FPDF Library

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'nm-settings.5'
$ man nm-settings.5
NM-SETTINGS-NMCLI(5) Configuration NM-SETTINGS-NMCLI(5)
NAME
nm-settings-nmcli - Description of settings and properties of NetworkManager connection
profiles for nmcli
DESCRIPTION
NetworkManager is based on a concept of connection profiles, sometimes referred to as
connections only. These connection profiles contain a network configuration. When
NetworkManager activates a connection profile on a network device the configuration will
be applied and an active network connection will be established. Users are free to create
as many connection profiles as they see fit. Thus they are flexible in having various
network configurations for different networking needs.
NetworkManager provides an API for configuring connection profiles, for activating them to
configure the network, and inspecting the current network configuration. The command line
tool nmcli is a client application to NetworkManager that uses this APIl. See nmcli(1) for
details.
With commands like nmcli connection add, nmcli connection modify and nmcli connection
show, connection profiles can be created, modified and inspected. A profile consists of
properties. On D-Bus this follows the format as described by nm-settings-dbus(5), while
this manual page describes the settings format how they are expected by nmcli.
The settings and properties shown in tables below list all available connection
configuration options. However, note that not all settings are applicable to all
connection types. nmcli connection editor has also a built-in describe command that can

display description of particular settings and properties of this page. Page 1/91

The setting and property can be abbreviated provided they are unique. The list below also

shows aliases that can be used unqualified instead of the full name. For example

connection.interface-name and ifname refer to the same property.

connection setting

General Connection Profile Settings.

Properties:

auth-retries
The number of retries for the authentication. Zero means to try indefinitely; -1 means
to use a global default. If the global default is not set, the authentication retries
for 3 times before failing the connection. Currently, this only applies to 802-1x
authentication.
Format: int32

autoconnect
Alias: autoconnect
Whether or not the connection should be automatically connected by NetworkManager when
the resources for the connection are available. TRUE to automatically activate the
connection, FALSE to require manual intervention to activate the connection.
Autoconnect happens when the circumstances are suitable. That means for example that
the device is currently managed and not active. Autoconnect thus never replaces or
competes with an already active profile. Note that autoconnect is not implemented for
VPN profiles. See "secondaries" as an alternative to automatically connect VPN
profiles.
Format: boolean

autoconnect-priority
The autoconnect priority in range -999 to 999. If the connection is set to
autoconnect, connections with higher priority will be preferred. The higher number
means higher priority. Defaults to 0. Note that this property only matters if there
are more than one candidate profile to select for autoconnect. In case of equal
priority, the profile used most recently is chosen.
Format: int32

autoconnect-retries
The number of times a connection should be tried when autoactivating before giving up.

Zero means forever, -1 means the global default (4 times if not overridden). Setting Page 2/91

this to 1 means to try activation only once before blocking autoconnect. Note that
after a timeout, NetworkManager will try to autoconnect again.
Format: int32

autoconnect-slaves
Whether or not slaves of this connection should be automatically brought up when
NetworkManager activates this connection. This only has a real effect for master
connections. The properties "autoconnect"”, "autoconnect-priority" and
"autoconnect-retries" are unrelated to this setting. The permitted values are: 0:
leave slave connections untouched, 1: activate all the slave connections with this
connection, -1: default. If -1 (default) is set, global connection.autoconnect-slaves
is read to determine the real value. If it is default as well, this fallbacks to 0.
Format: NMSettingConnectionAutoconnectSlaves (int32)

dns-over-tls
Whether DNSOverTls (dns-over-tls) is enabled for the connection. DNSOverTls is a
technology which uses TLS to encrypt dns traffic. The permitted values are: "yes" (2)
use DNSOverTls and disabled fallback, "opportunistic" (1) use DNSOverTls but allow
fallback to unencrypted resolution, "no" (0) don't ever use DNSOverTls. If unspecified
"default" depends on the plugin used. Systemd-resolved uses global setting. This
feature requires a plugin which supports DNSOverTls. Otherwise, the setting has no
effect. One such plugin is dns-systemd-resolved.
Format: int32

gateway-ping-timeout
If greater than zero, delay success of IP addressing until either the timeout is
reached, or an IP gateway replies to a ping.
Format: uint32

id
Alias: con-name
A human readable unique identifier for the connection, like "Work Wi-Fi" or "T-Mobile
3G".
Format: string

interface-name
Alias: ifname

The name of the network interface this connection is bound to. If not set, then the Page 3/91

connection can be attached to any interface of the appropriate type (subject to
restrictions imposed by other settings). For software devices this specifies the name
of the created device. For connection types where interface names cannot easily be
made persistent (e.g. mobile broadband or USB Ethernet), this property should not be
used. Setting this property restricts the interfaces a connection can be used with,
and if interface names change or are reordered the connection may be applied to the
wrong interface.
Format: string

lldp
Whether LLDP is enabled for the connection.
Format: int32

lImnr
Whether Link-Local Multicast Name Resolution (LLMNR) is enabled for the connection.
LLMNR is a protocol based on the Domain Name System (DNS) packet format that allows
both IPv4 and IPv6 hosts to perform name resolution for hosts on the same local link.
The permitted values are: "yes" (2) register hostname and resolving for the
connection, "no" (0) disable LLMNR for the interface, "resolve" (1) do not register
hostname but allow resolving of LLMNR host names If unspecified, "default” ultimately
depends on the DNS plugin (which for systemd-resolved currently means "yes"). This
feature requires a plugin which supports LLMNR. Otherwise, the setting has no effect.
One such plugin is dns-systemd-resolved.
Format: int32

master
Alias: master
Interface name of the master device or UUID of the master connection.
Format: string

mdns
Whether mDNS is enabled for the connection. The permitted values are: "yes" (2)
register hostname and resolving for the connection, "no" (0) disable mMDNS for the
interface, "resolve" (1) do not register hostname but allow resolving of mDNS host
names and "default" (-1) to allow lookup of a global default in NetworkManager.conf.
If unspecified, "default" ultimately depends on the DNS plugin (which for

systemd-resolved currently means "no"). This feature requires a plugin which supports Page 4/91

mDNS. Otherwise, the setting has no effect. One such plugin is dns-systemd-resolved.
Format: int32

metered
Whether the connection is metered. When updating this property on a currently
activated connection, the change takes effect immediately.
Format: NMMetered (int32)

mud-url
If configured, set to a Manufacturer Usage Description (MUD) URL that points to
manufacturer-recommended network policies for 10T devices. It is transmitted as a
DHCPv4 or DHCPV6 option. The value must be a valid URL starting with "https://". The
special value "none" is allowed to indicate that no MUD URL is used. If the
per-profile value is unspecified (the default), a global connection default gets
consulted. If still unspecified, the ultimate default is "none".
Format: string

multi-connect
Specifies whether the profile can be active multiple times at a particular moment. The
value is of type NMConnectionMultiConnect.
Format: int32

permissions
An array of strings defining what access a given user has to this connection. If this
is NULL or empty, all users are allowed to access this connection; otherwise users are
allowed if and only if they are in this list. When this is not empty, the connection
can be active only when one of the specified users is logged into an active session.
Each entry is of the form "[type]:[id]:[reserved]"; for example, "user:dcbw:blah”. At
this time only the "user" [type] is allowed. Any other values are ignored and reserved
for future use. [id] is the username that this permission refers to, which may not
contain the ":" character. Any [reserved] information present must be ignored and is
reserved for future use. All of [type], [id], and [reserved] must be valid UTF-8.
Format: array of string

read-only
FALSE if the connection can be modified using the provided settings service's D-Bus
interface with the right privileges, or TRUE if the connection is read-only and cannot

be modified. Page 5/91

Format: boolean

secondaries
List of connection UUIDs that should be activated when the base connection itself is
activated. Currently, only VPN connections are supported.
Format: array of string

slave-type
Alias: slave-type
Setting name of the device type of this slave's master connection (eg, "bond"), or
NULL if this connection is not a slave.
Format: string

stable-id
This represents the identity of the connection used for various purposes. It allows to
configure multiple profiles to share the identity. Also, the stable-id can contain
placeholders that are substituted dynamically and deterministically depending on the
context. The stable-id is used for generating IPv6 stable private addresses with
ipv6.addr-gen-mode=stable-privacy. It is also used to seed the generated cloned MAC
address for ethernet.cloned-mac-address=stable and wifi.cloned-mac-address=stable. It
is also used as DHCP client identifier with ipv4.dhcp-client-id=stable and to derive
the DHCP DUID with ipv6.dhcp-duid=stable-[lIt,Il,uuid]. Note that depending on the
context where it is used, other parameters are also seeded into the generation
algorithm. For example, a per-host key is commonly also included, so that different
systems end up generating different IDs. Or with ipv6.addr-gen-mode=stable-privacy,
also the device's name is included, so that different interfaces yield different
addresses. The per-host key is the identity of your machine and stored in
Ivarl/lib/NetworkManager/secret-key. The '$' character is treated special to perform
dynamic substitutions at runtime. Currently, supported are "${CONNECTION}",
"${DEVICE}", "${MAC}", "${BOOT}", "${RANDOM}". These effectively create unique IDs
per-connection, per-device, per-boot, or every time. Note that "${DEVICE}" corresponds
to the interface name of the device and "${MAC}" is the permanent MAC address of the
device. Any unrecognized patterns following '$' are treated verbatim, however are
reserved for future use. You are thus advised to avoid '$' or escape it as "$$". For
example, set it to "${CONNECTION}-${BOOT}-${DEVICE}" to create a unique id for this

connection that changes with every reboot and differs depending on the interface where Page 6/91

the profile activates. If the value is unset, a global connection default is
consulted. If the value is still unset, the default is similar to "${CONNECTION}" and
uses a unique, fixed ID for the connection.
Format: string

timestamp
The time, in seconds since the Unix Epoch, that the connection was last _successfully
fully activated. NetworkManager updates the connection timestamp periodically when the
connection is active to ensure that an active connection has the latest timestamp. The
property is only meant for reading (changes to this property will not be preserved).
Format: uint64

type
Alias: type
Base type of the connection. For hardware-dependent connections, should contain the
setting name of the hardware-type specific setting (ie, "802-3-ethernet" or
"802-11-wireless" or "bluetooth”, etc), and for non-hardware dependent connections
like VPN or otherwise, should contain the setting name of that setting type (ie, "vpn"
or "bridge", etc).
Format: string

uuid
A universally unique identifier for the connection, for example generated with
libuuid. It should be assigned when the connection is created, and never changed as
long as the connection still applies to the same network. For example, it should not
be changed when the "id" property or NMSettingIlP4Config changes, but might need to be
re-created when the Wi-Fi SSID, mobile broadband network provider, or "type" property
changes. The UUID must be in the format "2815492f-7e56-435e-b2e9-246bd7cdc664" (ie,
contains only hexadecimal characters and "-").
Format: string

wait-device-timeout
Timeout in milliseconds to wait for device at startup. During boot, devices may take a
while to be detected by the driver. This property will cause to delay
NetworkManager-wait-online.service and nm-online to give the device a chance to
appear. This works by waiting for the given timeout until a compatible device for the

profile is available and managed. The value 0 means no wait time. The default value is

Page 7/91

-1, which currently has the same meaning as no wait time.
Format: int32
zone
The trust level of a the connection. Free form case-insensitive string (for example
"Home", "Work", "Public"). NULL or unspecified zone means the connection will be
placed in the default zone as defined by the firewall. When updating this property on
a currently activated connection, the change takes effect immediately.
Format: string
6lowpan setting
6LOWPAN Settings.
Properties:
parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID from which
this 6LowPAN interface should be created.
Format: string
802-1x setting
IEEE 802.1x Authentication Settings.
Properties:
altsubject-matches
List of strings to be matched against the altSubjectName of the certificate presented
by the authentication server. If the list is empty, no verification of the server
certificate's altSubjectName is performed.
Format: array of string
anonymous-identity
Anonymous identity string for EAP authentication methods. Used as the unencrypted

identity with EAP types that support different tunneled identity like EAP-TTLS.

Format: string

auth-timeout
A timeout for the authentication. Zero means the global default; if the global default
is not set, the authentication timeout is 25 seconds.

Format: int32

ca-cert Page 8/91

Contains the CA certificate if used by the EAP method specified in the "eap” property.
Certificate data is specified using a "scheme"; three are currently supported: blob,
path and pkcs#11 URL. When using the blob scheme this property should be set to the
certificate's DER encoded data. When using the path scheme, this property should be
set to the full UTF-8 encoded path of the certificate, prefixed with the string
"file://" and ending with a terminating NUL byte. This property can be unset even if
the EAP method supports CA certificates, but this allows man-in-the-middle attacks and
is NOT recommended. Note that enabling NMSetting8021x:system-ca-certs will override
this setting to use the built-in path, if the built-in path is not a directory.
Format: byte array

ca-cert-password
The password used to access the CA certificate stored in "ca-cert" property. Only
makes sense if the certificate is stored on a PKCS#11 token that requires a login.
Format: string

ca-cert-password-flags
Flags indicating how to handle the "ca-cert-password" property. See the section called
?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

ca-path
UTF-8 encoded path to a directory containing PEM or DER formatted certificates to be
added to the verification chain in addition to the certificate specified in the
"ca-cert" property. If NMSetting8021x:system-ca-certs is enabled and the built-in CA
path is an existing directory, then this setting is ignored.
Format: string

client-cert
Contains the client certificate if used by the EAP method specified in the "eap”
property. Certificate data is specified using a "scheme"; two are currently supported:
blob and path. When using the blob scheme (which is backwards compatible with NM
0.7.x) this property should be set to the certificate's DER encoded data. When using
the path scheme, this property should be set to the full UTF-8 encoded path of the
certificate, prefixed with the string "file://" and ending with a terminating NUL
byte.

Format: byte array Page 9/91

client-cert-password
The password used to access the client certificate stored in "client-cert" property.
Only makes sense if the certificate is stored on a PKCS#11 token that requires a
login.
Format: string

client-cert-password-flags
Flags indicating how to handle the "client-cert-password" property. See the section
called ?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

domain-match
Constraint for server domain name. If set, this list of FQDNSs is used as a match
requirement for ANSName element(s) of the certificate presented by the authentication
server. If a matching dNSName is found, this constraint is met. If no dNSName values
are present, this constraint is matched against SubjectName CN using the same
comparison. Multiple valid FQDNs can be passed as a ";" delimited list.
Format: string

domain-suffix-match
Constraint for server domain name. If set, this FQDN is used as a suffix match
requirement for dANSName element(s) of the certificate presented by the authentication
server. If a matching dNSName is found, this constraint is met. If no dNSName values
are present, this constraint is matched against SubjectName CN using same suffix match
comparison. Since version 1.24, multiple valid FQDNs can be passed as a ";" delimited
list.
Format: string

eap
The allowed EAP method to be used when authenticating to the network with 802.1x.
Valid methods are: "leap”, "md5", "tIs", "peap", "ttls", "pwd", and "fast". Each
method requires different configuration using the properties of this setting; refer to
wpa_supplicant documentation for the allowed combinations.
Format: array of string

identity
Identity string for EAP authentication methods. Often the user's user or login name.

Format: string Page 10/91

optional
Whether the 802.1X authentication is optional. If TRUE, the activation will continue
even after a timeout or an authentication failure. Setting the property to TRUE is
currently allowed only for Ethernet connections. If set to FALSE, the activation can
continue only after a successful authentication.
Format: boolean

pac-file
UTF-8 encoded file path containing PAC for EAP-FAST.
Format: string

password
UTF-8 encoded password used for EAP authentication methods. If both the "password"
property and the "password-raw" property are specified, "password" is preferred.
Format: string

password-flags
Flags indicating how to handle the "password" property. See the section called ?Secret
flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

password-raw
Password used for EAP authentication methods, given as a byte array to allow passwords
in other encodings than UTF-8 to be used. If both the "password" property and the
"password-raw" property are specified, "password" is preferred.
Format: byte array

password-raw-flags
Flags indicating how to handle the "password-raw" property. See the section called
?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

phasel-auth-flags
Specifies authentication flags to use in "phase 1" outer authentication using
NMSetting8021xAuthFlags options. The individual TLS versions can be explicitly
disabled. If a certain TLS disable flag is not set, it is up to the supplicant to
allow or forbid it. The TLS options map to tls_disable_tlsvl_ x settings. See the
wpa_supplicant documentation for more details.

