specified using a

 "scheme"; three are currently supported: blob, path and pkcs#11 URL. When using the

 blob scheme this property should be set to the certificate's DER encoded data. When

 using the path scheme, this property should be set to the full UTF-8 encoded path of

 the certificate, prefixed with the string "file://" and ending with a terminating NUL

 byte. This property can be unset even if the EAP method supports CA certificates, but

 this allows man-in-the-middle attacks and is NOT recommended. Note that enabling

 NMSetting8021x:system-ca-certs will override this setting to use the built-in path, if

 the built-in path is not a directory.

 Format: byte array

 phase2-ca-cert-password

 The password used to access the "phase2" CA certificate stored in "phase2-ca-cert"

 property. Only makes sense if the certificate is stored on a PKCS#11 token that

 requires a login.

 Format: string

 phase2-ca-cert-password-flags

 Flags indicating how to handle the "phase2-ca-cert-password" property. See the section

 called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 phase2-ca-path

 UTF-8 encoded path to a directory containing PEM or DER formatted certificates to be

 added to the verification chain in addition to the certificate specified in the

 "phase2-ca-cert" property. If NMSetting8021x:system-ca-certs is enabled and the Page 13/91

 built-in CA path is an existing directory, then this setting is ignored.

 Format: string

 phase2-client-cert

 Contains the "phase 2" client certificate if used by the EAP method specified in the

 "phase2-auth" or "phase2-autheap" properties. Certificate data is specified using a

 "scheme"; two are currently supported: blob and path. When using the blob scheme

 (which is backwards compatible with NM 0.7.x) this property should be set to the

 certificate's DER encoded data. When using the path scheme, this property should be

 set to the full UTF-8 encoded path of the certificate, prefixed with the string

 "file://" and ending with a terminating NUL byte. This property can be unset even if

 the EAP method supports CA certificates, but this allows man-in-the-middle attacks and

 is NOT recommended.

 Format: byte array

 phase2-client-cert-password

 The password used to access the "phase2" client certificate stored in

 "phase2-client-cert" property. Only makes sense if the certificate is stored on a

 PKCS#11 token that requires a login.

 Format: string

 phase2-client-cert-password-flags

 Flags indicating how to handle the "phase2-client-cert-password" property. See the

 section called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 phase2-domain-match

 Constraint for server domain name. If set, this list of FQDNs is used as a match

 requirement for dNSName element(s) of the certificate presented by the authentication

 server during the inner "phase 2" authentication. If a matching dNSName is found, this

 constraint is met. If no dNSName values are present, this constraint is matched

 against SubjectName CN using the same comparison. Multiple valid FQDNs can be passed

 as a ";" delimited list.

 Format: string

 phase2-domain-suffix-match

 Constraint for server domain name. If set, this FQDN is used as a suffix match

 requirement for dNSName element(s) of the certificate presented by the authentication Page 14/91

 server during the inner "phase 2" authentication. If a matching dNSName is found, this

 constraint is met. If no dNSName values are present, this constraint is matched

 against SubjectName CN using same suffix match comparison. Since version 1.24,

 multiple valid FQDNs can be passed as a ";" delimited list.

 Format: string

 phase2-private-key

 Contains the "phase 2" inner private key when the "phase2-auth" or "phase2-autheap"

 property is set to "tls". Key data is specified using a "scheme"; two are currently

 supported: blob and path. When using the blob scheme and private keys, this property

 should be set to the key's encrypted PEM encoded data. When using private keys with

 the path scheme, this property should be set to the full UTF-8 encoded path of the

 key, prefixed with the string "file://" and ending with a terminating NUL byte. When

 using PKCS#12 format private keys and the blob scheme, this property should be set to

 the PKCS#12 data and the "phase2-private-key-password" property must be set to

 password used to decrypt the PKCS#12 certificate and key. When using PKCS#12 files and

 the path scheme, this property should be set to the full UTF-8 encoded path of the

 key, prefixed with the string "file://" and ending with a terminating NUL byte, and as

 with the blob scheme the "phase2-private-key-password" property must be set to the

 password used to decode the PKCS#12 private key and certificate.

 Format: byte array

 phase2-private-key-password

 The password used to decrypt the "phase 2" private key specified in the

 "phase2-private-key" property when the private key either uses the path scheme, or is

 a PKCS#12 format key.

 Format: string

 phase2-private-key-password-flags

 Flags indicating how to handle the "phase2-private-key-password" property. See the

 section called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 phase2-subject-match

 Substring to be matched against the subject of the certificate presented by the

 authentication server during the inner "phase 2" authentication. When unset, no

 verification of the authentication server certificate's subject is performed. This Page 15/91

 property provides little security, if any, and its use is deprecated in favor of

 NMSetting8021x:phase2-domain-suffix-match.

 Format: string

 pin

 PIN used for EAP authentication methods.

 Format: string

 pin-flags

 Flags indicating how to handle the "pin" property. See the section called ?Secret flag

 types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 private-key

 Contains the private key when the "eap" property is set to "tls". Key data is

 specified using a "scheme"; two are currently supported: blob and path. When using the

 blob scheme and private keys, this property should be set to the key's encrypted PEM

 encoded data. When using private keys with the path scheme, this property should be

 set to the full UTF-8 encoded path of the key, prefixed with the string "file://" and

 ending with a terminating NUL byte. When using PKCS#12 format private keys and the

 blob scheme, this property should be set to the PKCS#12 data and the

 "private-key-password" property must be set to password used to decrypt the PKCS#12

 certificate and key. When using PKCS#12 files and the path scheme, this property

 should be set to the full UTF-8 encoded path of the key, prefixed with the string

 "file://" and ending with a terminating NUL byte, and as with the blob scheme the

 "private-key-password" property must be set to the password used to decode the PKCS#12

 private key and certificate. WARNING: "private-key" is not a "secret" property, and

 thus unencrypted private key data using the BLOB scheme may be readable by

 unprivileged users. Private keys should always be encrypted with a private key

 password to prevent unauthorized access to unencrypted private key data.

 Format: byte array

 private-key-password

 The password used to decrypt the private key specified in the "private-key" property

 when the private key either uses the path scheme, or if the private key is a PKCS#12

 format key.

 Format: string Page 16/91

 private-key-password-flags

 Flags indicating how to handle the "private-key-password" property. See the section

 called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 subject-match

 Substring to be matched against the subject of the certificate presented by the

 authentication server. When unset, no verification of the authentication server

 certificate's subject is performed. This property provides little security, if any,

 and its use is deprecated in favor of NMSetting8021x:domain-suffix-match.

 Format: string

 system-ca-certs

 When TRUE, overrides the "ca-path" and "phase2-ca-path" properties using the system CA

 directory specified at configure time with the --system-ca-path switch. The

 certificates in this directory are added to the verification chain in addition to any

 certificates specified by the "ca-cert" and "phase2-ca-cert" properties. If the path

 provided with --system-ca-path is rather a file name (bundle of trusted CA

 certificates), it overrides "ca-cert" and "phase2-ca-cert" properties instead (sets

 ca_cert/ca_cert2 options for wpa_supplicant).

 Format: boolean

 adsl setting

 ADSL Settings.

 Properties:

 encapsulation

 Alias: encapsulation

 Encapsulation of ADSL connection. Can be "vcmux" or "llc".

 Format: string

 password

 Alias: password

 Password used to authenticate with the ADSL service.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property. See the section called ?Secret

 flag types:? for flag values. Page 17/91

 Format: NMSettingSecretFlags (uint32)

 protocol

 Alias: protocol

 ADSL connection protocol. Can be "pppoa", "pppoe" or "ipoatm".

 Format: string

 username

 Alias: username

 Username used to authenticate with the ADSL service.

 Format: string

 vci

 VCI of ADSL connection

 Format: uint32

 vpi

 VPI of ADSL connection

 Format: uint32

 bluetooth setting

 Bluetooth Settings.

 Properties:

 bdaddr

 Alias: addr

 The Bluetooth address of the device.

 Format: byte array

 type

 Alias: bt-type

 Either "dun" for Dial-Up Networking connections or "panu" for Personal Area Networking

 connections to devices supporting the NAP profile.

 Format: string

 bond setting

 Bonding Settings.

 Properties:

 options

 Dictionary of key/value pairs of bonding options. Both keys and values must be

 strings. Option names must contain only alphanumeric characters (ie, [a-zA-Z0-9]). Page 18/91

 Format: dict of string to string

 bridge setting

 Bridging Settings.

 Properties:

 ageing-time

 Alias: ageing-time

 The Ethernet MAC address aging time, in seconds.

 Format: uint32

 forward-delay

 Alias: forward-delay

 The Spanning Tree Protocol (STP) forwarding delay, in seconds.

 Format: uint32

 group-address

 If specified, The MAC address of the multicast group this bridge uses for STP. The

 address must be a link-local address in standard Ethernet MAC address format, ie an

 address of the form 01:80:C2:00:00:0X, with X in [0, 4..F]. If not specified the

 default value is 01:80:C2:00:00:00.

 Format: byte array

 group-forward-mask

 Alias: group-forward-mask

 A mask of group addresses to forward. Usually, group addresses in the range from

 01:80:C2:00:00:00 to 01:80:C2:00:00:0F are not forwarded according to standards. This

 property is a mask of 16 bits, each corresponding to a group address in that range

 that must be forwarded. The mask can't have bits 0, 1 or 2 set because they are used

 for STP, MAC pause frames and LACP.

 Format: uint32

 hello-time

 Alias: hello-time

 The Spanning Tree Protocol (STP) hello time, in seconds.

 Format: uint32

 mac-address

 Alias: mac

 If specified, the MAC address of bridge. When creating a new bridge, this MAC address Page 19/91

 will be set. If this field is left unspecified, the "ethernet.cloned-mac-address" is

 referred instead to generate the initial MAC address. Note that setting

 "ethernet.cloned-mac-address" anyway overwrites the MAC address of the bridge later

 while activating the bridge. Hence, this property is deprecated. Deprecated: 1

 Format: byte array

 max-age

 Alias: max-age

 The Spanning Tree Protocol (STP) maximum message age, in seconds.

 Format: uint32

 multicast-hash-max

 Set maximum size of multicast hash table (value must be a power of 2).

 Format: uint32

 multicast-last-member-count

 Set the number of queries the bridge will send before stopping forwarding a multicast

 group after a "leave" message has been received.

 Format: uint32

 multicast-last-member-interval

 Set interval (in deciseconds) between queries to find remaining members of a group,

 after a "leave" message is received.

 Format: uint64

 multicast-membership-interval

 Set delay (in deciseconds) after which the bridge will leave a group, if no membership

 reports for this group are received.

 Format: uint64

 multicast-querier

 Enable or disable sending of multicast queries by the bridge. If not specified the

 option is disabled.

 Format: boolean

 multicast-querier-interval

 If no queries are seen after this delay (in deciseconds) has passed, the bridge will

 start to send its own queries.

 Format: uint64

 multicast-query-interval Page 20/91

 Interval (in deciseconds) between queries sent by the bridge after the end of the

 startup phase.

 Format: uint64

 multicast-query-response-interval

 Set the Max Response Time/Max Response Delay (in deciseconds) for IGMP/MLD queries

 sent by the bridge.

 Format: uint64

 multicast-query-use-ifaddr

 If enabled the bridge's own IP address is used as the source address for IGMP queries

 otherwise the default of 0.0.0.0 is used.

 Format: boolean

 multicast-router

 Sets bridge's multicast router. Multicast-snooping must be enabled for this option to

 work. Supported values are: 'auto', 'disabled', 'enabled' to which kernel assigns the

 numbers 1, 0, and 2, respectively. If not specified the default value is 'auto' (1).

 Format: string

 multicast-snooping

 Alias: multicast-snooping

 Controls whether IGMP snooping is enabled for this bridge. Note that if snooping was

 automatically disabled due to hash collisions, the system may refuse to enable the

 feature until the collisions are resolved.

 Format: boolean

 multicast-startup-query-count

 Set the number of IGMP queries to send during startup phase.

 Format: uint32

 multicast-startup-query-interval

 Sets the time (in deciseconds) between queries sent out at startup to determine

 membership information.

 Format: uint64

 priority

 Alias: priority

 Sets the Spanning Tree Protocol (STP) priority for this bridge. Lower values are

 "better"; the lowest priority bridge will be elected the root bridge. Page 21/91

 Format: uint32

 stp

 Alias: stp

 Controls whether Spanning Tree Protocol (STP) is enabled for this bridge.

 Format: boolean

 vlan-default-pvid

 The default PVID for the ports of the bridge, that is the VLAN id assigned to incoming

 untagged frames.

 Format: uint32

 vlan-filtering

 Control whether VLAN filtering is enabled on the bridge.

 Format: boolean

 vlan-protocol

 If specified, the protocol used for VLAN filtering. Supported values are: '802.1Q',

 '802.1ad'. If not specified the default value is '802.1Q'.

 Format: string

 vlan-stats-enabled

 Controls whether per-VLAN stats accounting is enabled.

 Format: boolean

 vlans

 Array of bridge VLAN objects. In addition to the VLANs specified here, the bridge will

 also have the default-pvid VLAN configured by the bridge.vlan-default-pvid property.

 In nmcli the VLAN list can be specified with the following syntax: $vid [pvid]

 [untagged] [, $vid [pvid] [untagged]]... where $vid is either a single id between 1

 and 4094 or a range, represented as a couple of ids separated by a dash.

 Format: array of vardict

 bridge-port setting

 Bridge Port Settings.

 Properties:

 hairpin-mode

 Alias: hairpin

 Enables or disables "hairpin mode" for the port, which allows frames to be sent back

 out through the port the frame was received on. Page 22/91

 Format: boolean

 path-cost

 Alias: path-cost

 The Spanning Tree Protocol (STP) port cost for destinations via this port.

 Format: uint32

 priority

 Alias: priority

 The Spanning Tree Protocol (STP) priority of this bridge port.

 Format: uint32

 vlans

 Array of bridge VLAN objects. In addition to the VLANs specified here, the port will

 also have the default-pvid VLAN configured on the bridge by the

 bridge.vlan-default-pvid property. In nmcli the VLAN list can be specified with the

 following syntax: $vid [pvid] [untagged] [, $vid [pvid] [untagged]]... where $vid is

 either a single id between 1 and 4094 or a range, represented as a couple of ids

 separated by a dash.