Format: uint32 Page 11/91

phasel-fast-provisioning
Enables or disables in-line provisioning of EAP-FAST credentials when FAST is
specified as the EAP method in the "eap"” property. Recognized values are "0"
(disabled), "1" (allow unauthenticated provisioning), "2" (allow authenticated
provisioning), and "3" (allow both authenticated and unauthenticated provisioning).
See the wpa_supplicant documentation for more details.
Format: string

phasel-peaplabel
Forces use of the new PEAP label during key derivation. Some RADIUS servers may
require forcing the new PEAP label to interoperate with PEAPV1. Set to "1" to force
use of the new PEAP label. See the wpa_supplicant documentation for more details.
Format: string

phasel-peapver
Forces which PEAP version is used when PEAP is set as the EAP method in the "eap"
property. When unset, the version reported by the server will be used. Sometimes when
using older RADIUS servers, it is necessary to force the client to use a particular
PEAP version. To do so, this property may be set to "0" or "1" to force that specific
PEAP version.
Format: string

phase2-altsubject-matches
List of strings to be matched against the altSubjectName of the certificate presented
by the authentication server during the inner "phase 2" authentication. If the list is
empty, no verification of the server certificate's altSubjectName is performed.
Format: array of string

phase2-auth
Specifies the allowed "phase 2" inner authentication method when an EAP method that
uses an inner TLS tunnel is specified in the "eap" property. For TTLS this property
selects one of the supported non-EAP inner methods: "pap", "chap”, "mschap",
"mschapv2" while "phase2-autheap" selects an EAP inner method. For PEAP this selects

an inner EAP method, one of: "gtc", "otp", "'md5" and "tIs". Each "phase 2" inner
method requires specific parameters for successful authentication; see the
wpa_supplicant documentation for more details. Both "phase2-auth" and "phase2-autheap"

cannot be specified. Page 12/91

Format: string

phase2-autheap
Specifies the allowed "phase 2" inner EAP-based authentication method when TTLS is
specified in the "eap" property. Recognized EAP-based "phase 2" methods are "md5",
"mschapv2"”, "otp", "gtc", and "tIs". Each "phase 2" inner method requires specific
parameters for successful authentication; see the wpa_supplicant documentation for
more details.
Format: string

phase2-ca-cert
Contains the "phase 2" CA certificate if used by the EAP method specified in the
"phase2-auth” or "phase2-autheap" properties. Certificate data is specified using a
"scheme"; three are currently supported: blob, path and pkcs#11 URL. When using the
blob scheme this property should be set to the certificate's DER encoded data. When
using the path scheme, this property should be set to the full UTF-8 encoded path of
the certificate, prefixed with the string "file://" and ending with a terminating NUL
byte. This property can be unset even if the EAP method supports CA certificates, but
this allows man-in-the-middle attacks and is NOT recommended. Note that enabling
NMSetting8021x:system-ca-certs will override this setting to use the built-in path, if
the built-in path is not a directory.
Format: byte array

phase2-ca-cert-password
The password used to access the "phase2" CA certificate stored in "phase2-ca-cert"
property. Only makes sense if the certificate is stored on a PKCS#11 token that
requires a login.
Format: string

phase2-ca-cert-password-flags
Flags indicating how to handle the "phase2-ca-cert-password" property. See the section
called ?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

phase2-ca-path
UTF-8 encoded path to a directory containing PEM or DER formatted certificates to be
added to the verification chain in addition to the certificate specified in the

"phase2-ca-cert" property. If NMSetting8021x:system-ca-certs is enabled and the Page 13/91

built-in CA path is an existing directory, then this setting is ignored.

Format: string

phase2-client-cert

Contains the "phase 2" client certificate if used by the EAP method specified in the
"phase2-auth” or "phase2-autheap" properties. Certificate data is specified using a
"scheme"; two are currently supported: blob and path. When using the blob scheme
(which is backwards compatible with NM 0.7.x) this property should be set to the
certificate's DER encoded data. When using the path scheme, this property should be
set to the full UTF-8 encoded path of the certificate, prefixed with the string

"file://" and ending with a terminating NUL byte. This property can be unset even if

the EAP method supports CA certificates, but this allows man-in-the-middle attacks and
is NOT recommended.

Format: byte array

phase2-client-cert-password

The password used to access the "phase2"” client certificate stored in
"phase2-client-cert” property. Only makes sense if the certificate is stored on a
PKCS#11 token that requires a login.

Format: string

phase2-client-cert-password-flags

Flags indicating how to handle the "phase2-client-cert-password" property. See the
section called ?Secret flag types:? for flag values.

Format: NMSettingSecretFlags (uint32)

phase2-domain-match

Constraint for server domain name. If set, this list of FQDNs is used as a match
requirement for dANSName element(s) of the certificate presented by the authentication
server during the inner "phase 2" authentication. If a matching dNSName is found, this
constraint is met. If no dNSName values are present, this constraint is matched

against SubjectName CN using the same comparison. Multiple valid FQDNs can be passed
as a";" delimited list.

Format: string

phase2-domain-suffix-match

Constraint for server domain name. If set, this FQDN is used as a suffix match

requirement for AINSName element(s) of the certificate presented by the authentication Page 14/91

server during the inner "phase 2" authentication. If a matching dNSName is found, this
constraint is met. If no dNSName values are present, this constraint is matched
against SubjectName CN using same suffix match comparison. Since version 1.24,
multiple valid FQDNs can be passed as a ";" delimited list.
Format: string

phase2-private-key
Contains the "phase 2" inner private key when the "phase2-auth” or "phase2-autheap”
property is set to "tIs". Key data is specified using a "scheme"; two are currently
supported: blob and path. When using the blob scheme and private keys, this property
should be set to the key's encrypted PEM encoded data. When using private keys with
the path scheme, this property should be set to the full UTF-8 encoded path of the
key, prefixed with the string "file://" and ending with a terminating NUL byte. When
using PKCS#12 format private keys and the blob scheme, this property should be set to
the PKCS#12 data and the "phase2-private-key-password" property must be set to
password used to decrypt the PKCS#12 certificate and key. When using PKCS#12 files and
the path scheme, this property should be set to the full UTF-8 encoded path of the
key, prefixed with the string "file://" and ending with a terminating NUL byte, and as
with the blob scheme the "phase2-private-key-password" property must be set to the
password used to decode the PKCS#12 private key and certificate.
Format: byte array

phase2-private-key-password
The password used to decrypt the "phase 2" private key specified in the
"phase2-private-key" property when the private key either uses the path scheme, or is
a PKCS#12 format key.
Format: string

phase2-private-key-password-flags
Flags indicating how to handle the "phase2-private-key-password" property. See the
section called ?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

phase2-subject-match
Substring to be matched against the subject of the certificate presented by the
authentication server during the inner "phase 2" authentication. When unset, no

verification of the authentication server certificate's subject is performed. This Page 15/91

property provides little security, if any, and its use is deprecated in favor of
NMSetting8021x:phase2-domain-suffix-match.
Format: string

pin
PIN used for EAP authentication methods.
Format: string

pin-flags
Flags indicating how to handle the "pin" property. See the section called ?Secret flag
types:? for flag values.
Format: NMSettingSecretFlags (uint32)

private-key
Contains the private key when the "eap" property is set to "tIs". Key data is
specified using a "scheme"; two are currently supported: blob and path. When using the
blob scheme and private keys, this property should be set to the key's encrypted PEM
encoded data. When using private keys with the path scheme, this property should be
set to the full UTF-8 encoded path of the key, prefixed with the string “file://" and
ending with a terminating NUL byte. When using PKCS#12 format private keys and the
blob scheme, this property should be set to the PKCS#12 data and the
"private-key-password" property must be set to password used to decrypt the PKCS#12
certificate and key. When using PKCS#12 files and the path scheme, this property
should be set to the full UTF-8 encoded path of the key, prefixed with the string
"file:/" and ending with a terminating NUL byte, and as with the blob scheme the
"private-key-password" property must be set to the password used to decode the PKCS#12
private key and certificate. WARNING: "private-key" is not a "secret" property, and
thus unencrypted private key data using the BLOB scheme may be readable by
unprivileged users. Private keys should always be encrypted with a private key
password to prevent unauthorized access to unencrypted private key data.
Format: byte array

private-key-password
The password used to decrypt the private key specified in the "private-key" property
when the private key either uses the path scheme, or if the private key is a PKCS#12
format key.

Format: string Page 16/91

private-key-password-flags
Flags indicating how to handle the "private-key-password" property. See the section
called ?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

subject-match
Substring to be matched against the subject of the certificate presented by the
authentication server. When unset, no verification of the authentication server
certificate's subject is performed. This property provides little security, if any,
and its use is deprecated in favor of NMSetting8021x:domain-suffix-match.
Format: string

system-ca-certs
When TRUE, overrides the "ca-path" and "phase2-ca-path" properties using the system CA
directory specified at configure time with the --system-ca-path switch. The
certificates in this directory are added to the verification chain in addition to any
certificates specified by the "ca-cert" and "phase2-ca-cert" properties. If the path
provided with --system-ca-path is rather a file name (bundle of trusted CA
certificates), it overrides "ca-cert" and "phase2-ca-cert" properties instead (sets
ca_cert/ca_cert2 options for wpa_supplicant).

Format: boolean

adsl setting

ADSL Settings.
Properties:
encapsulation
Alias: encapsulation
Encapsulation of ADSL connection. Can be "vemux" or "llc".
Format: string
password
Alias: password
Password used to authenticate with the ADSL service.
Format: string
password-flags
Flags indicating how to handle the "password" property. See the section called ?Secret

flag types:? for flag values.

Page 17/91

Format: NMSettingSecretFlags (uint32)

protocol
Alias: protocol
ADSL connection protocol. Can be "pppoa", "pppoe" or "ipoatm".
Format: string

username
Alias: username
Username used to authenticate with the ADSL service.
Format: string

VCi
VCI of ADSL connection
Format: uint32

Vpi
VPI of ADSL connection
Format: uint32

bluetooth setting

Bluetooth Settings.

Properties:

bdaddr
Alias: addr
The Bluetooth address of the device.
Format: byte array

type
Alias: bt-type
Either "dun” for Dial-Up Networking connections or "panu" for Personal Area Networking
connections to devices supporting the NAP profile.
Format: string

bond setting

Bonding Settings.

Properties:

options
Dictionary of key/value pairs of bonding options. Both keys and values must be

strings. Option names must contain only alphanumeric characters (ie, [a-zA-Z0-9]). Page 18/91

Format: dict of string to string
bridge setting

Bridging Settings.

Properties:

ageing-time
Alias: ageing-time
The Ethernet MAC address aging time, in seconds.
Format: uint32

forward-delay
Alias: forward-delay
The Spanning Tree Protocol (STP) forwarding delay, in seconds.
Format: uint32

group-address
If specified, The MAC address of the multicast group this bridge uses for STP. The
address must be a link-local address in standard Ethernet MAC address format, ie an
address of the form 01:80:C2:00:00:0X, with X in [0, 4..F]. If not specified the
default value is 01:80:C2:00:00:00.
Format: byte array

group-forward-mask
Alias: group-forward-mask
A mask of group addresses to forward. Usually, group addresses in the range from
01:80:C2:00:00:00 to 01:80:C2:00:00:0F are not forwarded according to standards. This
property is a mask of 16 bits, each corresponding to a group address in that range
that must be forwarded. The mask can't have bits 0, 1 or 2 set because they are used
for STP, MAC pause frames and LACP.
Format: uint32

hello-time
Alias: hello-time
The Spanning Tree Protocol (STP) hello time, in seconds.
Format: uint32

mac-address
Alias: mac

If specified, the MAC address of bridge. When creating a new bridge, this MAC address

Page 19/91

will be set. If this field is left unspecified, the "ethernet.cloned-mac-address"” is
referred instead to generate the initial MAC address. Note that setting
"ethernet.cloned-mac-address" anyway overwrites the MAC address of the bridge later
while activating the bridge. Hence, this property is deprecated. Deprecated: 1
Format: byte array

max-age
Alias: max-age
The Spanning Tree Protocol (STP) maximum message age, in seconds.
Format: uint32

multicast-hash-max
Set maximum size of multicast hash table (value must be a power of 2).
Format: uint32

multicast-last-member-count
Set the number of queries the bridge will send before stopping forwarding a multicast
group after a "leave" message has been received.
Format: uint32

multicast-last-member-interval
Set interval (in deciseconds) between queries to find remaining members of a group,
after a "leave" message is received.
Format: uint64

multicast-membership-interval
Set delay (in deciseconds) after which the bridge will leave a group, if no membership
reports for this group are received.
Format: uint64

multicast-querier
Enable or disable sending of multicast queries by the bridge. If not specified the
option is disabled.
Format: boolean

multicast-querier-interval
If no queries are seen after this delay (in deciseconds) has passed, the bridge will
start to send its own queries.
Format: uint64

multicast-query-interval

Page 20/91

Interval (in deciseconds) between queries sent by the bridge after the end of the
startup phase.
Format: uint64

multicast-query-response-interval
Set the Max Response Time/Max Response Delay (in deciseconds) for IGMP/MLD queries
sent by the bridge.
Format: uint64

multicast-query-use-ifaddr
If enabled the bridge's own IP address is used as the source address for IGMP queries
otherwise the default of 0.0.0.0 is used.
Format: boolean

multicast-router
Sets bridge's multicast router. Multicast-snooping must be enabled for this option to
work. Supported values are: 'auto’, 'disabled’, 'enabled' to which kernel assigns the
numbers 1, 0, and 2, respectively. If not specified the default value is 'auto’ (1).
Format: string

multicast-snooping
Alias: multicast-snooping
Controls whether IGMP snooping is enabled for this bridge. Note that if snooping was
automatically disabled due to hash collisions, the system may refuse to enable the
feature until the collisions are resolved.
Format: boolean

multicast-startup-query-count
Set the number of IGMP queries to send during startup phase.
Format: uint32

multicast-startup-query-interval
Sets the time (in deciseconds) between queries sent out at startup to determine
membership information.
Format: uint64

priority
Alias: priority
Sets the Spanning Tree Protocol (STP) priority for this bridge. Lower values are

"better"; the lowest priority bridge will be elected the root bridge. Page 21/91

Format: uint32

stp
Alias: stp
Controls whether Spanning Tree Protocol (STP) is enabled for this bridge.
Format: boolean

vlan-default-pvid
The default PVID for the ports of the bridge, that is the VLAN id assigned to incoming
untagged frames.
Format: uint32

vlan-filtering
Control whether VLAN filtering is enabled on the bridge.
Format: boolean

vlan-protocol
If specified, the protocol used for VLAN filtering. Supported values are: '802.1Q",
'802.1ad'. If not specified the default value is '802.1Q".
Format: string

vlan-stats-enabled
Controls whether per-VLAN stats accounting is enabled.
Format: boolean

vlans
Array of bridge VLAN objects. In addition to the VLANSs specified here, the bridge will
also have the default-pvid VLAN configured by the bridge.vlan-default-pvid property.
In nmcli the VLAN list can be specified with the following syntax: $vid [pvid]
[untagged] [, $vid [pvid] [untagged]]... where $vid is either a single id between 1
and 4094 or a range, represented as a couple of ids separated by a dash.
Format: array of vardict

bridge-port setting

Bridge Port Settings.