 Format: array of vardict

 cdma setting

 CDMA-based Mobile Broadband Settings.

 Properties:

 mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple frames.

 Format: uint32

 number

 The number to dial to establish the connection to the CDMA-based mobile broadband

 network, if any. If not specified, the default number (#777) is used when required.

 Format: string

 password

 Alias: password

 The password used to authenticate with the network, if required. Many providers do not

 require a password, or accept any password. But if a password is required, it is

 specified here. Page 23/91

 Format: string

 password-flags

 Flags indicating how to handle the "password" property. See the section called ?Secret

 flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 username

 Alias: user

 The username used to authenticate with the network, if required. Many providers do not

 require a username, or accept any username. But if a username is required, it is

 specified here.

 Format: string

 dcb setting

 Data Center Bridging Settings.

 Properties:

 app-fcoe-flags

 Specifies the NMSettingDcbFlags for the DCB FCoE application. Flags may be any

 combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),

 and NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 app-fcoe-mode

 The FCoE controller mode; either "fabric" or "vn2vn". Since 1.34, NULL is the default

 and means "fabric". Before 1.34, NULL was rejected as invalid and the default was

 "fabric".

 Format: string

 app-fcoe-priority

 The highest User Priority (0 - 7) which FCoE frames should use, or -1 for default

 priority. Only used when the "app-fcoe-flags" property includes the

 NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 app-fip-flags

 Specifies the NMSettingDcbFlags for the DCB FIP application. Flags may be any

 combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),

 and NM_SETTING_DCB_FLAG_WILLING (0x4). Page 24/91

 Format: NMSettingDcbFlags (uint32)

 app-fip-priority

 The highest User Priority (0 - 7) which FIP frames should use, or -1 for default

 priority. Only used when the "app-fip-flags" property includes the

 NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 app-iscsi-flags

 Specifies the NMSettingDcbFlags for the DCB iSCSI application. Flags may be any

 combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),

 and NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 app-iscsi-priority

 The highest User Priority (0 - 7) which iSCSI frames should use, or -1 for default

 priority. Only used when the "app-iscsi-flags" property includes the

 NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.

 Format: int32

 priority-bandwidth

 An array of 8 uint values, where the array index corresponds to the User Priority (0 -

 7) and the value indicates the percentage of bandwidth of the priority's assigned

 group that the priority may use. The sum of all percentages for priorities which

 belong to the same group must total 100 percents.

 Format: array of uint32

 priority-flow-control

 An array of 8 boolean values, where the array index corresponds to the User Priority

 (0 - 7) and the value indicates whether or not the corresponding priority should

 transmit priority pause.

 Format: array of uint32

 priority-flow-control-flags

 Specifies the NMSettingDcbFlags for DCB Priority Flow Control (PFC). Flags may be any

 combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),

 and NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 priority-group-bandwidth Page 25/91

 An array of 8 uint values, where the array index corresponds to the Priority Group ID

 (0 - 7) and the value indicates the percentage of link bandwidth allocated to that

 group. Allowed values are 0 - 100, and the sum of all values must total 100 percents.

 Format: array of uint32

 priority-group-flags

 Specifies the NMSettingDcbFlags for DCB Priority Groups. Flags may be any combination

 of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and

 NM_SETTING_DCB_FLAG_WILLING (0x4).

 Format: NMSettingDcbFlags (uint32)

 priority-group-id

 An array of 8 uint values, where the array index corresponds to the User Priority (0 -

 7) and the value indicates the Priority Group ID. Allowed Priority Group ID values are

 0 - 7 or 15 for the unrestricted group.

 Format: array of uint32

 priority-strict-bandwidth

 An array of 8 boolean values, where the array index corresponds to the User Priority

 (0 - 7) and the value indicates whether or not the priority may use all of the

 bandwidth allocated to its assigned group.

 Format: array of uint32

 priority-traffic-class

 An array of 8 uint values, where the array index corresponds to the User Priority (0 -

 7) and the value indicates the traffic class (0 - 7) to which the priority is mapped.

 Format: array of uint32

 ethtool setting

 Ethtool Ethernet Settings.

 Properties:

 coalesce-adaptive-rx

 coalesce-adaptive-tx

 coalesce-pkt-rate-high

 coalesce-pkt-rate-low

 coalesce-rx-frames

 coalesce-rx-frames-high

 coalesce-rx-frames-irq Page 26/91

 coalesce-rx-frames-low

 coalesce-rx-usecs

 coalesce-rx-usecs-high

 coalesce-rx-usecs-irq

 coalesce-rx-usecs-low

 coalesce-sample-interval

 coalesce-stats-block-usecs

 coalesce-tx-frames

 coalesce-tx-frames-high

 coalesce-tx-frames-irq

 coalesce-tx-frames-low

 coalesce-tx-usecs

 coalesce-tx-usecs-high

 coalesce-tx-usecs-irq

 coalesce-tx-usecs-low

 feature-esp-hw-offload

 feature-esp-tx-csum-hw-offload

 feature-fcoe-mtu

 feature-gro

 feature-gso

 feature-highdma

 feature-hw-tc-offload

 feature-l2-fwd-offload

 feature-loopback

 feature-lro

 feature-macsec-hw-offload

 feature-ntuple

 feature-rx

 feature-rx-all

 feature-rx-fcs

 feature-rx-gro-hw

 feature-rx-gro-list

 feature-rx-udp-gro-forwarding Page 27/91

 feature-rx-udp_tunnel-port-offload

 feature-rx-vlan-filter

 feature-rx-vlan-stag-filter

 feature-rx-vlan-stag-hw-parse

 feature-rxhash

 feature-rxvlan

 feature-sg

 feature-tls-hw-record

 feature-tls-hw-rx-offload

 feature-tls-hw-tx-offload

 feature-tso

 feature-tx

 feature-tx-checksum-fcoe-crc

 feature-tx-checksum-ip-generic

 feature-tx-checksum-ipv4

 feature-tx-checksum-ipv6

 feature-tx-checksum-sctp

 feature-tx-esp-segmentation

 feature-tx-fcoe-segmentation

 feature-tx-gre-csum-segmentation

 feature-tx-gre-segmentation

 feature-tx-gso-list

 feature-tx-gso-partial

 feature-tx-gso-robust

 feature-tx-ipxip4-segmentation

 feature-tx-ipxip6-segmentation

 feature-tx-nocache-copy

 feature-tx-scatter-gather

 feature-tx-scatter-gather-fraglist

 feature-tx-sctp-segmentation

 feature-tx-tcp-ecn-segmentation

 feature-tx-tcp-mangleid-segmentation

 feature-tx-tcp-segmentation Page 28/91

 feature-tx-tcp6-segmentation

 feature-tx-tunnel-remcsum-segmentation

 feature-tx-udp-segmentation

 feature-tx-udp_tnl-csum-segmentation

 feature-tx-udp_tnl-segmentation

 feature-tx-vlan-stag-hw-insert

 feature-txvlan

 pause-autoneg

 Whether to automatically negotiate on pause frame of flow control mechanism defined by

 IEEE 802.3x standard.

 pause-rx

 Whether RX pause should be enabled. Only valid when automatic negotiation is disabled

 pause-tx

 Whether TX pause should be enabled. Only valid when automatic negotiation is disabled

 ring-rx

 ring-rx-jumbo

 ring-rx-mini

 ring-tx

 gsm setting

 GSM-based Mobile Broadband Settings.

 Properties:

 apn

 Alias: apn

 The GPRS Access Point Name specifying the APN used when establishing a data session

 with the GSM-based network. The APN often determines how the user will be billed for

 their network usage and whether the user has access to the Internet or just a

 provider-specific walled-garden, so it is important to use the correct APN for the

 user's mobile broadband plan. The APN may only be composed of the characters a-z, 0-9,

 ., and - per GSM 03.60 Section 14.9.

 Format: string

 auto-config

 When TRUE, the settings such as APN, username, or password will default to values that

 match the network the modem will register to in the Mobile Broadband Provider Page 29/91

 database.

 Format: boolean

 device-id

 The device unique identifier (as given by the WWAN management service) which this

 connection applies to. If given, the connection will only apply to the specified

 device.

 Format: string

 home-only

 When TRUE, only connections to the home network will be allowed. Connections to

 roaming networks will not be made.

 Format: boolean

 mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple frames.

 Format: uint32

 network-id

 The Network ID (GSM LAI format, ie MCC-MNC) to force specific network registration. If

 the Network ID is specified, NetworkManager will attempt to force the device to

 register only on the specified network. This can be used to ensure that the device

 does not roam when direct roaming control of the device is not otherwise possible.

 Format: string

 number

 Legacy setting that used to help establishing PPP data sessions for GSM-based modems.

 Deprecated: 1

 Format: string

 password

 Alias: password

 The password used to authenticate with the network, if required. Many providers do not

 require a password, or accept any password. But if a password is required, it is

 specified here.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property. See the section called ?Secret Page 30/91

 flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 pin

 If the SIM is locked with a PIN it must be unlocked before any other operations are

 requested. Specify the PIN here to allow operation of the device.

 Format: string

 pin-flags

 Flags indicating how to handle the "pin" property. See the section called ?Secret flag

 types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 sim-id

 The SIM card unique identifier (as given by the WWAN management service) which this

 connection applies to. If given, the connection will apply to any device also allowed

 by "device-id" which contains a SIM card matching the given identifier.

 Format: string

 sim-operator-id

 A MCC/MNC string like "310260" or "21601" identifying the specific mobile network

 operator which this connection applies to. If given, the connection will apply to any

 device also allowed by "device-id" and "sim-id" which contains a SIM card provisioned

 by the given operator.

 Format: string

 username

 Alias: user

 The username used to authenticate with the network, if required. Many providers do not

 require a username, or accept any username. But if a username is required, it is

 specified here.

 Format: string

 infiniband setting

 Infiniband Settings.

 Properties:

 mac-address

 Alias: mac

 If specified, this connection will only apply to the IPoIB device whose permanent MAC Page 31/91

 address matches. This property does not change the MAC address of the device (i.e. MAC

 spoofing).

 Format: byte array

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple frames.

 Format: uint32

 p-key

 Alias: p-key

 The InfiniBand P_Key to use for this device. A value of -1 means to use the default

 P_Key (aka "the P_Key at index 0"). Otherwise, it is a 16-bit unsigned integer, whose

 high bit is set if it is a "full membership" P_Key.

 Format: int32

 parent

 Alias: parent

 The interface name of the parent device of this device. Normally NULL, but if the

 "p_key" property is set, then you must specify the base device by setting either this

 property or "mac-address".

 Format: string

 transport-mode

 Alias: transport-mode

 The IP-over-InfiniBand transport mode. Either "datagram" or "connected".

 Format: string

 ipv4 setting

 IPv4 Settings.

 Properties:

 addresses

 Alias: ip4

 A list of IPv4 addresses and their prefix length. Multiple addresses can be separated

 by comma. For example "192.168.1.5/24, 10.1.0.5/24". The addresses are listed in

 decreasing priority, meaning the first address will be the primary address.

 Format: a comma separated list of addresses Page 32/91

 dad-timeout

 Timeout in milliseconds used to check for the presence of duplicate IP addresses on

 the network. If an address conflict is detected, the activation will fail. A zero

 value means that no duplicate address detection is performed, -1 means the default

 value (either configuration ipvx.dad-timeout override or zero). A value greater than

 zero is a timeout in milliseconds. The property is currently implemented only for

 IPv4.

 Format: int32

 dhcp-client-id

 A string sent to the DHCP server to identify the local machine which the DHCP server

 may use to customize the DHCP lease and options. When the property is a hex string

 ('aa:bb:cc') it is interpreted as a binary client ID, in which case the first byte is

 assumed to be the 'type' field as per RFC 2132 section 9.14 and the remaining bytes

 may be an hardware address (e.g. '01:xx:xx:xx:xx:xx:xx' where 1 is the Ethernet ARP

 type and the rest is a MAC address). If the property is not a hex string it is

 considered as a non-hardware-address client ID and the 'type' field is set to 0. The

 special values "mac" and "perm-mac" are supported, which use the current or permanent

 MAC address of the device to generate a client identifier with type ethernet (01).

 Currently, these options only work for ethernet type of links. The special value

 "ipv6-duid" uses the DUID from "ipv6.dhcp-duid" property as an RFC4361-compliant

 client identifier. As IAID it uses "ipv4.dhcp-iaid" and falls back to "ipv6.dhcp-iaid"

 if unset. The special value "duid" generates a RFC4361-compliant client identifier

 based on "ipv4.dhcp-iaid" and uses a DUID generated by hashing /etc/machine-id. The

 special value "stable" is supported to generate a type 0 client identifier based on

 the stable-id (see connection.stable-id) and a per-host key. If you set the stable-id,

 you may want to include the "${DEVICE}" or "${MAC}" specifier to get a per-device key.

 If unset, a globally configured default is used. If still unset, the default depends

 on the DHCP plugin.

 Format: string

 dhcp-fqdn

 If the "dhcp-send-hostname" property is TRUE, then the specified FQDN will be sent to

 the DHCP server when acquiring a lease. This property and "dhcp-hostname" are mutually

 exclusive and cannot be set at the same time. Page 33/91

 Format: string

 dhcp-hostname

 If the "dhcp-send-hostname" property is TRUE, then the specified name will be sent to

 the DHCP server when acquiring a lease. This property and "dhcp-fqdn" are mutually

 exclusive and cannot be set at the same time.

 Format: string

 dhcp-hostname-flags

 Flags for the DHCP hostname and FQDN. Currently, this property only includes flags to

 control the FQDN flags set in the DHCP FQDN option. Supported FQDN flags are

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

 and NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is set and

 NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the DHCP FQDN option will contain

 no flag. Otherwise, if no FQDN flag is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS

 (0x8) is not set, the standard FQDN flags are set in the request:

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

 for IPv4 and NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6. When this property

 is set to the default value NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is

 looked up in NetworkManager configuration. If that value is unset or also

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags described above are

 sent in the DHCP requests.