Properties:

hairpin-mode
Alias: hairpin
Enables or disables "hairpin mode" for the port, which allows frames to be sent back

out through the port the frame was received on. Page 22/91

Format: boolean

path-cost
Alias: path-cost
The Spanning Tree Protocol (STP) port cost for destinations via this port.
Format: uint32

priority
Alias: priority
The Spanning Tree Protocol (STP) priority of this bridge port.
Format: uint32

vlans
Array of bridge VLAN objects. In addition to the VLANSs specified here, the port will
also have the default-pvid VLAN configured on the bridge by the
bridge.vlan-default-pvid property. In nmcli the VLAN list can be specified with the
following syntax: $vid [pvid] [untagged] [, $vid [pvid] [untagged]]... where $vid is
either a single id between 1 and 4094 or a range, represented as a couple of ids
separated by a dash.
Format: array of vardict

cdma setting

CDMA-based Mobile Broadband Settings.

Properties:

mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple frames.
Format: uint32

number
The number to dial to establish the connection to the CDMA-based mobile broadband
network, if any. If not specified, the default number (#777) is used when required.
Format: string

password
Alias: password
The password used to authenticate with the network, if required. Many providers do not
require a password, or accept any password. But if a password is required, it is

specified here. Page 23/91

Format: string
password-flags
Flags indicating how to handle the "password" property. See the section called ?Secret
flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)
username
Alias: user
The username used to authenticate with the network, if required. Many providers do not
require a username, or accept any username. But if a username is required, it is
specified here.
Format: string
dchb setting
Data Center Bridging Settings.
Properties:
app-fcoe-flags
Specifies the NMSettingDcbFlags for the DCB FCoE application. Flags may be any
combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),
and NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)
app-fcoe-mode
The FCoE controller mode; either "fabric” or "vn2vn". Since 1.34, NULL is the default
and means "fabric". Before 1.34, NULL was rejected as invalid and the default was
"fabric".
Format: string
app-fcoe-priority
The highest User Priority (0 - 7) which FCoE frames should use, or -1 for default
priority. Only used when the "app-fcoe-flags" property includes the
NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32
app-fip-flags
Specifies the NMSettingDcbFlags for the DCB FIP application. Flags may be any
combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),

and NM_SETTING_DCB_FLAG_WILLING (0x4). Page 24/91

Format: NMSettingDcbFlags (uint32)
app-fip-priority
The highest User Priority (0 - 7) which FIP frames should use, or -1 for default
priority. Only used when the "app-fip-flags" property includes the
NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32
app-iscsi-flags
Specifies the NMSettingDcbFlags for the DCB iSCSI application. Flags may be any
combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),
and NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)
app-iscsi-priority
The highest User Priority (0 - 7) which iSCSI frames should use, or -1 for default
priority. Only used when the "app-iscsi-flags" property includes the
NM_SETTING_DCB_FLAG_ENABLE (0x1) flag.
Format: int32
priority-bandwidth
An array of 8 uint values, where the array index corresponds to the User Priority (O -
7) and the value indicates the percentage of bandwidth of the priority's assigned
group that the priority may use. The sum of all percentages for priorities which
belong to the same group must total 100 percents.
Format: array of uint32
priority-flow-control
An array of 8 boolean values, where the array index corresponds to the User Priority
(0 - 7) and the value indicates whether or not the corresponding priority should
transmit priority pause.
Format: array of uint32
priority-flow-control-flags
Specifies the NMSettingDcbFlags for DCB Priority Flow Control (PFC). Flags may be any
combination of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2),
and NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

priority-group-bandwidth Page 25/91

An array of 8 uint values, where the array index corresponds to the Priority Group 1D
(0 - 7) and the value indicates the percentage of link bandwidth allocated to that
group. Allowed values are 0 - 100, and the sum of all values must total 100 percents.
Format: array of uint32

priority-group-flags
Specifies the NMSettingDcbFlags for DCB Priority Groups. Flags may be any combination
of NM_SETTING_DCB_FLAG_ENABLE (0x1), NM_SETTING_DCB_FLAG_ADVERTISE (0x2), and
NM_SETTING_DCB_FLAG_WILLING (0x4).
Format: NMSettingDcbFlags (uint32)

priority-group-id
An array of 8 uint values, where the array index corresponds to the User Priority (O -
7) and the value indicates the Priority Group ID. Allowed Priority Group ID values are
0 - 7 or 15 for the unrestricted group.
Format: array of uint32

priority-strict-bandwidth
An array of 8 boolean values, where the array index corresponds to the User Priority
(0 - 7) and the value indicates whether or not the priority may use all of the
bandwidth allocated to its assigned group.
Format: array of uint32

priority-traffic-class
An array of 8 uint values, where the array index corresponds to the User Priority (O -
7) and the value indicates the traffic class (O - 7) to which the priority is mapped.
Format: array of uint32

ethtool setting

Ethtool Ethernet Settings.

Properties:

coalesce-adaptive-rx

coalesce-adaptive-tx

coalesce-pkt-rate-high

coalesce-pkt-rate-low

coalesce-rx-frames

coalesce-rx-frames-high

coalesce-rx-frames-irq Page 26/91

coalesce-rx-frames-low
coalesce-rx-usecs
coalesce-rx-usecs-high
coalesce-rx-usecs-irq
coalesce-rx-usecs-low
coalesce-sample-interval
coalesce-stats-block-usecs
coalesce-tx-frames
coalesce-tx-frames-high
coalesce-tx-frames-irq
coalesce-tx-frames-low
coalesce-tx-usecs
coalesce-tx-usecs-high
coalesce-tx-usecs-irq
coalesce-tx-usecs-low
feature-esp-hw-offload
feature-esp-tx-csum-hw-offload
feature-fcoe-mtu
feature-gro

feature-gso
feature-highdma
feature-hw-tc-offload
feature-12-fwd-offload
feature-loopback
feature-Iro
feature-macsec-hw-offload
feature-ntuple

feature-rx

feature-rx-all
feature-rx-fcs
feature-rx-gro-hw
feature-rx-gro-list

feature-rx-udp-gro-forwarding

Page 27/91

feature-rx-udp_tunnel-port-offload
feature-rx-vlan-filter
feature-rx-vlan-stag-filter
feature-rx-vlan-stag-hw-parse
feature-rxhash

feature-rxvlan

feature-sg

feature-tls-hw-record
feature-tls-hw-rx-offload
feature-tls-hw-tx-offload
feature-tso

feature-tx
feature-tx-checksum-fcoe-crc
feature-tx-checksum-ip-generic
feature-tx-checksum-ipv4
feature-tx-checksum-ipv6
feature-tx-checksum-sctp
feature-tx-esp-segmentation
feature-tx-fcoe-segmentation
feature-tx-gre-csum-segmentation
feature-tx-gre-segmentation
feature-tx-gso-list
feature-tx-gso-partial
feature-tx-gso-robust
feature-tx-ipxip4-segmentation
feature-tx-ipxip6-segmentation
feature-tx-nocache-copy
feature-tx-scatter-gather
feature-tx-scatter-gather-fraglist
feature-tx-sctp-segmentation
feature-tx-tcp-ecn-segmentation
feature-tx-tcp-mangleid-segmentation

feature-tx-tcp-segmentation Page 28/91

feature-tx-tcp6-segmentation

feature-tx-tunnel-remcsum-segmentation

feature-tx-udp-segmentation

feature-tx-udp_tnl-csum-segmentation

feature-tx-udp_tnl-segmentation

feature-tx-vlan-stag-hw-insert

feature-txvlan

pause-autoneg
Whether to automatically negotiate on pause frame of flow control mechanism defined by
IEEE 802.3x standard.

pause-rx
Whether RX pause should be enabled. Only valid when automatic negotiation is disabled

pause-tx
Whether TX pause should be enabled. Only valid when automatic negotiation is disabled

ring-rx

ring-rx-jumbo

ring-rx-mini

ring-tx

gsm setting

GSM-based Mobile Broadband Settings.

Properties:

apn
Alias: apn
The GPRS Access Point Name specifying the APN used when establishing a data session
with the GSM-based network. The APN often determines how the user will be billed for
their network usage and whether the user has access to the Internet or just a
provider-specific walled-garden, so it is important to use the correct APN for the
user's mobile broadband plan. The APN may only be composed of the characters a-z, 0-9,
., and - per GSM 03.60 Section 14.9.
Format: string

auto-config
When TRUE, the settings such as APN, username, or password will default to values that

match the network the modem will register to in the Mobile Broadband Provider Page 29/91

database.
Format: boolean
device-id
The device unique identifier (as given by the WWAN management service) which this

connection applies to. If given, the connection will only apply to the specified

device.
Format: string
home-only
When TRUE, only connections to the home network will be allowed. Connections to
roaming networks will not be made.
Format: boolean
mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple frames.
Format: uint32
network-id
The Network ID (GSM LAl format, ie MCC-MNC) to force specific network registration. If
the Network ID is specified, NetworkManager will attempt to force the device to
register only on the specified network. This can be used to ensure that the device
does not roam when direct roaming control of the device is not otherwise possible.
Format: string
number
Legacy setting that used to help establishing PPP data sessions for GSM-based modems.
Deprecated: 1
Format: string
password
Alias: password
The password used to authenticate with the network, if required. Many providers do not

require a password, or accept any password. But if a password is required, it is

specified here.
Format: string

password-flags

Flags indicating how to handle the "password" property. See the section called ?Secret Page 30/91

flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)
pin
If the SIM is locked with a PIN it must be unlocked before any other operations are
requested. Specify the PIN here to allow operation of the device.
Format: string
pin-flags
Flags indicating how to handle the "pin" property. See the section called ?Secret flag
types:? for flag values.
Format: NMSettingSecretFlags (uint32)
sim-id
The SIM card unique identifier (as given by the WWAN management service) which this
connection applies to. If given, the connection will apply to any device also allowed
by "device-id" which contains a SIM card matching the given identifier.
Format: string
sim-operator-id
A MCC/MNC string like "310260" or "21601" identifying the specific mobile network
operator which this connection applies to. If given, the connection will apply to any
device also allowed by "device-id" and "sim-id" which contains a SIM card provisioned
by the given operator.
Format: string
username
Alias: user
The username used to authenticate with the network, if required. Many providers do not

require a username, or accept any username. But if a username is required, it is
specified here.
Format: string
infiniband setting
Infiniband Settings.
Properties:
mac-address

Alias: mac

If specified, this connection will only apply to the IPolIB device whose permanent MAC Page 31/91

address matches. This property does not change the MAC address of the device (i.e. MAC
spoofing).
Format: byte array

mtu
Alias: mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple frames.
Format: uint32

p-key
Alias: p-key
The InfiniBand P_Key to use for this device. A value of -1 means to use the default
P_Key (aka "the P_Key at index 0"). Otherwise, it is a 16-bit unsigned integer, whose
high bit is set if it is a "full membership" P_Key.
Format: int32

parent
Alias: parent
The interface name of the parent device of this device. Normally NULL, but if the
"p_key" property is set, then you must specify the base device by setting either this
property or "mac-address".
Format: string

transport-mode
Alias: transport-mode
The IP-over-InfiniBand transport mode. Either "datagram" or "connected".
Format: string

ipv4 setting

IPv4 Settings.

Properties:

addresses
Alias: ip4
A list of IPv4 addresses and their prefix length. Multiple addresses can be separated
by comma. For example "192.168.1.5/24, 10.1.0.5/24". The addresses are listed in
decreasing priority, meaning the first address will be the primary address.

Format: a comma separated list of addresses Page 32/91

dad-timeout
Timeout in milliseconds used to check for the presence of duplicate IP addresses on
the network. If an address conflict is detected, the activation will fail. A zero
value means that no duplicate address detection is performed, -1 means the default
value (either configuration ipvx.dad-timeout override or zero). A value greater than
zero is a timeout in milliseconds. The property is currently implemented only for
IPv4.
Format: int32

dhcp-client-id
A string sent to the DHCP server to identify the local machine which the DHCP server
may use to customize the DHCP lease and options. When the property is a hex string
(‘aa:bb:cc') it is interpreted as a binary client ID, in which case the first byte is
assumed to be the 'type’ field as per RFC 2132 section 9.14 and the remaining bytes
may be an hardware address (e.g. '0L:xx:xx:xx:xx:xx:xx' where 1 is the Ethernet ARP
type and the rest is a MAC address). If the property is not a hex string it is
considered as a non-hardware-address client ID and the 'type' field is set to 0. The
special values "mac" and "perm-mac" are supported, which use the current or permanent
MAC address of the device to generate a client identifier with type ethernet (01).
Currently, these options only work for ethernet type of links. The special value
"ipv6-duid" uses the DUID from "ipv6.dhcp-duid” property as an RFC4361-compliant
client identifier. As IAID it uses "ipv4.dhcp-iaid" and falls back to "ipv6.dhcp-iaid"
if unset. The special value "duid" generates a RFC4361-compliant client identifier
based on "ipv4.dhcp-iaid" and uses a DUID generated by hashing /etc/machine-id. The
special value "stable" is supported to generate a type O client identifier based on
the stable-id (see connection.stable-id) and a per-host key. If you set the stable-id,
you may want to include the "${DEVICE}" or "${MAC}" specifier to get a per-device key.
If unset, a globally configured default is used. If still unset, the default depends
on the DHCP plugin.
Format: string

dhcp-fqdn
If the "dhcp-send-hostname" property is TRUE, then the specified FQDN will be sent to
the DHCP server when acquiring a lease. This property and "dhcp-hostname" are mutually

exclusive and cannot be set at the same time. Page 33/91

Format: string
dhcp-hostname
If the "dhcp-send-hostname™ property is TRUE, then the specified name will be sent to
the DHCP server when acquiring a lease. This property and "dhcp-fqdn" are mutually
exclusive and cannot be set at the same time.
Format: string
dhcp-hostname-flags
Flags for the DHCP hostname and FQDN. Currently, this property only includes flags to
control the FQDN flags set in the DHCP FQDN option. Supported FQDN flags are
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE
NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)
and NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is set and
NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the DHCP FQDN option will contain
no flag. Otherwise, if no FQDN flag is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS
(Ox8) is not set, the standard FQDN flags are set in the request:
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE
NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)
for IPv4 and NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6. When this property
is set to the default value NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is
looked up in NetworkManager configuration. If that value is unset or also
NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags described above are
sent in the DHCP requests.
Format: uint32
dhcp-iaid
A string containing the "ldentity Association Identifier" (IAID) used by the DHCP
client. The property is a 32-bit decimal value or a special value among "mac",
"perm-mac", "ifname" and "stable". When set to "mac" (or "perm-mac"), the last 4 bytes
of the current (or permanent) MAC address are used as IAID. When set to "ifname", the
IAID is computed by hashing the interface name. The special value "stable" can be used
to generate an IAID based on the stable-id (see connection.stable-id), a per-host key
and the interface name. When the property is unset, the value from global

configuration is used; if no global default is set then the IAID is assumed to be

(0x1),

(0x1),

"ifname". Note that at the moment this property is ignored for IPv6 by dhclient, which Page 34/91

always derives the IAID from the MAC address.
Format: string
dhcp-reject-servers
Array of servers from which DHCP offers must be rejected. This property is useful to
avoid getting a lease from misconfigured or rogue servers. For DHCPv4, each element
must be an IPv4 address, optionally followed by a slash and a prefix length (e.g.
"192.168.122.0/24"). This property is currently not implemented for DHCPV6.
Format: array of string
dhcp-send-hostname
If TRUE, a hostname is sent to the DHCP server when acquiring a lease. Some DHCP
servers use this hostname to update DNS databases, essentially providing a static
hostname for the computer. If the "dhcp-hostname" property is NULL and this property
is TRUE, the current persistent hostname of the computer is sent.
Format: boolean
dhcp-timeout
A timeout for a DHCP transaction in seconds. If zero (the default), a globally
configured default is used. If still unspecified, a device specific timeout is used
(usually 45 seconds). Set to 2147483647 (MAXINT32) for infinity.
Format: int32
dhcp-vendor-class-identifier
The Vendor Class Identifier DHCP option (60). Special characters in the data string
may be escaped using C-style escapes, nevertheless this property cannot contain nul
bytes. If the per-profile value is unspecified (the default), a global connection
default gets consulted. If still unspecified, the DHCP option is not sent to the
server. Since 1.28
Format: string
dns
Array of IP addresses of DNS servers.
Format: array of uint32
dns-options
Array of DNS options as described in man 5 resolv.conf. NULL means that the options
are unset and left at the default. In this case NetworkManager will use default

options. This is distinct from an empty list of properties. The currently supported Page 35/91

options are "attempts"”, "debug", "edns0", "inet6", "ip6-bytestring”, "ip6-dotint",

"ndots", "no-check-names", "no-ip6-dotint", "no-reload", "no-tld-query

, "rotate”,
"single-request”, "single-request-reopen”, "timeout", "trust-ad"”, "use-vc". The
"trust-ad" setting is only honored if the profile contributes name servers to
resolv.conf, and if all contributing profiles have "trust-ad" enabled. When using a
caching DNS plugin (dnsmasq or systemd-resolved in NetworkManager.conf) then "edns0"
and "trust-ad" are automatically added.

Format: array of string

dns-priority
DNS servers priority. The relative priority for DNS servers specified by this setting.

A lower numerical value is better (higher priority). Negative values have the special
effect of excluding other configurations with a greater numerical priority value; so

in presence of at least one negative priority, only DNS servers from connections with
the lowest priority value will be used. To avoid all DNS leaks, set the priority of

the profile that should be used to the most negative value of all active connections
profiles. Zero selects a globally configured default value. If the latter is missing

or zero too, it defaults to 50 for VPNs (including WireGuard) and 100 for other
connections. Note that the priority is to order DNS settings for multiple active
connections. It does not disambiguate multiple DNS servers within the same connection
profile. When multiple devices have configurations with the same priority, VPNs will
be considered first, then devices with the best (lowest metric) default route and then
all other devices. When using dns=default, servers with higher priority will be on top
of resolv.conf. To prioritize a given server over another one within the same
connection, just specify them in the desired order. Note that commonly the resolver
tries name servers in /etc/resolv.conf in the order listed, proceeding with the next
server in the list on failure. See for example the "rotate" option of the dns-options
setting. If there are any negative DNS priorities, then only name servers from the
devices with that lowest priority will be considered. When using a DNS resolver that
supports Conditional Forwarding or Split DNS (with dns=dnsmasq or dns=systemd-resolved
settings), each connection is used to query domains in its search list. The search
domains determine which name servers to ask, and the DNS priority is used to
prioritize name servers based on the domain. Queries for domains not present in any

search list are routed through connections having the '~.' special wildcard domain, Page 36/91

which is added automatically to connections with the default route (or can be added
manually). When multiple connections specify the same domain, the one with the best
priority (lowest numerical value) wins. If a sub domain is configured on another
interface it will be accepted regardless the priority, unless parent domain on the
other interface has a negative priority, which causes the sub domain to be shadowed.
With Split DNS one can avoid undesired DNS leaks by properly configuring DNS
priorities and the search domains, so that only name servers of the desired interface
are configured.
Format: int32

dns-search
Array of DNS search domains. Domains starting with a tilde ('~") are considered
‘routing’ domains and are used only to decide the interface over which a query must be
forwarded; they are not used to complete unqualified host names. When using a DNS
plugin that supports Conditional Forwarding or Split DNS, then the search domains
specify which name servers to query. This makes the behavior different from running
with plain /etc/resolv.conf. For more information see also the dns-priority setting.
Format: array of string

gateway
Alias: gw4
The gateway associated with this configuration. This is only meaningful if "addresses"
is also set. The gateway's main purpose is to control the next hop of the standard
default route on the device. Hence, the gateway property conflicts with
"never-default" and will be automatically dropped if the IP configuration is set to
never-default. As an alternative to set the gateway, configure a static default route
with /0 as prefix length.
Format: string

ignore-auto-dns
When "method" is set to "auto" and this property to TRUE, automatically configured
name servers and search domains are ignored and only name servers and search domains
specified in the "dns" and "dns-search" properties, if any, are used.
Format: boolean

ignore-auto-routes

When "method" is set to "auto" and this property to TRUE, automatically configured Page 37/91

routes are ignored and only routes specified in the "routes"” property, if any, are
used.
Format: boolean

may-fail
If TRUE, allow overall network configuration to proceed even if the configuration
specified by this property times out. Note that at least one IP configuration must
succeed or overall network configuration will still fail. For example, in IPv6-only
networks, setting this property to TRUE on the NMSettinglP4Config allows the overall
network configuration to succeed if IPv4 configuration fails but IPv6 configuration
completes successfully.
Format: boolean

method
IP configuration method. NMSettingIP4Config and NMSettingIP6Config both support
"disabled”, "auto”, "manual", and "link-local". See the subclass-specific
documentation for other values. In general, for the "auto” method, properties such as
"dns" and "routes" specify information that is added on to the information returned
from automatic configuration. The "ignore-auto-routes" and "ignore-auto-dns"
properties modify this behavior. For methods that imply no upstream network, such as
"shared" or "link-local", these properties must be empty. For IPv4 method "shared",
the IP subnet can be configured by adding one manual IPv4 address or otherwise
10.42.x.0/24 is chosen. Note that the shared method must be configured on the
interface which shares the internet to a subnet, not on the uplink which is shared.
Format: string

never-default
If TRUE, this connection will never be the default connection for this IP type,
meaning it will never be assigned the default route by NetworkManager.
Format: boolean

required-timeout
The minimum time interval in milliseconds for which dynamic IP configuration should be
tried before the connection succeeds. This property is useful for example if both IPv4
and IPv6 are enabled and are allowed to fail. Normally the connection succeeds as soon
as one of the two address families completes; by setting a required timeout for e.g.

IPv4, one can ensure that even if IP6 succeeds earlier than IPv4, NetworkManager waits Page 38/91

some time for IPv4 before the connection becomes active. Note that if "may-fail” is
FALSE for the same address family, this property has no effect as NetworkManager needs
to wait for the full DHCP timeout. A zero value means that no required timeout is
present, -1 means the default value (either configuration ipvx.required-timeout
override or zero).
Format: int32

route-metric
The default metric for routes that don't explicitly specify a metric. The default
value -1 means that the metric is chosen automatically based on the device type. The
metric applies to dynamic routes, manual (static) routes that don't have an explicit
metric setting, address prefix routes, and the default route. Note that for IPv6, the
kernel accepts zero (0) but coerces it to 1024 (user default). Hence, setting this
property to zero effectively mean setting it to 1024. For IPv4, zero is a regular
value for the metric.
Format: int64

route-table
Enable policy routing (source routing) and set the routing table used when adding
routes. This affects all routes, including device-routes, IPv4LL, DHCP, SLAAC,
default-routes and static routes. But note that static routes can individually
overwrite the setting by explicitly specifying a non-zero routing table. If the table
setting is left at zero, it is eligible to be overwritten via global configuration. If
the property is zero even after applying the global configuration value, policy
routing is disabled for the address family of this connection. Policy routing disabled
means that NetworkManager will add all routes to the main table (except static routes
that explicitly configure a different table). Additionally, NetworkManager will not
delete any extraneous routes from tables except the main table. This is to preserve
backward compatibility for users who manage routing tables outside of NetworkManager.
Format: uint32

routes
A list of IPv4 destination addresses, prefix length, optional IPv4 next hop addresses,
optional route metric, optional attribute. The valid syntax is: "ip[/prefix]
[next-hop] [metric] [attribute=val]...[,ip[/prefix]...]". For example "192.0.2.0/24

10.1.1.1 77, 198.51.100.0/24". Page 39/91

Various attributes are supported:

?

?

?

?

"cwnd" - an unsigned 32 bit integer.
"initcwnd" - an unsigned 32 bit integer.
"initrwnd" - an unsigned 32 bit integer.
"lock-cwnd" - a boolean value.

"lock-initcwnd" - a boolean value.
"lock-initrwnd" - a boolean value.

"lock-mtu" - a boolean value.

"lock-window" - a boolean value.

"mtu” - an unsigned 32 bit integer.

"onlink" - a boolean value.

"scope” - an unsigned 8 bit integer. IPv4 only.
"src" - an IPv4 address.

"table" - an unsigned 32 bit integer. The default depends on ipv4.route-table.

"tos" - an unsigned 8 hit integer. IPv4 only.

"type" - one of unicast, local, blackhole, unavailable, prohibit. The default is

unicast.

"window" - an unsigned 32 bit integer.

For details see also "‘man ip-route’.

Format: a comma separated list of routes

routing-rules

A comma separated list of routing rules for policy routing. The format is based on ip

rule add syntax and mostly compatible. One difference is that routing rules in

NetworkManager always need a fixed priority.

Example: priority 5 from 192.167.4.0/24 table 45

Format: a comma separated list of routing rules

ipv6 setting

IPv6 Settings.

Properties:

addr-gen-mode

Configure method for creating the address for use with RFC4862 IPv6 Stateless Address

Autoconfiguration. The permitted values are: NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_EUI64

(0) or NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_STABLE_PRIVACY (1). If the property is set Page 40/91

to EUI64, the addresses will be generated using the interface tokens derived from
hardware address. This makes the host part of the address to stay constant, making it
possible to track host's presence when it changes networks. The address changes when
the interface hardware is replaced. The value of stable-privacy enables use of
cryptographically secure hash of a secret host-specific key along with the
connection's stable-id and the network address as specified by RFC7217. This makes it
impossible to use the address track host's presence, and makes the address stable when
the network interface hardware is replaced. On D-Bus, the absence of an addr-gen-mode
setting equals enabling stable-privacy. For keyfile plugin, the absence of the setting
on disk means EUI64 so that the property doesn't change on upgrade from older
versions. Note that this setting is distinct from the Privacy Extensions as configured
by "ip6-privacy" property and it does not affect the temporary addresses configured
with this option.
Format: int32

addresses
Alias: ip6
A list of IPv6 addresses and their prefix length. Multiple addresses can be separated
by comma. For example "2001:db8:85a3::8a2e:370:7334/64, 2001:db8:85a3::5/64". The
addresses are listed in increasing priority, meaning the last address will be the
primary address.
Format: a comma separated list of addresses

dhcp-duid
A string containing the DHCPv6 Unique Identifier (DUID) used by the dhcp client to
identify itself to DHCPv6 servers (RFC 3315). The DUID is carried in the Client
Identifier option. If the property is a hex string (‘aa:bb:cc’) it is interpreted as a
binary DUID and filled as an opaque value in the Client Identifier option. The special
value "lease" will retrieve the DUID previously used from the lease file belonging to
the connection. If no DUID is found and "dhclient" is the configured dhcp client, the
DUID is searched in the system-wide dhclient lease file. If still no DUID is found, or
another dhcp client is used, a global and permanent DUID-UUID (RFC 6355) will be
generated based on the machine-id. The special values "lIt" and "II" will generate a
DUID of type LLT or LL (see RFC 3315) based on the current MAC address of the device.

In order to try providing a stable DUID-LLT, the time field will contain a constant Page 41/91

timestamp that is used globally (for all profiles) and persisted to disk. The special

values "stable-IIt", "stable-II" and "stable-uuid" will generate a DUID of the

corresponding type, derived from the connection's stable-id and a per-host unique key.

You may want to include the "${DEVICE}" or "${MAC}" specifier in the stable-id, in

case this profile gets activated on multiple devices. So, the link-layer address of

"stable-II" and "stable-IIt" will be a generated address derived from the stable id.

The DUID-LLT time value in the "stable-lIt" option will be picked among a static

timespan of three years (the upper bound of the interval is the same constant

timestamp used in "llt"). When the property is unset, the global value provided for

"ipv6.dhcp-duid” is used. If no global value is provided, the default "lease" value is

assumed.

Format: string

dhcp-hostname

If the "dhcp-send-hostname" property is TRUE, then the specified name will be sent to

the DHCP server when acquiring a lease. This property and "dhcp-fqdn" are mutually

exclusive and cannot be set at the same time.

Format: string

dhcp-hostname-flags

Flags for the DHCP hostname and FQDN. Currently, this property only includes flags to

control the FQDN flags set in the DHCP FQDN option. Supported FQDN flags are
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

and NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE (0x4). When no FQDN flag is set and

NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS (0x8) is set, the DHCP FQDN option will contain

no flag. Otherwise, if no FQDN flag is set and NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS

(Ox8) is not set, the standard FQDN flags are set in the request:
NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE

NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED (0x2)

for IPv4 and NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE (0x1) for IPv6. When this property

is set to the default value NM_DHCP_HOSTNAME_FLAG_NONE (0x0), a global default is

looked up in NetworkManager configuration. If that value is unset or also

NM_DHCP_HOSTNAME_FLAG_NONE (0x0), then the standard FQDN flags described above are

(0x1),

(0x1),

sent in the DHCP requests. Page 42/91

Format: uint32

dhcp-iaid
A string containing the "Identity Association Identifier" (IAID) used by the DHCP
client. The property is a 32-bit decimal value or a special value among "mac",

"perm-mac”, "ifname" and "stable". When set to "mac” (or "perm-mac"), the last 4 bytes

of the current (or permanent) MAC address are used as IAID. When set to "ifname", the

IAID is computed by hashing the interface name. The special value "stable" can be used

to generate an IAID based on the stable-id (see connection.stable-id), a per-host key
and the interface name. When the property is unset, the value from global
configuration is used; if no global default is set then the IAID is assumed to be
"ifname". Note that at the moment this property is ignored for IPv6 by dhclient, which
always derives the IAID from the MAC address.
Format: string

dhcp-send-hostname
If TRUE, a hostname is sent to the DHCP server when acquiring a lease. Some DHCP
servers use this hostname to update DNS databases, essentially providing a static
hostname for the computer. If the "dhcp-hostname" property is NULL and this property
is TRUE, the current persistent hostname of the computer is sent.
Format: boolean

dhcp-timeout
A timeout for a DHCP transaction in seconds. If zero (the default), a globally
configured default is used. If still unspecified, a device specific timeout is used
(usually 45 seconds). Set to 2147483647 (MAXINT32) for infinity.
Format: int32

dns
Array of IP addresses of DNS servers.
Format: array of byte array

dns-options
Array of DNS options as described in man 5 resolv.conf. NULL means that the options
are unset and left at the default. In this case NetworkManager will use default
options. This is distinct from an empty list of properties. The currently supported

options are "attempts", "debug", "edns0", "inet6", "ip6-bytestring”, "ip6-dotint",

"ndots", "no-check-names", "no-ip6-dotint", "no-reload", "no-tld-query", "rotate",