 Format: uint32

 dhcp-iaid

 A string containing the "Identity Association Identifier" (IAID) used by the DHCP

 client. The property is a 32-bit decimal value or a special value among "mac",

 "perm-mac", "ifname" and "stable". When set to "mac" (or "perm-mac"), the last 4 bytes

 of the current (or permanent) MAC address are used as IAID. When set to "ifname", the

 IAID is computed by hashing the interface name. The special value "stable" can be used

 to generate an IAID based on the stable-id (see connection.stable-id), a per-host key

 and the interface name. When the property is unset, the value from global

 configuration is used; if no global default is set then the IAID is assumed to be

 "ifname". Note that at the moment this property is ignored for IPv6 by dhclient, which Page 34/91

 always derives the IAID from the MAC address.

 Format: string

 dhcp-reject-servers

 Array of servers from which DHCP offers must be rejected. This property is useful to

 avoid getting a lease from misconfigured or rogue servers. For DHCPv4, each element

 must be an IPv4 address, optionally followed by a slash and a prefix length (e.g.

 "192.168.122.0/24"). This property is currently not implemented for DHCPv6.

 Format: array of string

 dhcp-send-hostname

 If TRUE, a hostname is sent to the DHCP server when acquiring a lease. Some DHCP

 servers use this hostname to update DNS databases, essentially providing a static

 hostname for the computer. If the "dhcp-hostname" property is NULL and this property

 is TRUE, the current persistent hostname of the computer is sent.

 Format: boolean

 dhcp-timeout

 A timeout for a DHCP transaction in seconds. If zero (the default), a globally

 configured default is used. If still unspecified, a device specific timeout is used

 (usually 45 seconds). Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 dhcp-vendor-class-identifier

 The Vendor Class Identifier DHCP option (60). Special characters in the data string

 may be escaped using C-style escapes, nevertheless this property cannot contain nul

 bytes. If the per-profile value is unspecified (the default), a global connection

 default gets consulted. If still unspecified, the DHCP option is not sent to the

 server. Since 1.28

 Format: string

 dns

 Array of IP addresses of DNS servers.

 Format: array of uint32

 dns-options

 Array of DNS options as described in man 5 resolv.conf. NULL means that the options

 are unset and left at the default. In this case NetworkManager will use default

 options. This is distinct from an empty list of properties. The currently supported Page 35/91

 options are "attempts", "debug", "edns0", "inet6", "ip6-bytestring", "ip6-dotint",

 "ndots", "no-check-names", "no-ip6-dotint", "no-reload", "no-tld-query", "rotate",

 "single-request", "single-request-reopen", "timeout", "trust-ad", "use-vc". The

 "trust-ad" setting is only honored if the profile contributes name servers to

 resolv.conf, and if all contributing profiles have "trust-ad" enabled. When using a

 caching DNS plugin (dnsmasq or systemd-resolved in NetworkManager.conf) then "edns0"

 and "trust-ad" are automatically added.

 Format: array of string

 dns-priority

 DNS servers priority. The relative priority for DNS servers specified by this setting.

 A lower numerical value is better (higher priority). Negative values have the special

 effect of excluding other configurations with a greater numerical priority value; so

 in presence of at least one negative priority, only DNS servers from connections with

 the lowest priority value will be used. To avoid all DNS leaks, set the priority of

 the profile that should be used to the most negative value of all active connections

 profiles. Zero selects a globally configured default value. If the latter is missing

 or zero too, it defaults to 50 for VPNs (including WireGuard) and 100 for other

 connections. Note that the priority is to order DNS settings for multiple active

 connections. It does not disambiguate multiple DNS servers within the same connection

 profile. When multiple devices have configurations with the same priority, VPNs will

 be considered first, then devices with the best (lowest metric) default route and then

 all other devices. When using dns=default, servers with higher priority will be on top

 of resolv.conf. To prioritize a given server over another one within the same

 connection, just specify them in the desired order. Note that commonly the resolver

 tries name servers in /etc/resolv.conf in the order listed, proceeding with the next

 server in the list on failure. See for example the "rotate" option of the dns-options

 setting. If there are any negative DNS priorities, then only name servers from the

 devices with that lowest priority will be considered. When using a DNS resolver that

 supports Conditional Forwarding or Split DNS (with dns=dnsmasq or dns=systemd-resolved

 settings), each connection is used to query domains in its search list. The search

 domains determine which name servers to ask, and the DNS priority is used to

 prioritize name servers based on the domain. Queries for domains not present in any

 search list are routed through connections having the '~.' special wildcard domain, Page 36/91

 which is added automatically to connections with the default route (or can be added

 manually). When multiple connections specify the same domain, the one with the best

 priority (lowest numerical value) wins. If a sub domain is configured on another

 interface it will be accepted regardless the priority, unless parent domain on the

 other interface has a negative priority, which causes the sub domain to be shadowed.

 With Split DNS one can avoid undesired DNS leaks by properly configuring DNS

 priorities and the search domains, so that only name servers of the desired interface

 are configured.

 Format: int32

 dns-search

 Array of DNS search domains. Domains starting with a tilde ('~') are considered

 'routing' domains and are used only to decide the interface over which a query must be

 forwarded; they are not used to complete unqualified host names. When using a DNS

 plugin that supports Conditional Forwarding or Split DNS, then the search domains

 specify which name servers to query. This makes the behavior different from running

 with plain /etc/resolv.conf. For more information see also the dns-priority setting.

 Format: array of string

 gateway

 Alias: gw4

 The gateway associated with this configuration. This is only meaningful if "addresses"

 is also set. The gateway's main purpose is to control the next hop of the standard

 default route on the device. Hence, the gateway property conflicts with

 "never-default" and will be automatically dropped if the IP configuration is set to

 never-default. As an alternative to set the gateway, configure a static default route

 with /0 as prefix length.

 Format: string

 ignore-auto-dns

 When "method" is set to "auto" and this property to TRUE, automatically configured

 name servers and search domains are ignored and only name servers and search domains

 specified in the "dns" and "dns-search" properties, if any, are used.

 Format: boolean

 ignore-auto-routes

 When "method" is set to "auto" and this property to TRUE, automatically configured Page 37/91

 routes are ignored and only routes specified in the "routes" property, if any, are

 used.

 Format: boolean

 may-fail

 If TRUE, allow overall network configuration to proceed even if the configuration

 specified by this property times out. Note that at least one IP configuration must

 succeed or overall network configuration will still fail. For example, in IPv6-only

 networks, setting this property to TRUE on the NMSettingIP4Config allows the overall

 network configuration to succeed if IPv4 configuration fails but IPv6 configuration

 completes successfully.

 Format: boolean

 method

 IP configuration method. NMSettingIP4Config and NMSettingIP6Config both support

 "disabled", "auto", "manual", and "link-local". See the subclass-specific

 documentation for other values. In general, for the "auto" method, properties such as

 "dns" and "routes" specify information that is added on to the information returned

 from automatic configuration. The "ignore-auto-routes" and "ignore-auto-dns"

 properties modify this behavior. For methods that imply no upstream network, such as

 "shared" or "link-local", these properties must be empty. For IPv4 method "shared",

 the IP subnet can be configured by adding one manual IPv4 address or otherwise

 10.42.x.0/24 is chosen. Note that the shared method must be configured on the

 interface which shares the internet to a subnet, not on the uplink which is shared.

 Format: string

 never-default

 If TRUE, this connection will never be the default connection for this IP type,

 meaning it will never be assigned the default route by NetworkManager.

 Format: boolean

 required-timeout

 The minimum time interval in milliseconds for which dynamic IP configuration should be

 tried before the connection succeeds. This property is useful for example if both IPv4

 and IPv6 are enabled and are allowed to fail. Normally the connection succeeds as soon

 as one of the two address families completes; by setting a required timeout for e.g.

 IPv4, one can ensure that even if IP6 succeeds earlier than IPv4, NetworkManager waits Page 38/91

 some time for IPv4 before the connection becomes active. Note that if "may-fail" is

 FALSE for the same address family, this property has no effect as NetworkManager needs

 to wait for the full DHCP timeout. A zero value means that no required timeout is

 present, -1 means the default value (either configuration ipvx.required-timeout

 override or zero).

 Format: int32

 route-metric

 The default metric for routes that don't explicitly specify a metric. The default

 value -1 means that the metric is chosen automatically based on the device type. The

 metric applies to dynamic routes, manual (static) routes that don't have an explicit

 metric setting, address prefix routes, and the default route. Note that for IPv6, the

 kernel accepts zero (0) but coerces it to 1024 (user default). Hence, setting this

 property to zero effectively mean setting it to 1024. For IPv4, zero is a regular

 value for the metric.

 Format: int64

 route-table

 Enable policy routing (source routing) and set the routing table used when adding

 routes. This affects all routes, including device-routes, IPv4LL, DHCP, SLAAC,

 default-routes and static routes. But note that static routes can individually

 overwrite the setting by explicitly specifying a non-zero routing table. If the table

 setting is left at zero, it is eligible to be overwritten via global configuration. If

 the property is zero even after applying the global configuration value, policy

 routing is disabled for the address family of this connection. Policy routing disabled

 means that NetworkManager will add all routes to the main table (except static routes

 that explicitly configure a different table). Additionally, NetworkManager will not

 delete any extraneous routes from tables except the main table. This is to preserve

 backward compatibility for users who manage routing tables outside of NetworkManager.

 Format: uint32

 routes

 A list of IPv4 destination addresses, prefix length, optional IPv4 next hop addresses,

 optional route metric, optional attribute. The valid syntax is: "ip[/prefix]

 [next-hop] [metric] [attribute=val]...[,ip[/prefix]...]". For example "192.0.2.0/24

 10.1.1.1 77, 198.51.100.0/24". Page 39/91

 Various attributes are supported:

 ? "cwnd" - an unsigned 32 bit integer.

 ? "initcwnd" - an unsigned 32 bit integer.

 ? "initrwnd" - an unsigned 32 bit integer.

 ? "lock-cwnd" - a boolean value.

 ? "lock-initcwnd" - a boolean value.

 ? "lock-initrwnd" - a boolean value.

 ? "lock-mtu" - a boolean value.

 ? "lock-window" - a boolean value.

 ? "mtu" - an unsigned 32 bit integer.

 ? "onlink" - a boolean value.

 ? "scope" - an unsigned 8 bit integer. IPv4 only.

 ? "src" - an IPv4 address.

 ? "table" - an unsigned 32 bit integer. The default depends on ipv4.route-table.

 ? "tos" - an unsigned 8 bit integer. IPv4 only.

 ? "type" - one of unicast, local, blackhole, unavailable, prohibit. The default is

 unicast.

 ? "window" - an unsigned 32 bit integer.

 For details see also `man ip-route`.

 Format: a comma separated list of routes

 routing-rules

 A comma separated list of routing rules for policy routing. The format is based on ip

 rule add syntax and mostly compatible. One difference is that routing rules in

 NetworkManager always need a fixed priority.

 Example: priority 5 from 192.167.4.0/24 table 45

 Format: a comma separated list of routing rules

 ipv6 setting

 IPv6 Settings.

 Properties:

 addr-gen-mode

 Configure method for creating the address for use with RFC4862 IPv6 Stateless Address

 Autoconfiguration. The permitted values are: NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_EUI64

 (0) or NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_STABLE_PRIVACY (1). If the property is set Page 40/91

 to EUI64, the addresses will be generated using the interface tokens derived from

 hardware address. This makes the host part of the address to stay constant, making it

 possible to track host's presence when it changes networks. The address changes when

 the interface hardware is replaced. The value of stable-privacy enables use of

 cryptographically secure hash of a secret host-specific key along with the

 connection's stable-id and the network address as specified by RFC7217. This makes it

 impossible to use the address track host's presence, and makes the address stable when

 the network interface hardware is replaced. On D-Bus, the absence of an addr-gen-mode

 setting equals enabling stable-privacy. For keyfile plugin, the absence of the setting

 on disk means EUI64 so that the property doesn't change on upgrade from older

 versions. Note that this setting is distinct from the Privacy Extensions as configured

 by "ip6-privacy" property and it does not affect the temporary addresses configured

 with this option.

 Format: int32

 addresses

 Alias: ip6

 A list of IPv6 addresses and their prefix length. Multiple addresses can be separated

 by comma. For example "2001:db8:85a3::8a2e:370:7334/64, 2001:db8:85a3::5/64". The

 addresses are listed in increasing priority, meaning the last address will be the

 primary address.

 Format: a comma separated list of addresses

 dhcp-duid

 A string containing the DHCPv6 Unique Identifier (DUID) used by the dhcp client to

 identify itself to DHCPv6 servers (RFC 3315). The DUID is carried in the Client

 Identifier option. If the property is a hex string ('aa:bb:cc') it is interpreted as a

 binary DUID and filled as an opaque value in the Client Identifier option. The special

 value "lease" will retrieve the DUID previously used from the lease file belonging to

 the connection. If no DUID is found and "dhclient" is the configured dhcp client, the

 DUID is searched in the system-wide dhclient lease file. If still no DUID is found, or

 another dhcp client is used, a global and permanent DUID-UUID (RFC 6355) will be

 generated based on the machine-id. The special values "llt" and "ll" will generate a

 DUID of type LLT or LL (see RFC 3315) based on the current MAC address of the device.

 In order to try providing a stable DUID-LLT, the time field will contain a constant Page 41/91

 timestamp that is used globally (for all profiles) and persisted to disk. The special

 values "stable-llt", "stable-ll" and "stable-uuid" will generate a DUID of the

 corresponding type, derived from the connection's stable-id and a per-host unique key.

 You may want to include the "${DEVICE}" or "${MAC}" specifier in the stable-id, in

 case this profile gets activated on multiple devices. So, the link-layer address of

 "stable-ll" and "stable-llt" will be a generated address derived from the stable id.

 The DUID-LLT time value in the "stable-llt" option will be picked among a static

 timespan of three years (the upper bound of the interval is the same constant

 timestamp used in "llt"). When the property is unset, the global value provided for

 "ipv6.dhcp-duid" is used. If no global value is provided, the default "lease" value is

 assumed.

 Format: string

 dhcp-hostname

 If the "dhcp-send-hostname" property is TRUE, then the specified name will be sent to

 the DHCP server when acquiring a lease. This property and "dhcp-fqdn" are mutually

 exclusive and cannot be set at the same time.