Page 43/91

"single-request”, "single-request-reopen”, "timeout", "trust-ad", "use-vc". The
"trust-ad" setting is only honored if the profile contributes name servers to
resolv.conf, and if all contributing profiles have "trust-ad" enabled. When using a
caching DNS plugin (dnsmasq or systemd-resolved in NetworkManager.conf) then "edns0"
and "trust-ad" are automatically added.
Format: array of string

dns-priority
DNS servers priority. The relative priority for DNS servers specified by this setting.
A lower numerical value is better (higher priority). Negative values have the special
effect of excluding other configurations with a greater numerical priority value; so
in presence of at least one negative priority, only DNS servers from connections with
the lowest priority value will be used. To avoid all DNS leaks, set the priority of
the profile that should be used to the most negative value of all active connections
profiles. Zero selects a globally configured default value. If the latter is missing
or zero too, it defaults to 50 for VPNs (including WireGuard) and 100 for other
connections. Note that the priority is to order DNS settings for multiple active
connections. It does not disambiguate multiple DNS servers within the same connection
profile. When multiple devices have configurations with the same priority, VPNs will
be considered first, then devices with the best (lowest metric) default route and then
all other devices. When using dns=default, servers with higher priority will be on top
of resolv.conf. To prioritize a given server over another one within the same
connection, just specify them in the desired order. Note that commonly the resolver
tries name servers in /etc/resolv.conf in the order listed, proceeding with the next
server in the list on failure. See for example the "rotate" option of the dns-options
setting. If there are any negative DNS priorities, then only name servers from the
devices with that lowest priority will be considered. When using a DNS resolver that
supports Conditional Forwarding or Split DNS (with dns=dnsmasq or dns=systemd-resolved
settings), each connection is used to query domains in its search list. The search
domains determine which name servers to ask, and the DNS priority is used to
prioritize name servers based on the domain. Queries for domains not present in any
search list are routed through connections having the '~." special wildcard domain,
which is added automatically to connections with the default route (or can be added

manually). When multiple connections specify the same domain, the one with the best Page 44/91

priority (lowest numerical value) wins. If a sub domain is configured on another
interface it will be accepted regardless the priority, unless parent domain on the
other interface has a negative priority, which causes the sub domain to be shadowed.
With Split DNS one can avoid undesired DNS leaks by properly configuring DNS
priorities and the search domains, so that only name servers of the desired interface
are configured.
Format: int32

dns-search
Array of DNS search domains. Domains starting with a tilde ('~") are considered
'routing' domains and are used only to decide the interface over which a query must be
forwarded; they are not used to complete unqualified host names. When using a DNS
plugin that supports Conditional Forwarding or Split DNS, then the search domains
specify which name servers to query. This makes the behavior different from running
with plain /etc/resolv.conf. For more information see also the dns-priority setting.
Format: array of string

gateway
Alias: gw6
The gateway associated with this configuration. This is only meaningful if "addresses”
is also set. The gateway's main purpose is to control the next hop of the standard
default route on the device. Hence, the gateway property conflicts with
"never-default" and will be automatically dropped if the IP configuration is set to
never-default. As an alternative to set the gateway, configure a static default route
with /0 as prefix length.
Format: string

ignore-auto-dns
When "method" is set to "auto" and this property to TRUE, automatically configured
name servers and search domains are ignored and only name servers and search domains
specified in the "dns" and "dns-search" properties, if any, are used.
Format: boolean

ignore-auto-routes
When "method" is set to "auto" and this property to TRUE, automatically configured
routes are ignored and only routes specified in the "routes" property, if any, are

used. Page 45/91

Format: boolean

ip6-privacy
Configure IPv6 Privacy Extensions for SLAAC, described in RFC4941. If enabled, it
makes the kernel generate a temporary IPv6 address in addition to the public one
generated from MAC address via modified EUI-64. This enhances privacy, but could cause
problems in some applications, on the other hand. The permitted values are: -1:
unknown, O: disabled, 1: enabled (prefer public address), 2: enabled (prefer temporary
addresses). Having a per-connection setting set to "-1" (unknown) means fallback to
global configuration "ipv6.ip6-privacy". If also global configuration is unspecified
or set to "-1", fallback to read "/proc/sys/net/ipv6/conf/default/use_tempaddr". Note
that this setting is distinct from the Stable Privacy addresses that can be enabled
with the "addr-gen-mode" property's "stable-privacy" setting as another way of
avoiding host tracking with IPv6 addresses.
Format: NMSettinglP6ConfigPrivacy (int32)

may-fall
If TRUE, allow overall network configuration to proceed even if the configuration
specified by this property times out. Note that at least one IP configuration must
succeed or overall network configuration will still fail. For example, in IPv6-only
networks, setting this property to TRUE on the NMSettinglP4Config allows the overall
network configuration to succeed if IPv4 configuration fails but IPv6 configuration
completes successfully.
Format: boolean

method
IP configuration method. NMSettingIP4Config and NMSettingIP6Config both support
"disabled", "auto", "manual”, and "link-local". See the subclass-specific
documentation for other values. In general, for the "auto" method, properties such as
"dns" and "routes" specify information that is added on to the information returned
from automatic configuration. The "ignore-auto-routes" and "ignore-auto-dns"
properties modify this behavior. For methods that imply no upstream network, such as
"shared" or "link-local", these properties must be empty. For IPv4 method "shared",
the IP subnet can be configured by adding one manual IPv4 address or otherwise
10.42.x.0/24 is chosen. Note that the shared method must be configured on the

interface which shares the internet to a subnet, not on the uplink which is shared. Page 46/91

Format: string

never-default
If TRUE, this connection will never be the default connection for this IP type,
meaning it will never be assigned the default route by NetworkManager.
Format: boolean

ra-timeout
A timeout for waiting Router Advertisements in seconds. If zero (the default), a
globally configured default is used. If still unspecified, the timeout depends on the
sysctl settings of the device. Set to 2147483647 (MAXINT32) for infinity.
Format: int32

required-timeout
The minimum time interval in milliseconds for which dynamic IP configuration should be
tried before the connection succeeds. This property is useful for example if both IPv4
and IPv6 are enabled and are allowed to fail. Normally the connection succeeds as soon
as one of the two address families completes; by setting a required timeout for e.g.
IPv4, one can ensure that even if IP6 succeeds earlier than IPv4, NetworkManager waits
some time for IPv4 before the connection becomes active. Note that if "may-fail” is
FALSE for the same address family, this property has no effect as NetworkManager needs
to wait for the full DHCP timeout. A zero value means that no required timeout is
present, -1 means the default value (either configuration ipvx.required-timeout
override or zero).
Format: int32

route-metric
The default metric for routes that don't explicitly specify a metric. The default
value -1 means that the metric is chosen automatically based on the device type. The
metric applies to dynamic routes, manual (static) routes that don't have an explicit
metric setting, address prefix routes, and the default route. Note that for IPv6, the
kernel accepts zero (0) but coerces it to 1024 (user default). Hence, setting this
property to zero effectively mean setting it to 1024. For IPv4, zero is a regular
value for the metric.
Format: int64

route-table

Enable policy routing (source routing) and set the routing table used when adding

Page 47/91

routes. This affects all routes, including device-routes, IPv4LL, DHCP, SLAAC,
default-routes and static routes. But note that static routes can individually
overwrite the setting by explicitly specifying a non-zero routing table. If the table
setting is left at zero, it is eligible to be overwritten via global configuration. If
the property is zero even after applying the global configuration value, policy
routing is disabled for the address family of this connection. Policy routing disabled
means that NetworkManager will add all routes to the main table (except static routes
that explicitly configure a different table). Additionally, NetworkManager will not
delete any extraneous routes from tables except the main table. This is to preserve
backward compatibility for users who manage routing tables outside of NetworkManager.
Format: uint32

routes
A list of IPv6 destination addresses, prefix length, optional IPv6 next hop addresses,
optional route metric, optional attribute. The valid syntax is: "ip[/prefix]
[next-hop] [metric] [attribute=val]...[,ip[/prefix]...]".
Various attributes are supported:
? "cwnd" - an unsigned 32 bit integer.
? "from" - an IPv6 address with optional prefix. IPv6 only.
? "initcwnd" - an unsigned 32 hit integer.
? "initrwnd" - an unsigned 32 bit integer.
? "lock-cwnd" - a boolean value.
? "lock-initcwnd" - a boolean value.
? "lock-initrwnd" - a boolean value.
? "lock-mtu" - a boolean value.
? "lock-window" - a boolean value.
? "mtu” - an unsigned 32 bit integer.
? "onlink" - a boolean value.
? "src"-an IPv6 address.
? "table" - an unsigned 32 bit integer. The default depends on ipv6.route-table.
? "type" - one of unicast, local, blackhole, unavailable, prohibit. The default is

unicast.

? "window" - an unsigned 32 bit integer.

For details see also "'man ip-route". Page 48/91

Format: a comma separated list of routes

routing-rules
A comma separated list of routing rules for policy routing. The format is based on ip
rule add syntax and mostly compatible. One difference is that routing rules in
NetworkManager always need a fixed priority.
Example: priority 5 from 1:2:3::5/128 table 45
Format: a comma separated list of routing rules

token
Configure the token for draft-chown-6man-tokenised-ipv6-identifiers-02 IPv6 tokenized
interface identifiers. Useful with eui64 addr-gen-mode.
Format: string

ip-tunnel setting

IP Tunneling Settings.

Properties:

encapsulation-limit
How many additional levels of encapsulation are permitted to be prepended to packets.
This property applies only to IPv6 tunnels.
Format: uint32

flags
Tunnel flags. Currently, the following values are supported:
NM_IP_TUNNEL_FLAG_IP6_IGN_ENCAP_LIMIT (0x1), NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_TCLASS
(0x2), NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FLOWLABEL (0x4), NM_IP_TUNNEL_FLAG_IP6_MIP6_DEV
(0x8), NM_IP_TUNNEL_FLAG_IP6_RCV_DSCP_COPY (0x10),
NM_IP_TUNNEL_FLAG_IP6_USE_ORIG_FWMARK (0x20). They are valid only for IPv6 tunnels.
Format: uint32

flow-label
The flow label to assign to tunnel packets. This property applies only to IPv6
tunnels.
Format: uint32

input-key
The key used for tunnel input packets; the property is valid only for certain tunnel
modes (GRE, IP6GRE). If empty, no key is used.

Format: string Page 49/91

local
Alias: local
The local endpoint of the tunnel; the value can be empty, otherwise it must contain an
IPv4 or IPv6 address.
Format: string

mode
Alias: mode
The tunneling mode, for example NM_IP_TUNNEL_MODE_IPIP (1) or NM_IP_TUNNEL_MODE_GRE
(2).
Format: uint32

mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple fragments.
Format: uint32

output-key
The key used for tunnel output packets; the property is valid only for certain tunnel
modes (GRE, IP6GRE). If empty, no key is used.
Format: string

parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID the new device
will be bound to so that tunneled packets will only be routed via that interface.
Format: string

path-mtu-discovery
Whether to enable Path MTU Discovery on this tunnel.
Format: boolean

remote
Alias: remote
The remote endpoint of the tunnel; the value must contain an IPv4 or IPv6 address.
Format: string

tos

The type of service (IPv4) or traffic class (IPv6) field to be set on tunneled

packets. Page 50/91

Format: uint32

ttl
The TTL to assign to tunneled packets. 0 is a special value meaning that packets
inherit the TTL value.

Format: uint32

macsec setting

MACSec Settings.
Properties:
encrypt
Alias: encrypt
Whether the transmitted traffic must be encrypted.
Format: boolean
mka-cak
Alias: cak
The pre-shared CAK (Connectivity Association Key) for MACsec Key Agreement.
Format: string
mka-cak-flags
Flags indicating how to handle the "mka-cak" property. See the section called ?Secret
flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)
mka-ckn
Alias: ckn
The pre-shared CKN (Connectivity-association Key Name) for MACsec Key Agreement.
Format: string
mode
Alias: mode
Specifies how the CAK (Connectivity Association Key) for MKA (MACsec Key Agreement) is
obtained.
Format: int32
parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID from which

this MACSEC interface should be created. If this property is not specified, the Page 51/91

connection must contain an "802-3-ethernet" setting with a "mac-address" property.
Format: string

port
Alias: port
The port component of the SCI (Secure Channel Identifier), between 1 and 65534.
Format: int32

send-sci
Specifies whether the SCI (Secure Channel Identifier) is included in every packet.
Format: boolean

validation
Specifies the validation mode for incoming frames.
Format: int32

macvlan setting

MAC VLAN Settings.

Properties:

mode
Alias: mode
The macvlan mode, which specifies the communication mechanism between multiple
macvlans on the same lower device.
Format: uint32

parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID from which
this MAC-VLAN interface should be created. If this property is not specified, the
connection must contain an "802-3-ethernet" setting with a "mac-address" property.
Format: string

promiscuous
Whether the interface should be put in promiscuous mode.
Format: boolean

tap
Alias: tap
Whether the interface should be a MACVTAP.

Format: boolean Page 52/91

match setting

Match settings.

Properties:

driver
A list of driver names to match. Each element is a shell wildcard pattern. See
NMSettingMatch:interface-name for how special characters '[', '&', 'I"and '\' are
used for optional and mandatory matches and inverting the pattern.
Format: array of string

interface-name
A list of interface names to match. Each element is a shell wildcard pattern. An
element can be prefixed with a pipe symbol (]) or an ampersand (&). The former means
that the element is optional and the latter means that it is mandatory. If there are
any optional elements, than the match evaluates to true if at least one of the
optional element matches (logical OR). If there are any mandatory elements, then they
all must match (logical AND). By default, an element is optional. This means that an
element "foo" behaves the same as "|foo". An element can also be inverted with
exclamation mark (!) between the pipe symbol (or the ampersand) and before the
pattern. Note that "!foo" is a shortcut for the mandatory match "&!foo". Finally, a
backslash can be used at the beginning of the element (after the optional special
characters) to escape the start of the pattern. For example, "&\!a" is an mandatory
match for literally "1a".
Format: array of string

kernel-command-line
A list of kernel command line arguments to match. This may be used to check whether a
specific kernel command line option is set (or unset, if prefixed with the exclamation
mark). The argument must either be a single word, or an assignment (i.e. two words,
joined by "="). In the former case the kernel command line is searched for the word
appearing as is, or as left hand side of an assignment. In the latter case, the exact
assignment is looked for with right and left hand side matching. Wildcard patterns are
not supported. See NMSettingMatch:interface-name for how special characters '[', '&',
'I"and '\' are used for optional and mandatory matches and inverting the match.
Format: array of string

path Page 53/91

A list of paths to match against the ID_PATH udev property of devices. ID_PATH
represents the topological persistent path of a device. It typically contains a
subsystem string (pci, usb, platform, etc.) and a subsystem-specific identifier. For
PCI devices the path has the form "pci-$domain:$bus:$device.$function”, where each
variable is an hexadecimal value; for example "pci-0000:0a:00.0". The path of a device
can be obtained with "udevadm info /sys/class/net/$dev | grep ID_PATH=" or by looking
at the "path" property exported by NetworkManager ("nmcli -f general.path device show
$dev"). Each element of the list is a shell wildcard pattern. See
NMSettingMatch:interface-name for how special characters '[', '&', " and '\' are
used for optional and mandatory matches and inverting the pattern.
Format: array of string
802-11-olpc-mesh setting

Alias: olpc-mesh

OLPC Wireless Mesh Settings.

Properties:

channel
Alias: channel
Channel on which the mesh network to join is located.
Format: uint32

dhcp-anycast-address
Alias: dhcp-anycast
Anycast DHCP MAC address used when requesting an IP address via DHCP. The specific
anycast address used determines which DHCP server class answers the request. This is
currently only implemented by dhclient DHCP plugin.
Format: byte array

ssid
Alias: ssid
SSID of the mesh network to join.
Format: byte array

ovs-bridge setting
OvsBridge Link Settings.
Properties:

datapath-type Page 54/91

The data path type. One of "system", "netdev" or empty.
Format: string
fail-mode
The bridge failure mode. One of "secure", "standalone" or empty.
Format: string
mcast-snooping-enable
Enable or disable multicast snooping.
Format: boolean
rstp-enable
Enable or disable RSTP.
Format: boolean
stp-enable
Enable or disable STP.
Format: boolean
ovs-dpdk setting
OvsDpdk Link Settings.
Properties:
devargs
Open vSwitch DPDK device arguments.
Format: string
n-rxq
Open vSwitch DPDK number of rx queues. Defaults to zero which means to leave the
parameter in OVS unspecified and effectively configures one queue.
Format: uint32
ovs-interface setting
Open vSwitch Interface Settings.
Properties:
type
The interface type. Either "internal”, "system", "patch", "dpdk", or empty.
Format: string
ovs-patch setting
OvsPatch Link Settings.