 Format: string

 dhcp-hostname-flags

 Flags for the DHCP hostname and FQDN. Currently, this property only includes flags to

 control the FQDN flags set in the DHCP FQDN option. Supported FQDN flags are

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

 and NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is set and

 NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the DHCP FQDN option will contain

 no flag. Otherwise, if no FQDN flag is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS

 (0x8) is not set, the standard FQDN flags are set in the request:

 NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1),

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

 for IPv4 and NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6. When this property

 is set to the default value NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is

 looked up in NetworkManager configuration. If that value is unset or also

 NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags described above are

 sent in the DHCP requests. Page 42/91

 Format: uint32

 dhcp-iaid

 A string containing the "Identity Association Identifier" (IAID) used by the DHCP

 client. The property is a 32-bit decimal value or a special value among "mac",

 "perm-mac", "ifname" and "stable". When set to "mac" (or "perm-mac"), the last 4 bytes

 of the current (or permanent) MAC address are used as IAID. When set to "ifname", the

 IAID is computed by hashing the interface name. The special value "stable" can be used

 to generate an IAID based on the stable-id (see connection.stable-id), a per-host key

 and the interface name. When the property is unset, the value from global

 configuration is used; if no global default is set then the IAID is assumed to be

 "ifname". Note that at the moment this property is ignored for IPv6 by dhclient, which

 always derives the IAID from the MAC address.

 Format: string

 dhcp-send-hostname

 If TRUE, a hostname is sent to the DHCP server when acquiring a lease. Some DHCP

 servers use this hostname to update DNS databases, essentially providing a static

 hostname for the computer. If the "dhcp-hostname" property is NULL and this property

 is TRUE, the current persistent hostname of the computer is sent.

 Format: boolean

 dhcp-timeout

 A timeout for a DHCP transaction in seconds. If zero (the default), a globally

 configured default is used. If still unspecified, a device specific timeout is used

 (usually 45 seconds). Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 dns

 Array of IP addresses of DNS servers.

 Format: array of byte array

 dns-options

 Array of DNS options as described in man 5 resolv.conf. NULL means that the options

 are unset and left at the default. In this case NetworkManager will use default

 options. This is distinct from an empty list of properties. The currently supported

 options are "attempts", "debug", "edns0", "inet6", "ip6-bytestring", "ip6-dotint",

 "ndots", "no-check-names", "no-ip6-dotint", "no-reload", "no-tld-query", "rotate", Page 43/91

 "single-request", "single-request-reopen", "timeout", "trust-ad", "use-vc". The

 "trust-ad" setting is only honored if the profile contributes name servers to

 resolv.conf, and if all contributing profiles have "trust-ad" enabled. When using a

 caching DNS plugin (dnsmasq or systemd-resolved in NetworkManager.conf) then "edns0"

 and "trust-ad" are automatically added.

 Format: array of string

 dns-priority

 DNS servers priority. The relative priority for DNS servers specified by this setting.

 A lower numerical value is better (higher priority). Negative values have the special

 effect of excluding other configurations with a greater numerical priority value; so

 in presence of at least one negative priority, only DNS servers from connections with

 the lowest priority value will be used. To avoid all DNS leaks, set the priority of

 the profile that should be used to the most negative value of all active connections

 profiles. Zero selects a globally configured default value. If the latter is missing

 or zero too, it defaults to 50 for VPNs (including WireGuard) and 100 for other

 connections. Note that the priority is to order DNS settings for multiple active

 connections. It does not disambiguate multiple DNS servers within the same connection

 profile. When multiple devices have configurations with the same priority, VPNs will

 be considered first, then devices with the best (lowest metric) default route and then

 all other devices. When using dns=default, servers with higher priority will be on top

 of resolv.conf. To prioritize a given server over another one within the same

 connection, just specify them in the desired order. Note that commonly the resolver

 tries name servers in /etc/resolv.conf in the order listed, proceeding with the next

 server in the list on failure. See for example the "rotate" option of the dns-options

 setting. If there are any negative DNS priorities, then only name servers from the

 devices with that lowest priority will be considered. When using a DNS resolver that

 supports Conditional Forwarding or Split DNS (with dns=dnsmasq or dns=systemd-resolved

 settings), each connection is used to query domains in its search list. The search

 domains determine which name servers to ask, and the DNS priority is used to

 prioritize name servers based on the domain. Queries for domains not present in any

 search list are routed through connections having the '~.' special wildcard domain,

 which is added automatically to connections with the default route (or can be added

 manually). When multiple connections specify the same domain, the one with the best Page 44/91

 priority (lowest numerical value) wins. If a sub domain is configured on another

 interface it will be accepted regardless the priority, unless parent domain on the

 other interface has a negative priority, which causes the sub domain to be shadowed.

 With Split DNS one can avoid undesired DNS leaks by properly configuring DNS

 priorities and the search domains, so that only name servers of the desired interface

 are configured.

 Format: int32

 dns-search

 Array of DNS search domains. Domains starting with a tilde ('~') are considered

 'routing' domains and are used only to decide the interface over which a query must be

 forwarded; they are not used to complete unqualified host names. When using a DNS

 plugin that supports Conditional Forwarding or Split DNS, then the search domains

 specify which name servers to query. This makes the behavior different from running

 with plain /etc/resolv.conf. For more information see also the dns-priority setting.

 Format: array of string

 gateway

 Alias: gw6

 The gateway associated with this configuration. This is only meaningful if "addresses"

 is also set. The gateway's main purpose is to control the next hop of the standard

 default route on the device. Hence, the gateway property conflicts with

 "never-default" and will be automatically dropped if the IP configuration is set to

 never-default. As an alternative to set the gateway, configure a static default route

 with /0 as prefix length.

 Format: string

 ignore-auto-dns

 When "method" is set to "auto" and this property to TRUE, automatically configured

 name servers and search domains are ignored and only name servers and search domains

 specified in the "dns" and "dns-search" properties, if any, are used.

 Format: boolean

 ignore-auto-routes

 When "method" is set to "auto" and this property to TRUE, automatically configured

 routes are ignored and only routes specified in the "routes" property, if any, are

 used. Page 45/91

 Format: boolean

 ip6-privacy

 Configure IPv6 Privacy Extensions for SLAAC, described in RFC4941. If enabled, it

 makes the kernel generate a temporary IPv6 address in addition to the public one

 generated from MAC address via modified EUI-64. This enhances privacy, but could cause

 problems in some applications, on the other hand. The permitted values are: -1:

 unknown, 0: disabled, 1: enabled (prefer public address), 2: enabled (prefer temporary

 addresses). Having a per-connection setting set to "-1" (unknown) means fallback to

 global configuration "ipv6.ip6-privacy". If also global configuration is unspecified

 or set to "-1", fallback to read "/proc/sys/net/ipv6/conf/default/use_tempaddr". Note

 that this setting is distinct from the Stable Privacy addresses that can be enabled

 with the "addr-gen-mode" property's "stable-privacy" setting as another way of

 avoiding host tracking with IPv6 addresses.

 Format: NMSettingIP6ConfigPrivacy (int32)

 may-fail

 If TRUE, allow overall network configuration to proceed even if the configuration

 specified by this property times out. Note that at least one IP configuration must

 succeed or overall network configuration will still fail. For example, in IPv6-only

 networks, setting this property to TRUE on the NMSettingIP4Config allows the overall

 network configuration to succeed if IPv4 configuration fails but IPv6 configuration

 completes successfully.

 Format: boolean

 method

 IP configuration method. NMSettingIP4Config and NMSettingIP6Config both support

 "disabled", "auto", "manual", and "link-local". See the subclass-specific

 documentation for other values. In general, for the "auto" method, properties such as

 "dns" and "routes" specify information that is added on to the information returned

 from automatic configuration. The "ignore-auto-routes" and "ignore-auto-dns"

 properties modify this behavior. For methods that imply no upstream network, such as

 "shared" or "link-local", these properties must be empty. For IPv4 method "shared",

 the IP subnet can be configured by adding one manual IPv4 address or otherwise

 10.42.x.0/24 is chosen. Note that the shared method must be configured on the

 interface which shares the internet to a subnet, not on the uplink which is shared. Page 46/91

 Format: string

 never-default

 If TRUE, this connection will never be the default connection for this IP type,

 meaning it will never be assigned the default route by NetworkManager.

 Format: boolean

 ra-timeout

 A timeout for waiting Router Advertisements in seconds. If zero (the default), a

 globally configured default is used. If still unspecified, the timeout depends on the

 sysctl settings of the device. Set to 2147483647 (MAXINT32) for infinity.

 Format: int32

 required-timeout

 The minimum time interval in milliseconds for which dynamic IP configuration should be

 tried before the connection succeeds. This property is useful for example if both IPv4

 and IPv6 are enabled and are allowed to fail. Normally the connection succeeds as soon

 as one of the two address families completes; by setting a required timeout for e.g.

 IPv4, one can ensure that even if IP6 succeeds earlier than IPv4, NetworkManager waits

 some time for IPv4 before the connection becomes active. Note that if "may-fail" is

 FALSE for the same address family, this property has no effect as NetworkManager needs

 to wait for the full DHCP timeout. A zero value means that no required timeout is

 present, -1 means the default value (either configuration ipvx.required-timeout

 override or zero).

 Format: int32

 route-metric

 The default metric for routes that don't explicitly specify a metric. The default

 value -1 means that the metric is chosen automatically based on the device type. The

 metric applies to dynamic routes, manual (static) routes that don't have an explicit

 metric setting, address prefix routes, and the default route. Note that for IPv6, the

 kernel accepts zero (0) but coerces it to 1024 (user default). Hence, setting this

 property to zero effectively mean setting it to 1024. For IPv4, zero is a regular

 value for the metric.

 Format: int64

 route-table

 Enable policy routing (source routing) and set the routing table used when adding Page 47/91

 routes. This affects all routes, including device-routes, IPv4LL, DHCP, SLAAC,

 default-routes and static routes. But note that static routes can individually

 overwrite the setting by explicitly specifying a non-zero routing table. If the table

 setting is left at zero, it is eligible to be overwritten via global configuration. If

 the property is zero even after applying the global configuration value, policy

 routing is disabled for the address family of this connection. Policy routing disabled

 means that NetworkManager will add all routes to the main table (except static routes

 that explicitly configure a different table). Additionally, NetworkManager will not

 delete any extraneous routes from tables except the main table. This is to preserve

 backward compatibility for users who manage routing tables outside of NetworkManager.

 Format: uint32

 routes

 A list of IPv6 destination addresses, prefix length, optional IPv6 next hop addresses,

 optional route metric, optional attribute. The valid syntax is: "ip[/prefix]

 [next-hop] [metric] [attribute=val]...[,ip[/prefix]...]".

 Various attributes are supported:

 ? "cwnd" - an unsigned 32 bit integer.

 ? "from" - an IPv6 address with optional prefix. IPv6 only.

 ? "initcwnd" - an unsigned 32 bit integer.

 ? "initrwnd" - an unsigned 32 bit integer.

 ? "lock-cwnd" - a boolean value.

 ? "lock-initcwnd" - a boolean value.

 ? "lock-initrwnd" - a boolean value.

 ? "lock-mtu" - a boolean value.

 ? "lock-window" - a boolean value.

 ? "mtu" - an unsigned 32 bit integer.

 ? "onlink" - a boolean value.

 ? "src" - an IPv6 address.

 ? "table" - an unsigned 32 bit integer. The default depends on ipv6.route-table.

 ? "type" - one of unicast, local, blackhole, unavailable, prohibit. The default is

 unicast.

 ? "window" - an unsigned 32 bit integer.

 For details see also `man ip-route`. Page 48/91

 Format: a comma separated list of routes

 routing-rules

 A comma separated list of routing rules for policy routing. The format is based on ip

 rule add syntax and mostly compatible. One difference is that routing rules in

 NetworkManager always need a fixed priority.

 Example: priority 5 from 1:2:3::5/128 table 45

 Format: a comma separated list of routing rules

 token

 Configure the token for draft-chown-6man-tokenised-ipv6-identifiers-02 IPv6 tokenized

 interface identifiers. Useful with eui64 addr-gen-mode.

 Format: string

 ip-tunnel setting

 IP Tunneling Settings.

 Properties:

 encapsulation-limit

 How many additional levels of encapsulation are permitted to be prepended to packets.

 This property applies only to IPv6 tunnels.

 Format: uint32

 flags

 Tunnel flags. Currently, the following values are supported:

 NM_IP_TUNNEL_FLAG_IP6_IGN_ENCAP_LIMIT (0x1), NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_TCLASS

 (0x2), NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FLOWLABEL (0x4), NM_IP_TUNNEL_FLAG_IP6_MIP6_DEV

 (0x8), NM_IP_TUNNEL_FLAG_IP6_RCV_DSCP_COPY (0x10),

 NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FWMARK (0x20). They are valid only for IPv6 tunnels.

 Format: uint32

 flow-label

 The flow label to assign to tunnel packets. This property applies only to IPv6

 tunnels.

 Format: uint32

 input-key

 The key used for tunnel input packets; the property is valid only for certain tunnel

 modes (GRE, IP6GRE). If empty, no key is used.

 Format: string Page 49/91

 local

 Alias: local

 The local endpoint of the tunnel; the value can be empty, otherwise it must contain an

 IPv4 or IPv6 address.

 Format: string

 mode

 Alias: mode

 The tunneling mode, for example NM_IP_TUNNEL_MODE_IPIP (1) or NM_IP_TUNNEL_MODE_GRE

 (2).

 Format: uint32

 mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple fragments.

 Format: uint32

 output-key

 The key used for tunnel output packets; the property is valid only for certain tunnel

 modes (GRE, IP6GRE). If empty, no key is used.

 Format: string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID the new device

 will be bound to so that tunneled packets will only be routed via that interface.

 Format: string

 path-mtu-discovery

 Whether to enable Path MTU Discovery on this tunnel.

 Format: boolean

 remote

 Alias: remote

 The remote endpoint of the tunnel; the value must contain an IPv4 or IPv6 address.

 Format: string

 tos

 The type of service (IPv4) or traffic class (IPv6) field to be set on tunneled

 packets. Page 50/91

 Format: uint32

 ttl

 The TTL to assign to tunneled packets. 0 is a special value meaning that packets

 inherit the TTL value.

 Format: uint32

 macsec setting

 MACSec Settings.

 Properties:

 encrypt

 Alias: encrypt

 Whether the transmitted traffic must be encrypted.

 Format: boolean

 mka-cak

 Alias: cak

 The pre-shared CAK (Connectivity Association Key) for MACsec Key Agreement.

 Format: string

 mka-cak-flags

 Flags indicating how to handle the "mka-cak" property. See the section called ?Secret

 flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 mka-ckn

 Alias: ckn

 The pre-shared CKN (Connectivity-association Key Name) for MACsec Key Agreement.

 Format: string

 mode

 Alias: mode

 Specifies how the CAK (Connectivity Association Key) for MKA (MACsec Key Agreement) is

 obtained.

 Format: int32

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID from which

 this MACSEC interface should be created. If this property is not specified, the Page 51/91

 connection must contain an "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 port

 Alias: port

 The port component of the SCI (Secure Channel Identifier), between 1 and 65534.

 Format: int32

 send-sci

 Specifies whether the SCI (Secure Channel Identifier) is included in every packet.

 Format: boolean

 validation

 Specifies the validation mode for incoming frames.

 Format: int32

 macvlan setting

 MAC VLAN Settings.

 Properties:

 mode

 Alias: mode

 The macvlan mode, which specifies the communication mechanism between multiple

 macvlans on the same lower device.

 Format: uint32

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID from which

 this MAC-VLAN interface should be created. If this property is not specified, the

 connection must contain an "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 promiscuous

 Whether the interface should be put in promiscuous mode.

 Format: boolean

 tap

 Alias: tap

 Whether the interface should be a MACVTAP.

 Format: boolean Page 52/91

 match setting

 Match settings.

 Properties:

 driver

 A list of driver names to match. Each element is a shell wildcard pattern. See

 NMSettingMatch:interface-name for how special characters '|', '&', '!' and '\' are

 used for optional and mandatory matches and inverting the pattern.

 Format: array of string

 interface-name

 A list of interface names to match. Each element is a shell wildcard pattern. An

 element can be prefixed with a pipe symbol (|) or an ampersand (&). The former means

 that the element is optional and the latter means that it is mandatory. If there are

 any optional elements, than the match evaluates to true if at least one of the

 optional element matches (logical OR). If there are any mandatory elements, then they

 all must match (logical AND). By default, an element is optional. This means that an

 element "foo" behaves the same as "|foo". An element can also be inverted with

 exclamation mark (!) between the pipe symbol (or the ampersand) and before the

 pattern. Note that "!foo" is a shortcut for the mandatory match "&!foo". Finally, a

 backslash can be used at the beginning of the element (after the optional special

 characters) to escape the start of the pattern. For example, "&\!a" is an mandatory

 match for literally "!a".

 Format: array of string

 kernel-command-line

 A list of kernel command line arguments to match. This may be used to check whether a

 specific kernel command line option is set (or unset, if prefixed with the exclamation

 mark). The argument must either be a single word, or an assignment (i.e. two words,

 joined by "="). In the former case the kernel command line is searched for the word

 appearing as is, or as left hand side of an assignment. In the latter case, the exact

 assignment is looked for with right and left hand side matching. Wildcard patterns are

 not supported. See NMSettingMatch:interface-name for how special characters '|', '&',

 '!' and '\' are used for optional and mandatory matches and inverting the match.

 Format: array of string

 path Page 53/91

 A list of paths to match against the ID_PATH udev property of devices. ID_PATH

 represents the topological persistent path of a device. It typically contains a

 subsystem string (pci, usb, platform, etc.) and a subsystem-specific identifier. For

 PCI devices the path has the form "pci-$domain:$bus:$device.$function", where each

 variable is an hexadecimal value; for example "pci-0000:0a:00.0". The path of a device

 can be obtained with "udevadm info /sys/class/net/$dev | grep ID_PATH=" or by looking

 at the "path" property exported by NetworkManager ("nmcli -f general.path device show

 $dev"). Each element of the list is a shell wildcard pattern. See

 NMSettingMatch:interface-name for how special characters '|', '&', '!' and '\' are

 used for optional and mandatory matches and inverting the pattern.

 Format: array of string

 802-11-olpc-mesh setting

 Alias: olpc-mesh

 OLPC Wireless Mesh Settings.

 Properties:

 channel

 Alias: channel

 Channel on which the mesh network to join is located.

 Format: uint32

 dhcp-anycast-address

 Alias: dhcp-anycast

 Anycast DHCP MAC address used when requesting an IP address via DHCP. The specific

 anycast address used determines which DHCP server class answers the request. This is

 currently only implemented by dhclient DHCP plugin.

 Format: byte array

 ssid

 Alias: ssid

 SSID of the mesh network to join.

 Format: byte array

 ovs-bridge setting

 OvsBridge Link Settings.

 Properties:

 datapath-type Page 54/91

 The data path type. One of "system", "netdev" or empty.

 Format: string

 fail-mode

 The bridge failure mode. One of "secure", "standalone" or empty.

 Format: string

 mcast-snooping-enable

 Enable or disable multicast snooping.

 Format: boolean

 rstp-enable

 Enable or disable RSTP.

 Format: boolean

 stp-enable

 Enable or disable STP.

 Format: boolean

 ovs-dpdk setting

 OvsDpdk Link Settings.

 Properties:

 devargs

 Open vSwitch DPDK device arguments.

 Format: string

 n-rxq

 Open vSwitch DPDK number of rx queues. Defaults to zero which means to leave the

 parameter in OVS unspecified and effectively configures one queue.

 Format: uint32

 ovs-interface setting

 Open vSwitch Interface Settings.

 Properties:

 type

 The interface type. Either "internal", "system", "patch", "dpdk", or empty.

 Format: string

 ovs-patch setting

 OvsPatch Link Settings.

 Properties: Page 55/91

 peer

 Specifies the name of the interface for the other side of the patch. The patch on the

 other side must also set this interface as peer.

 Format: string

 ovs-port setting

 OvsPort Link Settings.

 Properties:

 bond-downdelay

 The time port must be inactive in order to be considered down.

 Format: uint32

 bond-mode

 Bonding mode. One of "active-backup", "balance-slb", or "balance-tcp".

 Format: string

 bond-updelay

 The time port must be active before it starts forwarding traffic.

 Format: uint32

 lacp

 LACP mode. One of "active", "off", or "passive".

 Format: string

 tag

 The VLAN tag in the range 0-4095.

 Format: uint32

 vlan-mode

 The VLAN mode. One of "access", "native-tagged", "native-untagged", "trunk" or unset.

 Format: string

 ppp setting

 Point-to-Point Protocol Settings.

 Properties:

 baud

 If non-zero, instruct pppd to set the serial port to the specified baudrate. This

 value should normally be left as 0 to automatically choose the speed.

 Format: uint32

 crtscts Page 56/91

 If TRUE, specify that pppd should set the serial port to use hardware flow control

 with RTS and CTS signals. This value should normally be set to FALSE.

 Format: boolean

 lcp-echo-failure

 If non-zero, instruct pppd to presume the connection to the peer has failed if the

 specified number of LCP echo-requests go unanswered by the peer. The

 "lcp-echo-interval" property must also be set to a non-zero value if this property is

 used.

 Format: uint32

 lcp-echo-interval

 If non-zero, instruct pppd to send an LCP echo-request frame to the peer every n

 seconds (where n is the specified value). Note that some PPP peers will respond to

 echo requests and some will not, and it is not possible to autodetect this.

 Format: uint32

 mppe-stateful

 If TRUE, stateful MPPE is used. See pppd documentation for more information on

 stateful MPPE.

 Format: boolean

 mru

 If non-zero, instruct pppd to request that the peer send packets no larger than the

 specified size. If non-zero, the MRU should be between 128 and 16384.

 Format: uint32

 mtu

 If non-zero, instruct pppd to send packets no larger than the specified size.

 Format: uint32

 no-vj-comp

 If TRUE, Van Jacobsen TCP header compression will not be requested.

 Format: boolean

 noauth

 If TRUE, do not require the other side (usually the PPP server) to authenticate itself

 to the client. If FALSE, require authentication from the remote side. In almost all

 cases, this should be TRUE.

 Format: boolean Page 57/91

 nobsdcomp

 If TRUE, BSD compression will not be requested.

 Format: boolean

 nodeflate

 If TRUE, "deflate" compression will not be requested.

 Format: boolean

 refuse-chap

 If TRUE, the CHAP authentication method will not be used.

 Format: boolean

 refuse-eap

 If TRUE, the EAP authentication method will not be used.

 Format: boolean

 refuse-mschap

 If TRUE, the MSCHAP authentication method will not be used.

 Format: boolean

 refuse-mschapv2

 If TRUE, the MSCHAPv2 authentication method will not be used.

 Format: boolean

 refuse-pap

 If TRUE, the PAP authentication method will not be used.

 Format: boolean

 require-mppe

 If TRUE, MPPE (Microsoft Point-to-Point Encryption) will be required for the PPP

 session. If either 64-bit or 128-bit MPPE is not available the session will fail. Note

 that MPPE is not used on mobile broadband connections.

 Format: boolean

 require-mppe-128

 If TRUE, 128-bit MPPE (Microsoft Point-to-Point Encryption) will be required for the

 PPP session, and the "require-mppe" property must also be set to TRUE. If 128-bit MPPE

 is not available the session will fail.

 Format: boolean

 pppoe setting

 PPP-over-Ethernet Settings. Page 58/91

 Properties:

 parent

 Alias: parent

 If given, specifies the parent interface name on which this PPPoE connection should be

 created. If this property is not specified, the connection is activated on the

 interface specified in "interface-name" of NMSettingConnection.

 Format: string

 password

 Alias: password

 Password used to authenticate with the PPPoE service.

 Format: string

 password-flags

 Flags indicating how to handle the "password" property. See the section called ?Secret

 flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 service

 Alias: service

 If specified, instruct PPPoE to only initiate sessions with access concentrators that

 provide the specified service. For most providers, this should be left blank. It is

 only required if there are multiple access concentrators or a specific service is

 known to be required.

 Format: string

 username

 Alias: username

 Username used to authenticate with the PPPoE service.

 Format: string

 proxy setting

 WWW Proxy Settings.

 Properties:

 browser-only

 Alias: browser-only

 Whether the proxy configuration is for browser only.

 Format: boolean Page 59/91

 method

 Alias: method

 Method for proxy configuration, Default is NM_SETTING_PROXY_METHOD_NONE (0)

 Format: int32

 pac-script

 Alias: pac-script

 PAC script for the connection.

 Format: string

 pac-url

 Alias: pac-url

 PAC URL for obtaining PAC file.

 Format: string

 serial setting

 Serial Link Settings.

 Properties:

 baud

 Speed to use for communication over the serial port. Note that this value usually has

 no effect for mobile broadband modems as they generally ignore speed settings and use

 the highest available speed.

 Format: uint32

 bits

 Byte-width of the serial communication. The 8 in "8n1" for example.

 Format: uint32

 parity

 Parity setting of the serial port.

 Format: NMSettingSerialParity (byte)

 send-delay

 Time to delay between each byte sent to the modem, in microseconds.

 Format: uint64

 stopbits

 Number of stop bits for communication on the serial port. Either 1 or 2. The 1 in

 "8n1" for example.

 Format: uint32 Page 60/91

 sriov setting

 SR-IOV settings.

 Properties:

 autoprobe-drivers

 Whether to autoprobe virtual functions by a compatible driver. If set to

 NM_TERNARY_TRUE (1), the kernel will try to bind VFs to a compatible driver and if

 this succeeds a new network interface will be instantiated for each VF. If set to

 NM_TERNARY_FALSE (0), VFs will not be claimed and no network interfaces will be

 created for them. When set to NM_TERNARY_DEFAULT (-1), the global default is used; in

 case the global default is unspecified it is assumed to be NM_TERNARY_TRUE (1).

 Format: NMTernary (int32)

 total-vfs

 The total number of virtual functions to create. Note that when the sriov setting is

 present NetworkManager enforces the number of virtual functions on the interface (also

 when it is zero) during activation and resets it upon deactivation. To prevent any

 changes to SR-IOV parameters don't add a sriov setting to the connection.

 Format: uint32

 vfs

 Array of virtual function descriptors. Each VF descriptor is a dictionary mapping

 attribute names to GVariant values. The 'index' entry is mandatory for each VF. When

 represented as string a VF is in the form: "INDEX [ATTR=VALUE[ATTR=VALUE]...]". for

 example: "2 mac=00:11:22:33:44:55 spoof-check=true". Multiple VFs can be specified

 using a comma as separator. Currently, the following attributes are supported: mac,

 spoof-check, trust, min-tx-rate, max-tx-rate, vlans. The "vlans" attribute is

 represented as a semicolon-separated list of VLAN descriptors, where each descriptor

 has the form "ID[.PRIORITY[.PROTO]]". PROTO can be either 'q' for 802.1Q (the default)

 or 'ad' for 802.1ad.

 Format: array of vardict

 tc setting

 Linux Traffic Control Settings.

 Properties:

 qdiscs

 Array of TC queueing disciplines. qdisc is a basic block in the Linux traffic control Page 61/91

 subsystem

 Each qdisc can be specified by the following attributes:

 handle HANDLE

 specifies the qdisc handle. A qdisc, which potentially can have children, gets

 assigned a major number, called a 'handle', leaving the minor number namespace

 available for classes. The handle is expressed as '10:'. It is customary to

 explicitly assign a handle to qdiscs expected to have children.

 parent HANDLE

 specifies the handle of the parent qdisc the current qdisc must be attached to.

 root

 specifies that the qdisc is attached to the root of device.

 KIND

 this is the qdisc kind. NetworkManager currently supports the following kinds:

 fq_codel, sfq, tbf. Each qdisc kind has a different set of parameters, described

 below. There are also some kinds like pfifo, pfifo_fast, prio supported by

 NetworkManager but their parameters are not supported by NetworkManager.

 Parameters for 'fq_codel':

 limit U32

 the hard limit on the real queue size. When this limit is reached, incoming

 packets are dropped. Default is 10240 packets.

 memory_limit U32

 sets a limit on the total number of bytes that can be queued in this FQ-CoDel

 instance. The lower of the packet limit of the limit parameter and the memory

 limit will be enforced. Default is 32 MB.

 flows U32

 the number of flows into which the incoming packets are classified. Due to the

 stochastic nature of hashing, multiple flows may end up being hashed into the same

 slot. Newer flows have priority over older ones. This parameter can be set only at

 load time since memory has to be allocated for the hash table. Default value is

 1024.

 target U32

 the acceptable minimum standing/persistent queue delay. This minimum delay is

 identified by tracking the local minimum queue delay that packets experience. The Page 62/91

 unit of measurement is microsecond(us). Default value is 5ms.

 interval U32

 used to ensure that the measured minimum delay does not become too stale. The

 minimum delay must be experienced in the last epoch of length .B interval. It

 should be set on the order of the worst-case RTT through the bottleneck to give

 endpoints sufficient time to react. Default value is 100ms.

 quantum U32

 the number of bytes used as 'deficit' in the fair queuing algorithm. Default is

 set to 1514 bytes which corresponds to the Ethernet MTU plus the hardware header

 length of 14 bytes.

 ecn BOOL

 can be used to mark packets instead of dropping them. ecn is turned on by default.

 ce_threshold U32

 sets a threshold above which all packets are marked with ECN Congestion

 Experienced. This is useful for DCTCP-style congestion control algorithms that

 require marking at very shallow queueing thresholds.