Properties: Page 55/91

peer
Specifies the name of the interface for the other side of the patch. The patch on the
other side must also set this interface as peer.
Format: string
ovs-port setting
OvsPort Link Settings.
Properties:
bond-downdelay
The time port must be inactive in order to be considered down.
Format: uint32
bond-mode
Bonding mode. One of "active-backup", "balance-sIb", or "balance-tcp".
Format: string
bond-updelay
The time port must be active before it starts forwarding traffic.
Format: uint32
lacp
LACP mode. One of "active", "off", or "passive".
Format: string
tag
The VLAN tag in the range 0-4095.
Format: uint32
vlan-mode
The VLAN mode. One of "access", "native-tagged"”, "native-untagged", "trunk” or unset.
Format: string
ppp setting
Point-to-Point Protocol Settings.
Properties:
baud
If non-zero, instruct pppd to set the serial port to the specified baudrate. This
value should normally be left as 0 to automatically choose the speed.
Format: uint32

crtscts Page 56/91

If TRUE, specify that pppd should set the serial port to use hardware flow control
with RTS and CTS signals. This value should normally be set to FALSE.
Format: boolean

Icp-echo-failure
If non-zero, instruct pppd to presume the connection to the peer has failed if the
specified number of LCP echo-requests go unanswered by the peer. The
"Icp-echo-interval” property must also be set to a non-zero value if this property is
used.
Format: uint32

Icp-echo-interval
If non-zero, instruct pppd to send an LCP echo-request frame to the peer every n
seconds (where n is the specified value). Note that some PPP peers will respond to
echo requests and some will not, and it is not possible to autodetect this.
Format: uint32

mppe-stateful
If TRUE, stateful MPPE is used. See pppd documentation for more information on
stateful MPPE.
Format: boolean

mru
If non-zero, instruct pppd to request that the peer send packets no larger than the
specified size. If non-zero, the MRU should be between 128 and 16384.
Format: uint32

mtu
If non-zero, instruct pppd to send packets no larger than the specified size.
Format: uint32

no-vj-comp
If TRUE, Van Jacobsen TCP header compression will not be requested.
Format: boolean

noauth
If TRUE, do not require the other side (usually the PPP server) to authenticate itself
to the client. If FALSE, require authentication from the remote side. In almost all
cases, this should be TRUE.

Format: boolean

Page 57/91

nobsdcomp
If TRUE, BSD compression will not be requested.
Format: boolean
nodeflate
If TRUE, "deflate" compression will not be requested.
Format: boolean
refuse-chap
If TRUE, the CHAP authentication method will not be used.
Format: boolean
refuse-eap
If TRUE, the EAP authentication method will not be used.
Format: boolean
refuse-mschap
If TRUE, the MSCHAP authentication method will not be used.
Format: boolean
refuse-mschapv2
If TRUE, the MSCHAPV2 authentication method will not be used.
Format: boolean
refuse-pap
If TRUE, the PAP authentication method will not be used.
Format: boolean
require-mppe
If TRUE, MPPE (Microsoft Point-to-Point Encryption) will be required for the PPP
session. If either 64-bit or 128-bit MPPE is not available the session will fail. Note
that MPPE is not used on mobile broadband connections.
Format: boolean
require-mppe-128
If TRUE, 128-bit MPPE (Microsoft Point-to-Point Encryption) will be required for the
PPP session, and the "require-mppe" property must also be set to TRUE. If 128-bit MPPE
is not available the session will fail.
Format: boolean
pppoe setting

PPP-over-Ethernet Settings. Page 58/91

Properties:

parent
Alias: parent
If given, specifies the parent interface name on which this PPPoE connection should be
created. If this property is not specified, the connection is activated on the
interface specified in "interface-name" of NMSettingConnection.
Format: string

password
Alias: password
Password used to authenticate with the PPPOE service.
Format: string

password-flags
Flags indicating how to handle the "password" property. See the section called ?Secret
flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

service
Alias: service
If specified, instruct PPPOE to only initiate sessions with access concentrators that
provide the specified service. For most providers, this should be left blank. It is
only required if there are multiple access concentrators or a specific service is
known to be required.
Format: string

username
Alias: username
Username used to authenticate with the PPPoE service.
Format: string

proxy setting

WWW Proxy Settings.

Properties:

browser-only
Alias: browser-only
Whether the proxy configuration is for browser only.

Format: boolean

Page 59/91

method
Alias: method
Method for proxy configuration, Default is NM_SETTING_PROXY_METHOD_NONE (0)
Format: int32
pac-script
Alias: pac-script
PAC script for the connection.
Format: string
pac-url
Alias: pac-url
PAC URL for obtaining PAC file.
Format: string
serial setting
Serial Link Settings.
Properties:
baud
Speed to use for communication over the serial port. Note that this value usually has
no effect for mobile broadband modems as they generally ignore speed settings and use
the highest available speed.
Format: uint32
bits
Byte-width of the serial communication. The 8 in "8n1" for example.
Format: uint32
parity
Parity setting of the serial port.
Format: NMSettingSerialParity (byte)
send-delay
Time to delay between each byte sent to the modem, in microseconds.
Format: uint64
stopbits
Number of stop bits for communication on the serial port. Either 1 or 2. The 1 in
"8n1" for example.

Format: uint32

Page 60/91

sriov setting

SR-I0V settings.

Properties:

autoprobe-drivers
Whether to autoprobe virtual functions by a compatible driver. If set to
NM_TERNARY_TRUE (1), the kernel will try to bind VFs to a compatible driver and if
this succeeds a new network interface will be instantiated for each VF. If set to
NM_TERNARY_FALSE (0), VFs will not be claimed and no network interfaces will be
created for them. When set to NM_TERNARY_DEFAULT (-1), the global default is used; in
case the global default is unspecified it is assumed to be NM_TERNARY_TRUE (1).
Format: NMTernary (int32)

total-vfs
The total number of virtual functions to create. Note that when the sriov setting is
present NetworkManager enforces the number of virtual functions on the interface (also
when it is zero) during activation and resets it upon deactivation. To prevent any
changes to SR-IOV parameters don't add a sriov setting to the connection.
Format: uint32

vfs
Array of virtual function descriptors. Each VF descriptor is a dictionary mapping
attribute names to GVariant values. The 'index’ entry is mandatory for each VF. When
represented as string a VF is in the form: "INDEX [ATTR=VALUE[ATTR=VALUE]...]". for
example: "2 mac=00:11:22:33:44:55 spoof-check=true". Multiple VFs can be specified
using a comma as separator. Currently, the following attributes are supported: mac,
spoof-check, trust, min-tx-rate, max-tx-rate, vlans. The "vlans" attribute is
represented as a semicolon-separated list of VLAN descriptors, where each descriptor
has the form "ID[.PRIORITY[.PROTO]]". PROTO can be either 'g' for 802.1Q (the default)
or 'ad’ for 802.1ad.
Format: array of vardict

tc setting

Linux Traffic Control Settings.

Properties:

gdiscs

Array of TC queueing disciplines. gdisc is a basic block in the Linux traffic control Page 61/91

subsystem

Each qdisc can be specified by the following attributes:

handle HANDLE
specifies the gdisc handle. A gdisc, which potentially can have children, gets
assigned a major number, called a ‘handle’, leaving the minor number namespace
available for classes. The handle is expressed as '10:'. It is customary to
explicitly assign a handle to qdiscs expected to have children.

parent HANDLE
specifies the handle of the parent qdisc the current qdisc must be attached to.

root
specifies that the gdisc is attached to the root of device.

KIND
this is the qdisc kind. NetworkManager currently supports the following kinds:
fg_codel, sfq, thf. Each gdisc kind has a different set of parameters, described
below. There are also some kinds like pfifo, pfifo_fast, prio supported by
NetworkManager but their parameters are not supported by NetworkManager.

Parameters for 'fq_codel":

limit U32
the hard limit on the real queue size. When this limit is reached, incoming
packets are dropped. Default is 10240 packets.

memory_limit U32
sets a limit on the total number of bytes that can be queued in this FQ-CoDel
instance. The lower of the packet limit of the limit parameter and the memory
limit will be enforced. Default is 32 MB.

flows U32
the number of flows into which the incoming packets are classified. Due to the
stochastic nature of hashing, multiple flows may end up being hashed into the same
slot. Newer flows have priority over older ones. This parameter can be set only at
load time since memory has to be allocated for the hash table. Default value is
1024.

target U32
the acceptable minimum standing/persistent queue delay. This minimum delay is

identified by tracking the local minimum queue delay that packets experience. The

Page 62/91

unit of measurement is microsecond(us). Default value is 5ms.
interval U32
used to ensure that the measured minimum delay does not become too stale. The
minimum delay must be experienced in the last epoch of length .B interval. It
should be set on the order of the worst-case RTT through the bottleneck to give
endpoints sufficient time to react. Default value is 100ms.
quantum U32
the number of bytes used as 'deficit' in the fair queuing algorithm. Default is
set to 1514 bytes which corresponds to the Ethernet MTU plus the hardware header
length of 14 bytes.
ecn BOOL
can be used to mark packets instead of dropping them. ecn is turned on by default.
ce_threshold U32
sets a threshold above which all packets are marked with ECN Congestion
Experienced. This is useful for DCTCP-style congestion control algorithms that
require marking at very shallow queueing thresholds.
Parameters for 'sfq'":
divisor U32
can be used to set a different hash table size, available from kernel 2.6.39
onwards. The specified divisor must be a power of two and cannot be larger than
65536. Default value: 1024.
limit U32
Upper limit of the SFQ. Can be used to reduce the default length of 127 packets.
depth U32
Limit of packets per flow. Default to 127 and can be lowered.
perturb_period U32
Interval in seconds for queue algorithm perturbation. Defaults to 0, which means
that no perturbation occurs. Do not set too low for each perturbation may cause
some packet reordering or losses. Advised value: 60 This value has no effect when
external flow classification is used. Its better to increase divisor value to
lower risk of hash collisions.
quantum U32

Amount of bytes a flow is allowed to dequeue during a round of the round robin

Page 63/91

process. Defaults to the MTU of the interface which is also the advised value and
the minimum value.

flows U32
Default value is 127.

Parameters for 'tbf":

rate U64
Bandwidth or rate. These parameters accept a floating point number, possibly
followed by either a unit (both SI and IEC units supported), or a float followed
by a percent character to specify the rate as a percentage of the device's speed.

burst U32
Also known as buffer or maxburst. Size of the bucket, in bytes. This is the
maximum amount of bytes that tokens can be available for instantaneously. In
general, larger shaping rates require a larger buffer. For 10mbit/s on Intel, you
need at least 10kbyte buffer if you want to reach your configured rate!
If your buffer is too small, packets may be dropped because more tokens arrive per
timer tick than fit in your bucket. The minimum buffer size can be calculated by
dividing the rate by HZ.
Token usage calculations are performed using a table which by default has a
resolution of 8 packets. This resolution can be changed by specifying the cell
size with the burst. For example, to specify a 6000 byte buffer with a 16 byte
cell size, set a burst of 6000/16. You will probably never have to set this. Must
be an integral power of 2.

limit U32
Limit is the number of bytes that can be queued waiting for tokens to become
available.

latency U32
specifies the maximum amount of time a packet can sit in the TBF. The latency
calculation takes into account the size of the bucket, the rate and possibly the
peakrate (if set). The latency and limit are mutually exclusive.

Format: GPtrArray(NMTCQdisc)

tfilters
Array of TC traffic filters. Traffic control can manage the packet content during

classification by using filters.

Page 64/91

Each tfilters can be specified by the following attributes:

handle HANDLE
specifies the tfilters handle. A filter is used by a classful qdisc to determine
in which class a packet will be enqueued. It is important to notice that filters
reside within gdiscs. Therefore, see qdiscs handle for detailed information.

parent HANDLE

specifies the handle of the parent qdisc the current qdisc must be attached to.

root
specifies that the gdisc is attached to the root of device.
KIND

this is the ftfilters kind. NetworkManager currently supports following kinds:

mirred, simple. Each filter kind has a different set of actions, described below.

There are also some other kinds like matchall, basic, u32 supported by
NetworkManager.
Actions for 'mirred":
egress bool
Define whether the packet should exit from the interface.
ingress bool
Define whether the packet should come into the interface.
mirror bool
Define whether the packet should be copied to the destination space.
redirect bool
Define whether the packet should be moved to the destination space.
Action for 'simple”:
sdata char[32]
The actual string to print.

Format: GPtrArray(NMTCTfilter)

team setting
Teaming Settings.
Properties:

config

Alias: config

The JSON configuration for the team network interface. The property should contain raw

Page 65/91

JSON configuration data suitable for teamd, because the value is passed directly to
teamd. If not specified, the default configuration is used. See man teamd.conf for the
format detalils.
Format: string
link-watchers
Link watchers configuration for the connection: each link watcher is defined by a
dictionary, whose keys depend upon the selected link watcher. Available link watchers
are 'ethtool', 'nsna_ping' and 'arp_ping' and it is specified in the dictionary with
the key 'name’. Available keys are: ethtool: 'delay-up’, 'delay-down’, 'init-wait';
nsna_ping: 'init-wait', 'interval’, 'missed-max’, 'target-host'; arp_ping: all the
ones in nsna_ping and 'source-host', 'validate-active', 'validate-inactive',
'send-always'. See teamd.conf man for more details.
Format: array of vardict
mcast-rejoin-count
Corresponds to the teamd mcast_rejoin.count.
Format: int32
mcast-rejoin-interval
Corresponds to the teamd mcast_rejoin.interval.
Format: int32
notify-peers-count
Corresponds to the teamd notify_peers.count.
Format: int32
notify-peers-interval
Corresponds to the teamd notify_peers.interval.
Format: int32
runner
Corresponds to the teamd runner.name. Permitted values are: "roundrobin”, "broadcast",
"activebackup", "loadbalance", "lacp”, "random".
Format: string
runner-active
Corresponds to the teamd runner.active.
Format: boolean

runner-agg-select-policy Page 66/91

Corresponds to the teamd runner.agg_select_policy.
Format: string

runner-fast-rate
Corresponds to the teamd runner.fast_rate.
Format: boolean

runner-hwaddr-policy
Corresponds to the teamd runner.hwaddr_policy.
Format: string

runner-min-ports
Corresponds to the teamd runner.min_ports.
Format: int32

runner-sys-prio
Corresponds to the teamd runner.sys_prio.
Format: int32

runner-tx-balancer
Corresponds to the teamd runner.tx_balancer.name.
Format: string

runner-tx-balancer-interval
Corresponds to the teamd runner.tx_balancer.interval.
Format: int32

runner-tx-hash
Corresponds to the teamd runner.tx_hash.
Format: array of string

team-port setting

Team Port Settings.

Properties:

config
Alias: config
The JSON configuration for the team port. The property should contain raw JSON
configuration data suitable for teamd, because the value is passed directly to teamd.
If not specified, the default configuration is used. See man teamd.conf for the format
details.

Format: string Page 67/91

lacp-key
Corresponds to the teamd ports.PORTIFNAME.lacp_key.
Format: int32

lacp-prio
Corresponds to the teamd ports.PORTIFNAME.lacp_prio.
Format: int32

link-watchers
Link watchers configuration for the connection: each link watcher is defined by a
dictionary, whose keys depend upon the selected link watcher. Available link watchers
are 'ethtool', 'nsna_ping' and 'arp_ping' and it is specified in the dictionary with
the key 'name’. Available keys are: ethtool: 'delay-up’, 'delay-down’, 'init-wait';
nsna_ping: 'init-wait', 'interval’, 'missed-max’, 'target-host'; arp_ping: all the
ones in nsna_ping and 'source-host', 'validate-active', 'validate-inactive',
'send-always'. See teamd.conf man for more details.
Format: array of vardict

prio
Corresponds to the teamd ports.PORTIFNAME.prio.
Format: int32

gueue-id
Corresponds to the teamd ports.PORTIFNAME.queue_id. When set to -1 means the parameter
is skipped from the json config.
Format: int32

sticky
Corresponds to the teamd ports.PORTIFNAME.sticky.
Format: boolean

tun setting

Tunnel Settings.