 Parameters for 'sfq':

 divisor U32

 can be used to set a different hash table size, available from kernel 2.6.39

 onwards. The specified divisor must be a power of two and cannot be larger than

 65536. Default value: 1024.

 limit U32

 Upper limit of the SFQ. Can be used to reduce the default length of 127 packets.

 depth U32

 Limit of packets per flow. Default to 127 and can be lowered.

 perturb_period U32

 Interval in seconds for queue algorithm perturbation. Defaults to 0, which means

 that no perturbation occurs. Do not set too low for each perturbation may cause

 some packet reordering or losses. Advised value: 60 This value has no effect when

 external flow classification is used. Its better to increase divisor value to

 lower risk of hash collisions.

 quantum U32

 Amount of bytes a flow is allowed to dequeue during a round of the round robin Page 63/91

 process. Defaults to the MTU of the interface which is also the advised value and

 the minimum value.

 flows U32

 Default value is 127.

 Parameters for 'tbf':

 rate U64

 Bandwidth or rate. These parameters accept a floating point number, possibly

 followed by either a unit (both SI and IEC units supported), or a float followed

 by a percent character to specify the rate as a percentage of the device's speed.

 burst U32

 Also known as buffer or maxburst. Size of the bucket, in bytes. This is the

 maximum amount of bytes that tokens can be available for instantaneously. In

 general, larger shaping rates require a larger buffer. For 10mbit/s on Intel, you

 need at least 10kbyte buffer if you want to reach your configured rate!

 If your buffer is too small, packets may be dropped because more tokens arrive per

 timer tick than fit in your bucket. The minimum buffer size can be calculated by

 dividing the rate by HZ.

 Token usage calculations are performed using a table which by default has a

 resolution of 8 packets. This resolution can be changed by specifying the cell

 size with the burst. For example, to specify a 6000 byte buffer with a 16 byte

 cell size, set a burst of 6000/16. You will probably never have to set this. Must

 be an integral power of 2.

 limit U32

 Limit is the number of bytes that can be queued waiting for tokens to become

 available.

 latency U32

 specifies the maximum amount of time a packet can sit in the TBF. The latency

 calculation takes into account the size of the bucket, the rate and possibly the

 peakrate (if set). The latency and limit are mutually exclusive.

 Format: GPtrArray(NMTCQdisc)

 tfilters

 Array of TC traffic filters. Traffic control can manage the packet content during

 classification by using filters. Page 64/91

 Each tfilters can be specified by the following attributes:

 handle HANDLE

 specifies the tfilters handle. A filter is used by a classful qdisc to determine

 in which class a packet will be enqueued. It is important to notice that filters

 reside within qdiscs. Therefore, see qdiscs handle for detailed information.

 parent HANDLE

 specifies the handle of the parent qdisc the current qdisc must be attached to.

 root

 specifies that the qdisc is attached to the root of device.

 KIND

 this is the tfilters kind. NetworkManager currently supports following kinds:

 mirred, simple. Each filter kind has a different set of actions, described below.

 There are also some other kinds like matchall, basic, u32 supported by

 NetworkManager.

 Actions for 'mirred':

 egress bool

 Define whether the packet should exit from the interface.

 ingress bool

 Define whether the packet should come into the interface.

 mirror bool

 Define whether the packet should be copied to the destination space.

 redirect bool

 Define whether the packet should be moved to the destination space.

 Action for 'simple':

 sdata char[32]

 The actual string to print.

 Format: GPtrArray(NMTCTfilter)

 team setting

 Teaming Settings.

 Properties:

 config

 Alias: config

 The JSON configuration for the team network interface. The property should contain raw Page 65/91

 JSON configuration data suitable for teamd, because the value is passed directly to

 teamd. If not specified, the default configuration is used. See man teamd.conf for the

 format details.

 Format: string

 link-watchers

 Link watchers configuration for the connection: each link watcher is defined by a

 dictionary, whose keys depend upon the selected link watcher. Available link watchers

 are 'ethtool', 'nsna_ping' and 'arp_ping' and it is specified in the dictionary with

 the key 'name'. Available keys are: ethtool: 'delay-up', 'delay-down', 'init-wait';

 nsna_ping: 'init-wait', 'interval', 'missed-max', 'target-host'; arp_ping: all the

 ones in nsna_ping and 'source-host', 'validate-active', 'validate-inactive',

 'send-always'. See teamd.conf man for more details.

 Format: array of vardict

 mcast-rejoin-count

 Corresponds to the teamd mcast_rejoin.count.

 Format: int32

 mcast-rejoin-interval

 Corresponds to the teamd mcast_rejoin.interval.

 Format: int32

 notify-peers-count

 Corresponds to the teamd notify_peers.count.

 Format: int32

 notify-peers-interval

 Corresponds to the teamd notify_peers.interval.

 Format: int32

 runner

 Corresponds to the teamd runner.name. Permitted values are: "roundrobin", "broadcast",

 "activebackup", "loadbalance", "lacp", "random".

 Format: string

 runner-active

 Corresponds to the teamd runner.active.

 Format: boolean

 runner-agg-select-policy Page 66/91

 Corresponds to the teamd runner.agg_select_policy.

 Format: string

 runner-fast-rate

 Corresponds to the teamd runner.fast_rate.

 Format: boolean

 runner-hwaddr-policy

 Corresponds to the teamd runner.hwaddr_policy.

 Format: string

 runner-min-ports

 Corresponds to the teamd runner.min_ports.

 Format: int32

 runner-sys-prio

 Corresponds to the teamd runner.sys_prio.

 Format: int32

 runner-tx-balancer

 Corresponds to the teamd runner.tx_balancer.name.

 Format: string

 runner-tx-balancer-interval

 Corresponds to the teamd runner.tx_balancer.interval.

 Format: int32

 runner-tx-hash

 Corresponds to the teamd runner.tx_hash.

 Format: array of string

 team-port setting

 Team Port Settings.

 Properties:

 config

 Alias: config

 The JSON configuration for the team port. The property should contain raw JSON

 configuration data suitable for teamd, because the value is passed directly to teamd.

 If not specified, the default configuration is used. See man teamd.conf for the format

 details.

 Format: string Page 67/91

 lacp-key

 Corresponds to the teamd ports.PORTIFNAME.lacp_key.

 Format: int32

 lacp-prio

 Corresponds to the teamd ports.PORTIFNAME.lacp_prio.

 Format: int32

 link-watchers

 Link watchers configuration for the connection: each link watcher is defined by a

 dictionary, whose keys depend upon the selected link watcher. Available link watchers

 are 'ethtool', 'nsna_ping' and 'arp_ping' and it is specified in the dictionary with

 the key 'name'. Available keys are: ethtool: 'delay-up', 'delay-down', 'init-wait';

 nsna_ping: 'init-wait', 'interval', 'missed-max', 'target-host'; arp_ping: all the

 ones in nsna_ping and 'source-host', 'validate-active', 'validate-inactive',

 'send-always'. See teamd.conf man for more details.

 Format: array of vardict

 prio

 Corresponds to the teamd ports.PORTIFNAME.prio.

 Format: int32

 queue-id

 Corresponds to the teamd ports.PORTIFNAME.queue_id. When set to -1 means the parameter

 is skipped from the json config.

 Format: int32

 sticky

 Corresponds to the teamd ports.PORTIFNAME.sticky.

 Format: boolean

 tun setting

 Tunnel Settings.

 Properties:

 group

 Alias: group

 The group ID which will own the device. If set to NULL everyone will be able to use

 the device.

 Format: string Page 68/91

 mode

 Alias: mode

 The operating mode of the virtual device. Allowed values are NM_SETTING_TUN_MODE_TUN

 (1) to create a layer 3 device and NM_SETTING_TUN_MODE_TAP (2) to create an

 Ethernet-like layer 2 one.

 Format: uint32

 multi-queue

 Alias: multi-queue

 If the property is set to TRUE, the interface will support multiple file descriptors

 (queues) to parallelize packet sending or receiving. Otherwise, the interface will

 only support a single queue.

 Format: boolean

 owner

 Alias: owner

 The user ID which will own the device. If set to NULL everyone will be able to use the

 device.

 Format: string

 pi

 Alias: pi

 If TRUE the interface will prepend a 4 byte header describing the physical interface

 to the packets.

 Format: boolean

 vnet-hdr

 Alias: vnet-hdr

 If TRUE the IFF_VNET_HDR the tunnel packets will include a virtio network header.

 Format: boolean

 vlan setting

 VLAN Settings.

 Properties:

 egress-priority-map

 Alias: egress

 For outgoing packets, a list of mappings from Linux SKB priorities to 802.1p

 priorities. The mapping is given in the format "from:to" where both "from" and "to" Page 69/91

 are unsigned integers, ie "7:3".

 Format: array of string

 flags

 Alias: flags

 One or more flags which control the behavior and features of the VLAN interface. Flags

 include NM_VLAN_FLAG_REORDER_HEADERS (0x1) (reordering of output packet headers),

 NM_VLAN_FLAG_GVRP (0x2) (use of the GVRP protocol), and NM_VLAN_FLAG_LOOSE_BINDING

 (0x4) (loose binding of the interface to its master device's operating state).

 NM_VLAN_FLAG_MVRP (0x8) (use of the MVRP protocol). The default value of this property

 is NM_VLAN_FLAG_REORDER_HEADERS, but it used to be 0. To preserve backward

 compatibility, the default-value in the D-Bus API continues to be 0 and a missing

 property on D-Bus is still considered as 0.

 Format: NMVlanFlags (uint32)

 id

 Alias: id

 The VLAN identifier that the interface created by this connection should be assigned.

 The valid range is from 0 to 4094, without the reserved id 4095.

 Format: uint32

 ingress-priority-map

 Alias: ingress

 For incoming packets, a list of mappings from 802.1p priorities to Linux SKB

 priorities. The mapping is given in the format "from:to" where both "from" and "to"

 are unsigned integers, ie "7:3".

 Format: array of string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID from which

 this VLAN interface should be created. If this property is not specified, the

 connection must contain an "802-3-ethernet" setting with a "mac-address" property.

 Format: string

 vpn setting

 VPN Settings.

 Properties: Page 70/91

 data

 Dictionary of key/value pairs of VPN plugin specific data. Both keys and values must

 be strings.

 Format: dict of string to string

 persistent

 If the VPN service supports persistence, and this property is TRUE, the VPN will

 attempt to stay connected across link changes and outages, until explicitly

 disconnected.

 Format: boolean

 secrets

 Dictionary of key/value pairs of VPN plugin specific secrets like passwords or private

 keys. Both keys and values must be strings.

 Format: dict of string to string

 service-type

 Alias: vpn-type

 D-Bus service name of the VPN plugin that this setting uses to connect to its network.

 i.e. org.freedesktop.NetworkManager.vpnc for the vpnc plugin.

 Format: string

 timeout

 Timeout for the VPN service to establish the connection. Some services may take quite

 a long time to connect. Value of 0 means a default timeout, which is 60 seconds

 (unless overridden by vpn.timeout in configuration file). Values greater than zero

 mean timeout in seconds.

 Format: uint32

 user-name

 Alias: user

 If the VPN connection requires a user name for authentication, that name should be

 provided here. If the connection is available to more than one user, and the VPN

 requires each user to supply a different name, then leave this property empty. If this

 property is empty, NetworkManager will automatically supply the username of the user

 which requested the VPN connection.

 Format: string

 vrf setting Page 71/91

 VRF settings.

 Properties:

 table

 Alias: table

 The routing table for this VRF.

 Format: uint32

 vxlan setting

 VXLAN Settings.

 Properties:

 ageing

 Specifies the lifetime in seconds of FDB entries learnt by the kernel.

 Format: uint32

 destination-port

 Alias: destination-port

 Specifies the UDP destination port to communicate to the remote VXLAN tunnel endpoint.

 Format: uint32

 id

 Alias: id

 Specifies the VXLAN Network Identifier (or VXLAN Segment Identifier) to use.

 Format: uint32

 l2-miss

 Specifies whether netlink LL ADDR miss notifications are generated.

 Format: boolean

 l3-miss

 Specifies whether netlink IP ADDR miss notifications are generated.

 Format: boolean

 learning

 Specifies whether unknown source link layer addresses and IP addresses are entered

 into the VXLAN device forwarding database.

 Format: boolean

 limit

 Specifies the maximum number of FDB entries. A value of zero means that the kernel

 will store unlimited entries. Page 72/91

 Format: uint32

 local

 Alias: local

 If given, specifies the source IP address to use in outgoing packets.

 Format: string

 parent

 Alias: dev

 If given, specifies the parent interface name or parent connection UUID.

 Format: string

 proxy

 Specifies whether ARP proxy is turned on.

 Format: boolean

 remote

 Alias: remote

 Specifies the unicast destination IP address to use in outgoing packets when the

 destination link layer address is not known in the VXLAN device forwarding database,

 or the multicast IP address to join.

 Format: string

 rsc

 Specifies whether route short circuit is turned on.

 Format: boolean

 source-port-max

 Alias: source-port-max

 Specifies the maximum UDP source port to communicate to the remote VXLAN tunnel

 endpoint.

 Format: uint32

 source-port-min

 Alias: source-port-min

 Specifies the minimum UDP source port to communicate to the remote VXLAN tunnel

 endpoint.

 Format: uint32

 tos

 Specifies the TOS value to use in outgoing packets. Page 73/91

 Format: uint32

 ttl

 Specifies the time-to-live value to use in outgoing packets.

 Format: uint32

 wifi-p2p setting

 Wi-Fi P2P Settings.