Properties:

group
Alias: group
The group ID which will own the device. If set to NULL everyone will be able to use
the device.

Format: string Page 68/91

mode

Alias: mode

The operating mode of the virtual device. Allowed values are NM_SETTING_TUN_MODE_TUN

(1) to create a layer 3 device and NM_SETTING_TUN_MODE_TAP (2) to create an
Ethernet-like layer 2 one.
Format: uint32

multi-queue
Alias: multi-queue
If the property is set to TRUE, the interface will support multiple file descriptors
(queues) to parallelize packet sending or receiving. Otherwise, the interface will
only support a single queue.
Format: boolean

owner
Alias: owner
The user ID which will own the device. If set to NULL everyone will be able to use the
device.
Format: string

pi
Alias: pi
If TRUE the interface will prepend a 4 byte header describing the physical interface
to the packets.
Format: boolean

vnet-hdr
Alias: vnet-hdr
If TRUE the IFF_VNET_HDR the tunnel packets will include a virtio network header.
Format: boolean

vlan setting

VLAN Settings.

Properties:

egress-priority-map
Alias: egress
For outgoing packets, a list of mappings from Linux SKB priorities to 802.1p

priorities. The mapping is given in the format "from:to" where both "from" and "to"

Page 69/91

are unsigned integers, ie "7:3".
Format: array of string

flags
Alias: flags
One or more flags which control the behavior and features of the VLAN interface. Flags
include NM_VLAN_FLAG_REORDER_HEADERS (0x1) (reordering of output packet headers),
NM_VLAN_FLAG_GVRP (0x2) (use of the GVRP protocol), and NM_VLAN_FLAG_LOOSE_BINDING
(0x4) (loose binding of the interface to its master device's operating state).
NM_VLAN_FLAG_MVRP (0x8) (use of the MVRP protocol). The default value of this property
is NM_VLAN_FLAG_REORDER_HEADERS, but it used to be 0. To preserve backward
compatibility, the default-value in the D-Bus API continues to be 0 and a missing
property on D-Bus is still considered as O.

Format: NMVlanFlags (uint32)

Alias: id
The VLAN identifier that the interface created by this connection should be assigned.
The valid range is from 0 to 4094, without the reserved id 4095.
Format: uint32

ingress-priority-map
Alias: ingress
For incoming packets, a list of mappings from 802.1p priorities to Linux SKB
priorities. The mapping is given in the format "from:to" where both "from" and "to"
are unsigned integers, ie "7:3".
Format: array of string

parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID from which
this VLAN interface should be created. If this property is not specified, the
connection must contain an "802-3-ethernet" setting with a "mac-address" property.
Format: string

vpn setting
VPN Settings.

Properties: Page 70/91

data
Dictionary of key/value pairs of VPN plugin specific data. Both keys and values must
be strings.
Format: dict of string to string
persistent
If the VPN service supports persistence, and this property is TRUE, the VPN will
attempt to stay connected across link changes and outages, until explicitly
disconnected.
Format: boolean
secrets
Dictionary of key/value pairs of VPN plugin specific secrets like passwords or private
keys. Both keys and values must be strings.
Format: dict of string to string
service-type
Alias: vpn-type
D-Bus service name of the VPN plugin that this setting uses to connect to its network.
i.e. org.freedesktop.NetworkManager.vpnc for the vpnc plugin.
Format: string
timeout
Timeout for the VPN service to establish the connection. Some services may take quite
a long time to connect. Value of 0 means a default timeout, which is 60 seconds
(unless overridden by vpn.timeout in configuration file). Values greater than zero
mean timeout in seconds.
Format: uint32
user-name
Alias: user
If the VPN connection requires a user name for authentication, that name should be
provided here. If the connection is available to more than one user, and the VPN
requires each user to supply a different name, then leave this property empty. If this
property is empty, NetworkManager will automatically supply the username of the user
which requested the VPN connection.
Format: string

vrf setting Page 71/91

VREF settings.

Properties:

table
Alias: table
The routing table for this VRF.
Format: uint32

vxlan setting

VXLAN Settings.

Properties:

ageing
Specifies the lifetime in seconds of FDB entries learnt by the kernel.
Format: uint32

destination-port

Alias: destination-port

Specifies the UDP destination port to communicate to the remote VXLAN tunnel endpoint.

Format: uint32
id
Alias: id
Specifies the VXLAN Network Identifier (or VXLAN Segment Identifier) to use.
Format: uint32
[2-miss
Specifies whether netlink LL ADDR miss notifications are generated.
Format: boolean
[3-miss
Specifies whether netlink IP ADDR miss notifications are generated.
Format: boolean
learning
Specifies whether unknown source link layer addresses and IP addresses are entered
into the VXLAN device forwarding database.
Format: boolean
limit
Specifies the maximum number of FDB entries. A value of zero means that the kernel

will store unlimited entries.

Page 72/91

Format: uint32
local
Alias: local
If given, specifies the source IP address to use in outgoing packets.
Format: string
parent
Alias: dev
If given, specifies the parent interface name or parent connection UUID.
Format: string
proxy
Specifies whether ARP proxy is turned on.
Format: boolean
remote
Alias: remote
Specifies the unicast destination IP address to use in outgoing packets when the
destination link layer address is not known in the VXLAN device forwarding database,
or the multicast IP address to join.
Format: string
rsc
Specifies whether route short circuit is turned on.
Format: boolean
source-port-max
Alias: source-port-max
Specifies the maximum UDP source port to communicate to the remote VXLAN tunnel
endpoint.
Format: uint32
source-port-min
Alias: source-port-min
Specifies the minimum UDP source port to communicate to the remote VXLAN tunnel
endpoint.
Format: uint32
tos

Specifies the TOS value to use in outgoing packets. Page 73/91

Format: uint32
ttl
Specifies the time-to-live value to use in outgoing packets.
Format: uint32
wifi-p2p setting
Wi-Fi P2P Settings.
Properties:
peer
Alias: peer
The P2P device that should be connected to. Currently, this is the only way to create
or join a group.
Format: string
wfd-ies
The Wi-Fi Display (WFD) Information Elements (IEs) to set. Wi-Fi Display requires a
protocol specific information element to be set in certain Wi-Fi frames. These can be
specified here for the purpose of establishing a connection. This setting is only
useful when implementing a Wi-Fi Display client.
Format: byte array
wps-method
Flags indicating which mode of WPS is to be used. There's little point in changing the
default setting as NetworkManager will automatically determine the best method to use.
Format: uint32
wimax setting
WiMax Settings.
Properties:
mac-address
Alias: mac
If specified, this connection will only apply to the WiMAX device whose MAC address
matches. This property does not change the MAC address of the device (known as MAC
spoofing). Deprecated: 1
Format: byte array

network-name

Alias: nsp Page 74/91

Network Service Provider (NSP) name of the WiMAX network this connection should use.
Deprecated: 1
Format: string
802-3-ethernet setting

Alias: ethernet

Wired Ethernet Settings.

Properties:

accept-all-mac-addresses
When TRUE, setup the interface to accept packets for all MAC addresses. This is
enabling the kernel interface flag IFF_PROMISC. When FALSE, the interface will only
accept the packets with the interface destination mac address or broadcast.
Format: NMTernary (int32)

auto-negotiate
When TRUE, enforce auto-negotiation of speed and duplex mode. If "speed" and "duplex"
properties are both specified, only that single mode will be advertised and accepted
during the link auto-negotiation process: this works only for BASE-T 802.3
specifications and is useful for enforcing gigabits modes, as in these cases link
negotiation is mandatory. When FALSE, "speed" and "duplex" properties should be both
set or link configuration will be skipped.
Format: boolean

cloned-mac-address
Alias: cloned-mac
If specified, request that the device use this MAC address instead. This is known as
MAC cloning or spoofing. Beside explicitly specifying a MAC address, the special
values "preserve", "permanent”, "random" and "stable" are supported. "preserve" means
not to touch the MAC address on activation. "permanent" means to use the permanent
hardware address if the device has one (otherwise this is treated as "preserve").
"random" creates a random MAC address on each connect. "stable" creates a hashed MAC
address based on connection.stable-id and a machine dependent key. If unspecified, the
value can be overwritten via global defaults, see manual of NetworkManager.conf. If
still unspecified, it defaults to "preserve" (older versions of NetworkManager may use
a different default value). On D-Bus, this field is expressed as

"assigned-mac-address" or the deprecated "cloned-mac-address". Page 75/91

Format: byte array

duplex
When a value is set, either "half* or "full”", configures the device to use the
specified duplex mode. If "auto-negotiate" is "yes" the specified duplex mode will be
the only one advertised during link negotiation: this works only for BASE-T 802.3
specifications and is useful for enforcing gigabits modes, as in these cases link
negotiation is mandatory. If the value is unset (the default), the link configuration
will be either skipped (if "auto-negotiate" is "no", the default) or will be
auto-negotiated (if "auto-negotiate" is "yes") and the local device will advertise all
the supported duplex modes. Must be set together with the "speed" property if
specified. Before specifying a duplex mode be sure your device supports it.
Format: string

generate-mac-address-mask
With "cloned-mac-address" setting "random" or "stable", by default all bits of the MAC
address are scrambled and a locally-administered, unicast MAC address is created. This
property allows to specify that certain bits are fixed. Note that the least
significant bit of the first MAC address will always be unset to create a unicast MAC
address. If the property is NULL, it is eligible to be overwritten by a default
connection setting. If the value is still NULL or an empty string, the default is to
create a locally-administered, unicast MAC address. If the value contains one MAC
address, this address is used as mask. The set bits of the mask are to be filled with
the current MAC address of the device, while the unset bits are subject to
randomization. Setting "FE:FF:FF:00:00:00" means to preserve the OUI of the current
MAC address and only randomize the lower 3 bytes using the "random" or "stable"
algorithm. If the value contains one additional MAC address after the mask, this
address is used instead of the current MAC address to fill the bits that shall not be
randomized. For example, a value of "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the
OUI of the MAC address to 68:F7:28, while the lower bits are randomized. A value of
"02:00:00:00:00:00 00:00:00:00:00:00" will create a fully scrambled
globally-administered, burned-in MAC address. If the value contains more than one
additional MAC addresses, one of them is chosen randomly. For example,
"02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled

MAC address, randomly locally or globally administered. Page 76/91

Format: string

mac-address
Alias: mac
If specified, this connection will only apply to the Ethernet device whose permanent
MAC address matches. This property does not change the MAC address of the device (i.e.
MAC spoofing).
Format: byte array

mac-address-blacklist
If specified, this connection will never apply to the Ethernet device whose permanent
MAC address matches an address in the list. Each MAC address is in the standard
hex-digits-and-colons notation (00:11:22:33:44:55).
Format: array of string

mtu
Alias: mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple Ethernet frames.
Format: uint32

port
Specific port type to use if the device supports multiple attachment methods. One of
"tp" (Twisted Pair), "aui" (Attachment Unit Interface), "bnc" (Thin Ethernet) or "mii"
(Media Independent Interface). If the device supports only one port type, this setting
is ignored.
Format: string

s390-nettype
s390 network device type; one of "geth", "lcs", or "ctc", representing the different
types of virtual network devices available on s390 systems.
Format: string

s$390-options
Dictionary of key/value pairs of s390-specific device options. Both keys and values
must be strings. Allowed keys include "portno”, "layer2", "porthname", "protocol”,
among others. Key names must contain only alphanumeric characters (ie, [a-zA-Z0-9]).
Currently, NetworkManager itself does nothing with this information. However,

s390utils ships a udev rule which parses this information and applies it to the Page 77/91

interface.
Format: dict of string to string

s$390-subchannels
Identifies specific subchannels that this network device uses for communication with
z/VM or s390 host. Like the "mac-address" property for non-z/VM devices, this property
can be used to ensure this connection only applies to the network device that uses
these subchannels. The list should contain exactly 3 strings, and each string may only
be composed of hexadecimal characters and the period (.) character.
Format: array of string

speed
When a value greater than 0 is set, configures the device to use the specified speed.
If "auto-negotiate” is "yes" the specified speed will be the only one advertised
during link negotiation: this works only for BASE-T 802.3 specifications and is useful
for enforcing gigabit speeds, as in this case link negotiation is mandatory. If the
value is unset (0, the default), the link configuration will be either skipped (if
"auto-negotiate" is "no", the default) or will be auto-negotiated (if "auto-negotiate"
is "yes") and the local device will advertise all the supported speeds. In Mbit/s, ie
100 == 100Mbit/s. Must be set together with the "duplex" property when non-zero.
Before specifying a speed value be sure your device supports it.
Format: uint32

wake-on-lan
The NMSettingWiredWakeOnLan options to enable. Not all devices support all options.
May be any combination of NM_SETTING_WIRED_WAKE_ON_LAN_PHY (0x2),
NM_SETTING_WIRED_WAKE_ON_LAN_UNICAST (0x4), NM_SETTING_WIRED_WAKE_ON_LAN_MULTICAST

(0x8), NM_SETTING_WIRED WAKE_ON_LAN_BROADCAST (0x10),
NM_SETTING_WIRED WAKE_ON_LAN_ARP

(Ox20), NM_SETTING_WIRED_WAKE_ON_LAN_MAGIC (0x40) or the special values
NM_SETTING_WIRED_WAKE_ON_LAN_DEFAULT (0x1) (to use global settings) and
NM_SETTING_WIRED_WAKE_ON_LAN_IGNORE (0x8000) (to disable management of Wake-on-LAN in
NetworkManager).
Format: uint32

wake-on-lan-password

If specified, the password used with magic-packet-based Wake-on-LAN, represented as an Page 78/91

Ethernet MAC address. If NULL, no password will be required.
Format: string
wireguard setting

WireGuard Settings.

Properties:

fwmark
The use of fwmark is optional and is by default off. Setting it to O disables it.
Otherwise, it is a 32-bit fwmark for outgoing packets. Note that
"ip4-auto-default-route” or "ip6-auto-default-route” enabled, implies to automatically
choose a fwmark.
Format: uint32

ip4-auto-default-route
Whether to enable special handling of the IPv4 default route. If enabled, the IPv4
default route from wireguard.peer-routes will be placed to a dedicated routing-table
and two policy routing rules will be added. The fwmark number is also used as
routing-table for the default-route, and if fwmark is zero, an unused fwmark/table is
chosen automatically. This corresponds to what wg-quick does with Table=auto and what
WireGuard calls "Improved Rule-based Routing". Note that for this automatism to work,
you usually don't want to set ipv4.gateway, because that will result in a conflicting
default route. Leaving this at the default will enable this option automatically if
ipv4.never-default is not set and there are any peers that use a default-route as
allowed-ips.
Format: NMTernary (int32)

ip6-auto-default-route
Like ip4-auto-default-route, but for the IPv6 default route.
Format: NMTernary (int32)

listen-port
The listen-port. If listen-port is not specified, the port will be chosen randomly
when the interface comes up.
Format: uint32

mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger

packets up into multiple fragments. If zero a default MTU is used. Note that contrary Page 79/91

to wg-quick's MTU setting, this does not take into account the current routes at the
time of activation.
Format: uint32

peer-routes
Whether to automatically add routes for the AllowedIPs ranges of the peers. If TRUE
(the default), NetworkManager will automatically add routes in the routing tables
according to ipv4.route-table and ipv6.route-table. Usually you want this automatism
enabled. If FALSE, no such routes are added automatically. In this case, the user may
want to configure static routes in ipv4.routes and ipv6.routes, respectively. Note
that if the peer's AllowedIPs is "0.0.0.0/0" or "::/0" and the profile's
ipv4.never-default or ipv6.never-default setting is enabled, the peer route for this
peer won't be added automatically.
Format: boolean

private-key
The 256 bit private-key in base64 encoding.
Format: string

private-key-flags
Flags indicating how to handle the "private-key" property. See the section called
?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

802-11-wireless setting

Alias: wifi

Wi-Fi Settings.