 Properties:

 peer

 Alias: peer

 The P2P device that should be connected to. Currently, this is the only way to create

 or join a group.

 Format: string

 wfd-ies

 The Wi-Fi Display (WFD) Information Elements (IEs) to set. Wi-Fi Display requires a

 protocol specific information element to be set in certain Wi-Fi frames. These can be

 specified here for the purpose of establishing a connection. This setting is only

 useful when implementing a Wi-Fi Display client.

 Format: byte array

 wps-method

 Flags indicating which mode of WPS is to be used. There's little point in changing the

 default setting as NetworkManager will automatically determine the best method to use.

 Format: uint32

 wimax setting

 WiMax Settings.

 Properties:

 mac-address

 Alias: mac

 If specified, this connection will only apply to the WiMAX device whose MAC address

 matches. This property does not change the MAC address of the device (known as MAC

 spoofing). Deprecated: 1

 Format: byte array

 network-name

 Alias: nsp Page 74/91

 Network Service Provider (NSP) name of the WiMAX network this connection should use.

 Deprecated: 1

 Format: string

 802-3-ethernet setting

 Alias: ethernet

 Wired Ethernet Settings.

 Properties:

 accept-all-mac-addresses

 When TRUE, setup the interface to accept packets for all MAC addresses. This is

 enabling the kernel interface flag IFF_PROMISC. When FALSE, the interface will only

 accept the packets with the interface destination mac address or broadcast.

 Format: NMTernary (int32)

 auto-negotiate

 When TRUE, enforce auto-negotiation of speed and duplex mode. If "speed" and "duplex"

 properties are both specified, only that single mode will be advertised and accepted

 during the link auto-negotiation process: this works only for BASE-T 802.3

 specifications and is useful for enforcing gigabits modes, as in these cases link

 negotiation is mandatory. When FALSE, "speed" and "duplex" properties should be both

 set or link configuration will be skipped.

 Format: boolean

 cloned-mac-address

 Alias: cloned-mac

 If specified, request that the device use this MAC address instead. This is known as

 MAC cloning or spoofing. Beside explicitly specifying a MAC address, the special

 values "preserve", "permanent", "random" and "stable" are supported. "preserve" means

 not to touch the MAC address on activation. "permanent" means to use the permanent

 hardware address if the device has one (otherwise this is treated as "preserve").

 "random" creates a random MAC address on each connect. "stable" creates a hashed MAC

 address based on connection.stable-id and a machine dependent key. If unspecified, the

 value can be overwritten via global defaults, see manual of NetworkManager.conf. If

 still unspecified, it defaults to "preserve" (older versions of NetworkManager may use

 a different default value). On D-Bus, this field is expressed as

 "assigned-mac-address" or the deprecated "cloned-mac-address". Page 75/91

 Format: byte array

 duplex

 When a value is set, either "half" or "full", configures the device to use the

 specified duplex mode. If "auto-negotiate" is "yes" the specified duplex mode will be

 the only one advertised during link negotiation: this works only for BASE-T 802.3

 specifications and is useful for enforcing gigabits modes, as in these cases link

 negotiation is mandatory. If the value is unset (the default), the link configuration

 will be either skipped (if "auto-negotiate" is "no", the default) or will be

 auto-negotiated (if "auto-negotiate" is "yes") and the local device will advertise all

 the supported duplex modes. Must be set together with the "speed" property if

 specified. Before specifying a duplex mode be sure your device supports it.

 Format: string

 generate-mac-address-mask

 With "cloned-mac-address" setting "random" or "stable", by default all bits of the MAC

 address are scrambled and a locally-administered, unicast MAC address is created. This

 property allows to specify that certain bits are fixed. Note that the least

 significant bit of the first MAC address will always be unset to create a unicast MAC

 address. If the property is NULL, it is eligible to be overwritten by a default

 connection setting. If the value is still NULL or an empty string, the default is to

 create a locally-administered, unicast MAC address. If the value contains one MAC

 address, this address is used as mask. The set bits of the mask are to be filled with

 the current MAC address of the device, while the unset bits are subject to

 randomization. Setting "FE:FF:FF:00:00:00" means to preserve the OUI of the current

 MAC address and only randomize the lower 3 bytes using the "random" or "stable"

 algorithm. If the value contains one additional MAC address after the mask, this

 address is used instead of the current MAC address to fill the bits that shall not be

 randomized. For example, a value of "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the

 OUI of the MAC address to 68:F7:28, while the lower bits are randomized. A value of

 "02:00:00:00:00:00 00:00:00:00:00:00" will create a fully scrambled

 globally-administered, burned-in MAC address. If the value contains more than one

 additional MAC addresses, one of them is chosen randomly. For example,

 "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled

 MAC address, randomly locally or globally administered. Page 76/91

 Format: string

 mac-address

 Alias: mac

 If specified, this connection will only apply to the Ethernet device whose permanent

 MAC address matches. This property does not change the MAC address of the device (i.e.

 MAC spoofing).

 Format: byte array

 mac-address-blacklist

 If specified, this connection will never apply to the Ethernet device whose permanent

 MAC address matches an address in the list. Each MAC address is in the standard

 hex-digits-and-colons notation (00:11:22:33:44:55).

 Format: array of string

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple Ethernet frames.

 Format: uint32

 port

 Specific port type to use if the device supports multiple attachment methods. One of

 "tp" (Twisted Pair), "aui" (Attachment Unit Interface), "bnc" (Thin Ethernet) or "mii"

 (Media Independent Interface). If the device supports only one port type, this setting

 is ignored.

 Format: string

 s390-nettype

 s390 network device type; one of "qeth", "lcs", or "ctc", representing the different

 types of virtual network devices available on s390 systems.

 Format: string

 s390-options

 Dictionary of key/value pairs of s390-specific device options. Both keys and values

 must be strings. Allowed keys include "portno", "layer2", "portname", "protocol",

 among others. Key names must contain only alphanumeric characters (ie, [a-zA-Z0-9]).

 Currently, NetworkManager itself does nothing with this information. However,

 s390utils ships a udev rule which parses this information and applies it to the Page 77/91

 interface.

 Format: dict of string to string

 s390-subchannels

 Identifies specific subchannels that this network device uses for communication with

 z/VM or s390 host. Like the "mac-address" property for non-z/VM devices, this property

 can be used to ensure this connection only applies to the network device that uses

 these subchannels. The list should contain exactly 3 strings, and each string may only

 be composed of hexadecimal characters and the period (.) character.

 Format: array of string

 speed

 When a value greater than 0 is set, configures the device to use the specified speed.

 If "auto-negotiate" is "yes" the specified speed will be the only one advertised

 during link negotiation: this works only for BASE-T 802.3 specifications and is useful

 for enforcing gigabit speeds, as in this case link negotiation is mandatory. If the

 value is unset (0, the default), the link configuration will be either skipped (if

 "auto-negotiate" is "no", the default) or will be auto-negotiated (if "auto-negotiate"

 is "yes") and the local device will advertise all the supported speeds. In Mbit/s, ie

 100 == 100Mbit/s. Must be set together with the "duplex" property when non-zero.

 Before specifying a speed value be sure your device supports it.

 Format: uint32

 wake-on-lan

 The NMSettingWiredWakeOnLan options to enable. Not all devices support all options.

 May be any combination of NM_SETTING_WIRED_WAKE_ON_LAN_PHY (0x2),

 NM_SETTING_WIRED_WAKE_ON_LAN_UNICAST (0x4), NM_SETTING_WIRED_WAKE_ON_LAN_MULTICAST

 (0x8), NM_SETTING_WIRED_WAKE_ON_LAN_BROADCAST (0x10),

NM_SETTING_WIRED_WAKE_ON_LAN_ARP

 (0x20), NM_SETTING_WIRED_WAKE_ON_LAN_MAGIC (0x40) or the special values

 NM_SETTING_WIRED_WAKE_ON_LAN_DEFAULT (0x1) (to use global settings) and

 NM_SETTING_WIRED_WAKE_ON_LAN_IGNORE (0x8000) (to disable management of Wake-on-LAN in

 NetworkManager).

 Format: uint32

 wake-on-lan-password

 If specified, the password used with magic-packet-based Wake-on-LAN, represented as an Page 78/91

 Ethernet MAC address. If NULL, no password will be required.

 Format: string

 wireguard setting

 WireGuard Settings.

 Properties:

 fwmark

 The use of fwmark is optional and is by default off. Setting it to 0 disables it.

 Otherwise, it is a 32-bit fwmark for outgoing packets. Note that

 "ip4-auto-default-route" or "ip6-auto-default-route" enabled, implies to automatically

 choose a fwmark.

 Format: uint32

 ip4-auto-default-route

 Whether to enable special handling of the IPv4 default route. If enabled, the IPv4

 default route from wireguard.peer-routes will be placed to a dedicated routing-table

 and two policy routing rules will be added. The fwmark number is also used as

 routing-table for the default-route, and if fwmark is zero, an unused fwmark/table is

 chosen automatically. This corresponds to what wg-quick does with Table=auto and what

 WireGuard calls "Improved Rule-based Routing". Note that for this automatism to work,

 you usually don't want to set ipv4.gateway, because that will result in a conflicting

 default route. Leaving this at the default will enable this option automatically if

 ipv4.never-default is not set and there are any peers that use a default-route as

 allowed-ips.

 Format: NMTernary (int32)

 ip6-auto-default-route

 Like ip4-auto-default-route, but for the IPv6 default route.

 Format: NMTernary (int32)

 listen-port

 The listen-port. If listen-port is not specified, the port will be chosen randomly

 when the interface comes up.

 Format: uint32

 mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple fragments. If zero a default MTU is used. Note that contrary Page 79/91

 to wg-quick's MTU setting, this does not take into account the current routes at the

 time of activation.

 Format: uint32

 peer-routes

 Whether to automatically add routes for the AllowedIPs ranges of the peers. If TRUE

 (the default), NetworkManager will automatically add routes in the routing tables

 according to ipv4.route-table and ipv6.route-table. Usually you want this automatism

 enabled. If FALSE, no such routes are added automatically. In this case, the user may

 want to configure static routes in ipv4.routes and ipv6.routes, respectively. Note

 that if the peer's AllowedIPs is "0.0.0.0/0" or "::/0" and the profile's

 ipv4.never-default or ipv6.never-default setting is enabled, the peer route for this

 peer won't be added automatically.

 Format: boolean

 private-key

 The 256 bit private-key in base64 encoding.

 Format: string

 private-key-flags

 Flags indicating how to handle the "private-key" property. See the section called

 ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 802-11-wireless setting

 Alias: wifi

 Wi-Fi Settings.

 Properties:

 ap-isolation

 Configures AP isolation, which prevents communication between wireless devices

 connected to this AP. This property can be set to a value different from

 NM_TERNARY_DEFAULT (-1) only when the interface is configured in AP mode. If set to

 NM_TERNARY_TRUE (1), devices are not able to communicate with each other. This

 increases security because it protects devices against attacks from other clients in

 the network. At the same time, it prevents devices to access resources on the same

 wireless networks as file shares, printers, etc. If set to NM_TERNARY_FALSE (0),

 devices can talk to each other. When set to NM_TERNARY_DEFAULT (-1), the global Page 80/91

 default is used; in case the global default is unspecified it is assumed to be

 NM_TERNARY_FALSE (0).

 Format: NMTernary (int32)

 band

 802.11 frequency band of the network. One of "a" for 5GHz 802.11a or "bg" for 2.4GHz

 802.11. This will lock associations to the Wi-Fi network to the specific band, i.e. if

 "a" is specified, the device will not associate with the same network in the 2.4GHz

 band even if the network's settings are compatible. This setting depends on specific

 driver capability and may not work with all drivers.

 Format: string

 bssid

 If specified, directs the device to only associate with the given access point. This

 capability is highly driver dependent and not supported by all devices. Note: this

 property does not control the BSSID used when creating an Ad-Hoc network and is

 unlikely to in the future.

 Format: byte array

 channel

 Wireless channel to use for the Wi-Fi connection. The device will only join (or create

 for Ad-Hoc networks) a Wi-Fi network on the specified channel. Because channel numbers

 overlap between bands, this property also requires the "band" property to be set.

 Format: uint32

 cloned-mac-address

 Alias: cloned-mac

 If specified, request that the device use this MAC address instead. This is known as

 MAC cloning or spoofing. Beside explicitly specifying a MAC address, the special

 values "preserve", "permanent", "random" and "stable" are supported. "preserve" means

 not to touch the MAC address on activation. "permanent" means to use the permanent

 hardware address of the device. "random" creates a random MAC address on each connect.

 "stable" creates a hashed MAC address based on connection.stable-id and a machine

 dependent key. If unspecified, the value can be overwritten via global defaults, see

 manual of NetworkManager.conf. If still unspecified, it defaults to "preserve" (older

 versions of NetworkManager may use a different default value). On D-Bus, this field is

 expressed as "assigned-mac-address" or the deprecated "cloned-mac-address". Page 81/91

 Format: byte array

 generate-mac-address-mask

 With "cloned-mac-address" setting "random" or "stable", by default all bits of the MAC

 address are scrambled and a locally-administered, unicast MAC address is created. This

 property allows to specify that certain bits are fixed. Note that the least

 significant bit of the first MAC address will always be unset to create a unicast MAC

 address. If the property is NULL, it is eligible to be overwritten by a default

 connection setting. If the value is still NULL or an empty string, the default is to

 create a locally-administered, unicast MAC address. If the value contains one MAC

 address, this address is used as mask. The set bits of the mask are to be filled with

 the current MAC address of the device, while the unset bits are subject to

 randomization. Setting "FE:FF:FF:00:00:00" means to preserve the OUI of the current

 MAC address and only randomize the lower 3 bytes using the "random" or "stable"

 algorithm. If the value contains one additional MAC address after the mask, this

 address is used instead of the current MAC address to fill the bits that shall not be

 randomized. For example, a value of "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the

 OUI of the MAC address to 68:F7:28, while the lower bits are randomized. A value of

 "02:00:00:00:00:00 00:00:00:00:00:00" will create a fully scrambled

 globally-administered, burned-in MAC address. If the value contains more than one

 additional MAC addresses, one of them is chosen randomly. For example,

 "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled

 MAC address, randomly locally or globally administered.

 Format: string

 hidden

 If TRUE, indicates that the network is a non-broadcasting network that hides its SSID.

 This works both in infrastructure and AP mode. In infrastructure mode, various

 workarounds are used for a more reliable discovery of hidden networks, such as

 probe-scanning the SSID. However, these workarounds expose inherent insecurities with

 hidden SSID networks, and thus hidden SSID networks should be used with caution. In AP

 mode, the created network does not broadcast its SSID. Note that marking the network

 as hidden may be a privacy issue for you (in infrastructure mode) or client stations

 (in AP mode), as the explicit probe-scans are distinctly recognizable on the air.

 Format: boolean Page 82/91

 mac-address

 Alias: mac

 If specified, this connection will only apply to the Wi-Fi device whose permanent MAC

 address matches. This property does not change the MAC address of the device (i.e. MAC

 spoofing).

 Format: byte array

 mac-address-blacklist

 A list of permanent MAC addresses of Wi-Fi devices to which this connection should

 never apply. Each MAC address should be given in the standard hex-digits-and-colons

 notation (eg "00:11:22:33:44:55").

 Format: array of string

 mac-address-randomization

 One of NM_SETTING_MAC_RANDOMIZATION_DEFAULT (0) (never randomize unless the user has

 set a global default to randomize and the supplicant supports randomization),

 NM_SETTING_MAC_RANDOMIZATION_NEVER (1) (never randomize the MAC address), or

 NM_SETTING_MAC_RANDOMIZATION_ALWAYS (2) (always randomize the MAC address). This

 property is deprecated for 'cloned-mac-address'. Deprecated: 1

 Format: uint32

 mode

 Alias: mode

 Wi-Fi network mode; one of "infrastructure", "mesh", "adhoc" or "ap". If blank,

 infrastructure is assumed.

 Format: string

 mtu

 Alias: mtu

 If non-zero, only transmit packets of the specified size or smaller, breaking larger

 packets up into multiple Ethernet frames.

 Format: uint32

 powersave

 One of NM_SETTING_WIRELESS_POWERSAVE_DISABLE (2) (disable Wi-Fi power saving),

 NM_SETTING_WIRELESS_POWERSAVE_ENABLE (3) (enable Wi-Fi power saving),

 NM_SETTING_WIRELESS_POWERSAVE_IGNORE (1) (don't touch currently configure setting) or

 NM_SETTING_WIRELESS_POWERSAVE_DEFAULT (0) (use the globally configured value). All Page 83/91

 other values are reserved.

 Format: uint32

 rate

 If non-zero, directs the device to only use the specified bitrate for communication

 with the access point. Units are in Kb/s, ie 5500 = 5.5 Mbit/s. This property is

 highly driver dependent and not all devices support setting a static bitrate.

 Format: uint32

 seen-bssids

 A list of BSSIDs (each BSSID formatted as a MAC address like "00:11:22:33:44:55") that

 have been detected as part of the Wi-Fi network. NetworkManager internally tracks

 previously seen BSSIDs. The property is only meant for reading and reflects the BSSID

 list of NetworkManager. The changes you make to this property will not be preserved.

 Format: array of string

 ssid

 Alias: ssid

 SSID of the Wi-Fi network. Must be specified.

 Format: byte array

 tx-power

 If non-zero, directs the device to use the specified transmit power. Units are dBm.

 This property is highly driver dependent and not all devices support setting a static

 transmit power.

 Format: uint32

 wake-on-wlan

 The NMSettingWirelessWakeOnWLan options to enable. Not all devices support all

 options. May be any combination of NM_SETTING_WIRELESS_WAKE_ON_WLAN_ANY (0x2),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_DISCONNECT (0x4),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_MAGIC (0x8),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_GTK_REKEY_FAILURE (0x10),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_EAP_IDENTITY_REQUEST (0x20),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_4WAY_HANDSHAKE (0x40),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_RFKILL_RELEASE (0x80),

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_TCP (0x100) or the special values

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_DEFAULT (0x1) (to use global settings) and Page 84/91

 NM_SETTING_WIRELESS_WAKE_ON_WLAN_IGNORE (0x8000) (to disable management of Wake-on-LAN

 in NetworkManager).

 Format: uint32

 802-11-wireless-security setting

 Alias: wifi-sec

 Wi-Fi Security Settings.

 Properties:

 auth-alg

 When WEP is used (ie, key-mgmt = "none" or "ieee8021x") indicate the 802.11

 authentication algorithm required by the AP here. One of "open" for Open System,

 "shared" for Shared Key, or "leap" for Cisco LEAP. When using Cisco LEAP (ie, key-mgmt

 = "ieee8021x" and auth-alg = "leap") the "leap-username" and "leap-password"

 properties must be specified.

 Format: string

 fils

 Indicates whether Fast Initial Link Setup (802.11ai) must be enabled for the

 connection. One of NM_SETTING_WIRELESS_SECURITY_FILS_DEFAULT (0) (use global default

 value), NM_SETTING_WIRELESS_SECURITY_FILS_DISABLE (1) (disable FILS),

 NM_SETTING_WIRELESS_SECURITY_FILS_OPTIONAL (2) (enable FILS if the supplicant and the

 access point support it) or NM_SETTING_WIRELESS_SECURITY_FILS_REQUIRED (3) (enable

 FILS and fail if not supported). When set to NM_SETTING_WIRELESS_SECURITY_FILS_DEFAULT

 (0) and no global default is set, FILS will be optionally enabled.

 Format: int32

 group

 A list of group/broadcast encryption algorithms which prevents connections to Wi-Fi

 networks that do not utilize one of the algorithms in the list. For maximum

 compatibility leave this property empty. Each list element may be one of "wep40",

 "wep104", "tkip", or "ccmp".

 Format: array of string

 key-mgmt

 Key management used for the connection. One of "none" (WEP or no password protection),

 "ieee8021x" (Dynamic WEP), "owe" (Opportunistic Wireless Encryption), "wpa-psk" (WPA2

 + WPA3 personal), "sae" (WPA3 personal only), "wpa-eap" (WPA2 + WPA3 enterprise) or Page 85/91

 "wpa-eap-suite-b-192" (WPA3 enterprise only). This property must be set for any Wi-Fi

 connection that uses security.

 Format: string

 leap-password

 The login password for legacy LEAP connections (ie, key-mgmt = "ieee8021x" and

 auth-alg = "leap").

 Format: string

 leap-password-flags

 Flags indicating how to handle the "leap-password" property. See the section called

 ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 leap-username

 The login username for legacy LEAP connections (ie, key-mgmt = "ieee8021x" and

 auth-alg = "leap").

 Format: string

 pairwise

 A list of pairwise encryption algorithms which prevents connections to Wi-Fi networks

 that do not utilize one of the algorithms in the list. For maximum compatibility leave

 this property empty. Each list element may be one of "tkip" or "ccmp".

 Format: array of string

 pmf

 Indicates whether Protected Management Frames (802.11w) must be enabled for the

 connection. One of NM_SETTING_WIRELESS_SECURITY_PMF_DEFAULT (0) (use global default

 value), NM_SETTING_WIRELESS_SECURITY_PMF_DISABLE (1) (disable PMF),

 NM_SETTING_WIRELESS_SECURITY_PMF_OPTIONAL (2) (enable PMF if the supplicant and the

 access point support it) or NM_SETTING_WIRELESS_SECURITY_PMF_REQUIRED (3) (enable PMF

 and fail if not supported). When set to NM_SETTING_WIRELESS_SECURITY_PMF_DEFAULT (0)

 and no global default is set, PMF will be optionally enabled.

 Format: int32

 proto

 List of strings specifying the allowed WPA protocol versions to use. Each element may

 be one "wpa" (allow WPA) or "rsn" (allow WPA2/RSN). If not specified, both WPA and RSN

 connections are allowed. Page 86/91

 Format: array of string

 psk

 Pre-Shared-Key for WPA networks. For WPA-PSK, it's either an ASCII passphrase of 8 to

 63 characters that is (as specified in the 802.11i standard) hashed to derive the

 actual key, or the key in form of 64 hexadecimal character. The WPA3-Personal networks

 use a passphrase of any length for SAE authentication.

 Format: string

 psk-flags

 Flags indicating how to handle the "psk" property. See the section called ?Secret flag

 types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 wep-key-flags

 Flags indicating how to handle the "wep-key0", "wep-key1", "wep-key2", and "wep-key3"

 properties. See the section called ?Secret flag types:? for flag values.

 Format: NMSettingSecretFlags (uint32)

 wep-key-type

 Controls the interpretation of WEP keys. Allowed values are NM_WEP_KEY_TYPE_KEY (1),

 in which case the key is either a 10- or 26-character hexadecimal string, or a 5- or

 13-character ASCII password; or NM_WEP_KEY_TYPE_PASSPHRASE (2), in which case the

 passphrase is provided as a string and will be hashed using the de-facto MD5 method to

 derive the actual WEP key.

 Format: NMWepKeyType (uint32)

 wep-key0

 Index 0 WEP key. This is the WEP key used in most networks. See the "wep-key-type"

 property for a description of how this key is interpreted.

 Format: string

 wep-key1

 Index 1 WEP key. This WEP index is not used by most networks. See the "wep-key-type"

 property for a description of how this key is interpreted.

 Format: string

 wep-key2

 Index 2 WEP key. This WEP index is not used by most networks. See the "wep-key-type"

 property for a description of how this key is interpreted. Page 87/91

 Format: string

 wep-key3

 Index 3 WEP key. This WEP index is not used by most networks. See the "wep-key-type"

 property for a description of how this key is interpreted.

 Format: string

 wep-tx-keyidx

 When static WEP is used (ie, key-mgmt = "none") and a non-default WEP key index is

 used by the AP, put that WEP key index here. Valid values are 0 (default key) through

 3. Note that some consumer access points (like the Linksys WRT54G) number the keys 1 -

 4.

 Format: uint32

 wps-method

 Flags indicating which mode of WPS is to be used if any. There's little point in

 changing the default setting as NetworkManager will automatically determine whether

 it's feasible to start WPS enrollment from the Access Point capabilities. WPS can be

 disabled by setting this property to a value of 1.

 Format: uint32

 wpan setting

 IEEE 802.15.4 (WPAN) MAC Settings.

 Properties:

 channel

 Alias: channel

 IEEE 802.15.4 channel. A positive integer or -1, meaning "do not set, use whatever the

 device is already set to".

 Format: int32

 mac-address

 Alias: mac

 If specified, this connection will only apply to the IEEE 802.15.4 (WPAN) MAC layer

 device whose permanent MAC address matches.

 Format: string

 page

 Alias: page

 IEEE 802.15.4 channel page. A positive integer or -1, meaning "do not set, use Page 88/91

 whatever the device is already set to".

 Format: int32

 pan-id

 Alias: pan-id

 IEEE 802.15.4 Personal Area Network (PAN) identifier.

 Format: uint32

 short-address

 Alias: short-addr

 Short IEEE 802.15.4 address to be used within a restricted environment.

 Format: uint32

 bond-port setting

 Bond Port Settings.

 Properties:

 queue-id

 Alias: queue-id

 The queue ID of this bond port. The maximum value of queue ID is the number of TX

 queues currently active in device.

 Format: uint32

 hostname setting

 Hostname settings.

 Properties:

 from-dhcp

 Whether the system hostname can be determined from DHCP on this connection. When set

 to NM_TERNARY_DEFAULT (-1), the value from global configuration is used. If the

 property doesn't have a value in the global configuration, NetworkManager assumes the

 value to be NM_TERNARY_TRUE (1).

 Format: NMTernary (int32)

 from-dns-lookup

 Whether the system hostname can be determined from reverse DNS lookup of addresses on

 this device. When set to NM_TERNARY_DEFAULT (-1), the value from global configuration

 is used. If the property doesn't have a value in the global configuration,

 NetworkManager assumes the value to be NM_TERNARY_TRUE (1).

 Format: NMTernary (int32) Page 89/91

 only-from-default

 If set to NM_TERNARY_TRUE (1), NetworkManager attempts to get the hostname via

 DHCPv4/DHCPv6 or reverse DNS lookup on this device only when the device has the

 default route for the given address family (IPv4/IPv6). If set to NM_TERNARY_FALSE

 (0), the hostname can be set from this device even if it doesn't have the default

 route. When set to NM_TERNARY_DEFAULT (-1), the value from global configuration is

 used. If the property doesn't have a value in the global configuration, NetworkManager

 assumes the value to be NM_TERNARY_FALSE (0).

 Format: NMTernary (int32)

 priority

 The relative priority of this connection to determine the system hostname. A lower

 numerical value is better (higher priority). A connection with higher priority is

 considered before connections with lower priority. If the value is zero, it can be

 overridden by a global value from NetworkManager configuration. If the property

 doesn't have a value in the global configuration, the value is assumed to be 100.

 Negative values have the special effect of excluding other connections with a greater

 numerical priority value; so in presence of at least one negative priority, only

 connections with the lowest priority value will be used to determine the hostname.

 Format: int32

 veth setting

 Veth Settings.

 Properties:

 peer

 Alias: peer

 This property specifies the peer interface name of the veth. This property is

 mandatory.

 Format: string

 Secret flag types:

 Each password or secret property in a setting has an associated flags property that

 describes how to handle that secret. The flags property is a bitfield that contains zero

 or more of the following values logically OR-ed together.

 ? 0x0 (none) - the system is responsible for providing and storing this secret. This may

 be required so that secrets are already available before the user logs in. It also Page 90/91

 commonly means that the secret will be stored in plain text on disk, accessible to

 root only. For example via the keyfile settings plugin as described in the "PLUGINS"

 section in NetworkManager.conf(5).

 ? 0x1 (agent-owned) - a user-session secret agent is responsible for providing and

 storing this secret; when it is required, agents will be asked to provide it.

 ? 0x2 (not-saved) - this secret should not be saved but should be requested from the

 user each time it is required. This flag should be used for One-Time-Pad secrets, PIN

 codes from hardware tokens, or if the user simply does not want to save the secret.

 ? 0x4 (not-required) - in some situations it cannot be automatically determined that a

 secret is required or not. This flag hints that the secret is not required and should

 not be requested from the user.

FILES

 /etc/NetworkManager/system-connections or distro plugin-specific location

SEE ALSO

 nmcli(1), nmcli-examples(7), NetworkManager(8), nm-settings-dbus(5), nm-settings-

 keyfile(5), NetworkManager.conf(5)

NetworkManager 1.36.6 NM-SETTINGS-NMCLI(5)

Page 91/91