Properties:

ap-isolation
Configures AP isolation, which prevents communication between wireless devices
connected to this AP. This property can be set to a value different from
NM_TERNARY_DEFAULT (-1) only when the interface is configured in AP mode. If set to
NM_TERNARY_TRUE (1), devices are not able to communicate with each other. This
increases security because it protects devices against attacks from other clients in
the network. At the same time, it prevents devices to access resources on the same
wireless networks as file shares, printers, etc. If set to NM_TERNARY_FALSE (0),

devices can talk to each other. When set to NM_TERNARY_DEFAULT (-1), the global Page 80/91

default is used; in case the global default is unspecified it is assumed to be
NM_TERNARY_FALSE (0).
Format: NMTernary (int32)

band
802.11 frequency band of the network. One of "a" for 5GHz 802.11a or "bg" for 2.4GHz
802.11. This will lock associations to the Wi-Fi network to the specific band, i.e. if
"a" is specified, the device will not associate with the same network in the 2.4GHz
band even if the network's settings are compatible. This setting depends on specific
driver capability and may not work with all drivers.
Format: string

bssid
If specified, directs the device to only associate with the given access point. This
capability is highly driver dependent and not supported by all devices. Note: this
property does not control the BSSID used when creating an Ad-Hoc network and is
unlikely to in the future.
Format: byte array

channel
Wireless channel to use for the Wi-Fi connection. The device will only join (or create
for Ad-Hoc networks) a Wi-Fi network on the specified channel. Because channel numbers
overlap between bands, this property also requires the "band" property to be set.
Format: uint32

cloned-mac-address
Alias: cloned-mac
If specified, request that the device use this MAC address instead. This is known as
MAC cloning or spoofing. Beside explicitly specifying a MAC address, the special

values "preserve", "permanent”, "random" and "stable" are supported. "preserve" means

not to touch the MAC address on activation. "permanent" means to use the permanent
hardware address of the device. "random" creates a random MAC address on each connect.
"stable" creates a hashed MAC address based on connection.stable-id and a machine
dependent key. If unspecified, the value can be overwritten via global defaults, see

manual of NetworkManager.conf. If still unspecified, it defaults to "preserve" (older

versions of NetworkManager may use a different default value). On D-Bus, this field is

expressed as "assigned-mac-address" or the deprecated "cloned-mac-address". Page 81/91

Format: byte array

generate-mac-address-mask
With "cloned-mac-address" setting "random" or "stable", by default all bits of the MAC
address are scrambled and a locally-administered, unicast MAC address is created. This
property allows to specify that certain bits are fixed. Note that the least
significant bit of the first MAC address will always be unset to create a unicast MAC
address. If the property is NULL, it is eligible to be overwritten by a default
connection setting. If the value is still NULL or an empty string, the default is to
create a locally-administered, unicast MAC address. If the value contains one MAC
address, this address is used as mask. The set bits of the mask are to be filled with
the current MAC address of the device, while the unset bits are subject to
randomization. Setting "FE:FF:FF:00:00:00" means to preserve the OUI of the current
MAC address and only randomize the lower 3 bytes using the "random" or "stable"
algorithm. If the value contains one additional MAC address after the mask, this
address is used instead of the current MAC address to fill the bits that shall not be
randomized. For example, a value of "FE:FF:FF:00:00:00 68:F7:28:00:00:00" will set the
OUI of the MAC address to 68:F7:28, while the lower bits are randomized. A value of
"02:00:00:00:00:00 00:00:00:00:00:00" will create a fully scrambled
globally-administered, burned-in MAC address. If the value contains more than one
additional MAC addresses, one of them is chosen randomly. For example,
"02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00" will create a fully scrambled
MAC address, randomly locally or globally administered.
Format: string

hidden
If TRUE, indicates that the network is a non-broadcasting network that hides its SSID.
This works both in infrastructure and AP mode. In infrastructure mode, various
workarounds are used for a more reliable discovery of hidden networks, such as
probe-scanning the SSID. However, these workarounds expose inherent insecurities with
hidden SSID networks, and thus hidden SSID networks should be used with caution. In AP
mode, the created network does not broadcast its SSID. Note that marking the network
as hidden may be a privacy issue for you (in infrastructure mode) or client stations
(in AP mode), as the explicit probe-scans are distinctly recognizable on the air.

Format: boolean Page 82/91

mac-address

Alias: mac

If specified, this connection will only apply to the Wi-Fi device whose permanent MAC
address matches. This property does not change the MAC address of the device (i.e. MAC
spoofing).
Format: byte array
mac-address-blacklist
A list of permanent MAC addresses of Wi-Fi devices to which this connection should
never apply. Each MAC address should be given in the standard hex-digits-and-colons
notation (eg "00:11:22:33:44:55").
Format: array of string
mac-address-randomization
One of NM_SETTING_MAC_RANDOMIZATION_DEFAULT (0) (never randomize unless the user has
set a global default to randomize and the supplicant supports randomization),
NM_SETTING_MAC_RANDOMIZATION_NEVER (1) (never randomize the MAC address), or
NM_SETTING_MAC_RANDOMIZATION_ALWAYS (2) (always randomize the MAC address). This
property is deprecated for 'cloned-mac-address'. Deprecated: 1
Format: uint32
mode
Alias: mode
Wi-Fi network mode; one of "infrastructure”, "mesh", "adhoc" or "ap". If blank,
infrastructure is assumed.
Format: string
mtu
Alias: mtu
If non-zero, only transmit packets of the specified size or smaller, breaking larger
packets up into multiple Ethernet frames.
Format: uint32
powersave
One of NM_SETTING_WIRELESS POWERSAVE_DISABLE (2) (disable Wi-Fi power saving),
NM_SETTING_WIRELESS POWERSAVE_ENABLE (3) (enable Wi-Fi power saving),
NM_SETTING_WIRELESS POWERSAVE_IGNORE (1) (don't touch currently configure setting) or

NM_SETTING_WIRELESS_POWERSAVE_DEFAULT (0) (use the globally configured value). Al Page 83/91

other values are reserved.
Format: uint32

rate
If non-zero, directs the device to only use the specified bitrate for communication
with the access point. Units are in Kb/s, ie 5500 = 5.5 Mbit/s. This property is
highly driver dependent and not all devices support setting a static bitrate.
Format: uint32

seen-bssids
A list of BSSIDs (each BSSID formatted as a MAC address like "00:11:22:33:44:55") that
have been detected as part of the Wi-Fi network. NetworkManager internally tracks
previously seen BSSIDs. The property is only meant for reading and reflects the BSSID
list of NetworkManager. The changes you make to this property will not be preserved.
Format: array of string

ssid
Alias: ssid
SSID of the Wi-Fi network. Must be specified.
Format: byte array

tx-power
If non-zero, directs the device to use the specified transmit power. Units are dBm.
This property is highly driver dependent and not all devices support setting a static
transmit power.
Format: uint32

wake-on-wlan
The NMSettingWirelessWakeOnWLan options to enable. Not all devices support all
options. May be any combination of NM_SETTING_WIRELESS WAKE_ON_WLAN_ANY (0x2),
NM_SETTING_WIRELESS WAKE_ON_WLAN_DISCONNECT (0x4),
NM_SETTING_WIRELESS_WAKE_ON_WLAN_MAGIC (0x8),
NM_SETTING_WIRELESS WAKE_ON_WLAN_GTK_REKEY_FAILURE (0x10),
NM_SETTING_WIRELESS WAKE_ON_WLAN_EAP_IDENTITY_REQUEST (0x20),
NM_SETTING_WIRELESS_WAKE_ON_WLAN_4WAY_HANDSHAKE (0x40),
NM_SETTING_WIRELESS WAKE_ON_WLAN_RFKILL_RELEASE (0x80),
NM_SETTING_WIRELESS WAKE_ON_WLAN_TCP (0x100) or the special values

NM_SETTING_WIRELESS_WAKE_ON_WLAN_DEFAULT (0x1) (to use global settings) and Page 84/91

NM_SETTING_WIRELESS WAKE_ON_WLAN_IGNORE (0x8000) (to disable management of Wake-on-LAN
in NetworkManager).
Format: uint32
802-11-wireless-security setting

Alias: wifi-sec

Wi-Fi Security Settings.

Properties:

auth-alg
When WEP is used (ie, key-mgmt = "none" or "ieee8021x") indicate the 802.11
authentication algorithm required by the AP here. One of "open" for Open System,
"shared" for Shared Key, or "leap"” for Cisco LEAP. When using Cisco LEAP (ie, key-mgmt
= "jeee8021x" and auth-alg = "leap") the "leap-username" and "leap-password"
properties must be specified.
Format: string

fils
Indicates whether Fast Initial Link Setup (802.11ai) must be enabled for the
connection. One of NM_SETTING_WIRELESS_SECURITY_FILS DEFAULT (0) (use global default
value), NM_SETTING_WIRELESS_SECURITY_FILS DISABLE (1) (disable FILS),
NM_SETTING_WIRELESS SECURITY_FILS OPTIONAL (2) (enable FILS if the supplicant and the
access point support it) or NM_SETTING_WIRELESS SECURITY_FILS REQUIRED (3) (enable
FILS and fail if not supported). When set to NM_SETTING_WIRELESS SECURITY_FILS DEFAULT
(0) and no global default is set, FILS will be optionally enabled.
Format: int32

group
A list of group/broadcast encryption algorithms which prevents connections to Wi-Fi
networks that do not utilize one of the algorithms in the list. For maximum
compatibility leave this property empty. Each list element may be one of "wep40",
"wepl04", "tkip", or "ccmp”.
Format: array of string

key-mgmt
Key management used for the connection. One of "none" (WEP or no password protection),
"ieee8021x" (Dynamic WEP), "owe" (Opportunistic Wireless Encryption), "wpa-psk" (WPA2

+ WPA3 personal), "sae" (WPA3 personal only), "wpa-eap" (WPA2 + WPA3 enterprise) or Page 85/91

"wpa-eap-suite-b-192" (WPA3 enterprise only). This property must be set for any Wi-Fi
connection that uses security.
Format: string
leap-password
The login password for legacy LEAP connections (ie, key-mgmt = "ieee8021x" and
auth-alg = "leap").
Format: string
leap-password-flags
Flags indicating how to handle the "leap-password" property. See the section called
?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)
leap-username
The login username for legacy LEAP connections (ie, key-mgmt = "ieee8021x" and
auth-alg = "leap").
Format: string
pairwise
A list of pairwise encryption algorithms which prevents connections to Wi-Fi networks
that do not utilize one of the algorithms in the list. For maximum compatibility leave
this property empty. Each list element may be one of "tkip" or "ccmp”.
Format: array of string
pmf
Indicates whether Protected Management Frames (802.11w) must be enabled for the
connection. One of NM_SETTING_WIRELESS SECURITY_PMF_DEFAULT (0) (use global default
value), NM_SETTING_WIRELESS_SECURITY_PMF_DISABLE (1) (disable PMF),
NM_SETTING_WIRELESS SECURITY_PMF_OPTIONAL (2) (enable PMF if the supplicant and the
access point support it) or NM_SETTING_WIRELESS_SECURITY_PMF_REQUIRED (3) (enable PMF
and fail if not supported). When set to NM_SETTING_WIRELESS_ SECURITY_PMF_DEFAULT (0)
and no global default is set, PMF will be optionally enabled.
Format: int32
proto
List of strings specifying the allowed WPA protocol versions to use. Each element may
be one "wpa" (allow WPA) or "rsn" (allow WPA2/RSN). If not specified, both WPA and RSN

connections are allowed. Page 86/91

Format: array of string

psk
Pre-Shared-Key for WPA networks. For WPA-PSK, it's either an ASCII passphrase of 8 to
63 characters that is (as specified in the 802.11i standard) hashed to derive the
actual key, or the key in form of 64 hexadecimal character. The WPA3-Personal networks
use a passphrase of any length for SAE authentication.
Format: string

psk-flags
Flags indicating how to handle the "psk" property. See the section called ?Secret flag
types:? for flag values.
Format: NMSettingSecretFlags (uint32)

wep-key-flags
Flags indicating how to handle the "wep-keyQ", "wep-keyl", "wep-key2", and "wep-key3"
properties. See the section called ?Secret flag types:? for flag values.
Format: NMSettingSecretFlags (uint32)

wep-key-type
Controls the interpretation of WEP keys. Allowed values are NM_WEP_KEY_TYPE_KEY (1),
in which case the key is either a 10- or 26-character hexadecimal string, or a 5- or
13-character ASCII password; or NM_WEP_KEY_TYPE_PASSPHRASE (2), in which case the
passphrase is provided as a string and will be hashed using the de-facto MD5 method to
derive the actual WEP key.
Format: NMWepKeyType (uint32)

wep-key0
Index 0 WEP key. This is the WEP key used in most networks. See the "wep-key-type"
property for a description of how this key is interpreted.
Format: string

wep-keyl
Index 1 WEP key. This WEP index is not used by most networks. See the "wep-key-type"
property for a description of how this key is interpreted.
Format: string

wep-key?2
Index 2 WEP key. This WEP index is not used by most networks. See the "wep-key-type"

property for a description of how this key is interpreted. Page 87/91

Format: string
wep-key3
Index 3 WEP key. This WEP index is not used by most networks. See the "wep-key-type"
property for a description of how this key is interpreted.
Format: string
wep-tx-keyidx
When static WEP is used (ie, key-mgmt = "none") and a non-default WEP key index is
used by the AP, put that WEP key index here. Valid values are 0 (default key) through
3. Note that some consumer access points (like the Linksys WRT54G) number the keys 1 -
4.
Format: uint32
wps-method
Flags indicating which mode of WPS is to be used if any. There's little point in
changing the default setting as NetworkManager will automatically determine whether
it's feasible to start WPS enrollment from the Access Point capabilities. WPS can be
disabled by setting this property to a value of 1.
Format: uint32
wpan setting
|IEEE 802.15.4 (WPAN) MAC Settings.
Properties:
channel
Alias: channel
IEEE 802.15.4 channel. A positive integer or -1, meaning "do not set, use whatever the
device is already set to".
Format: int32
mac-address

Alias: mac

If specified, this connection will only apply to the IEEE 802.15.4 (WPAN) MAC layer
device whose permanent MAC address matches.
Format: string
page
Alias: page

IEEE 802.15.4 channel page. A positive integer or -1, meaning "do not set, use

Page 88/91

whatever the device is already set to".
Format: int32

pan-id
Alias: pan-id
IEEE 802.15.4 Personal Area Network (PAN) identifier.
Format: uint32

short-address
Alias: short-addr
Short IEEE 802.15.4 address to be used within a restricted environment.
Format: uint32

bond-port setting

Bond Port Settings.

Properties:

gqueue-id
Alias: queue-id
The queue ID of this bond port. The maximum value of queue ID is the number of TX
queues currently active in device.
Format: uint32

hostname setting
Hostname settings.
Properties:

from-dhcp

Whether the system hostname can be determined from DHCP on this connection. When set
to NM_TERNARY_DEFAULT (-1), the value from global configuration is used. If the
property doesn't have a value in the global configuration, NetworkManager assumes the
value to be NM_TERNARY_TRUE (1).

Format: NMTernary (int32)

from-dns-lookup

Whether the system hostname can be determined from reverse DNS lookup of addresses on
this device. When set to NM_TERNARY_DEFAULT (-1), the value from global configuration
is used. If the property doesn't have a value in the global configuration,

NetworkManager assumes the value to be NM_TERNARY_TRUE ().

Format: NMTernary (int32) Page 89/91

only-from-default
If set to NM_TERNARY_TRUE (1), NetworkManager attempts to get the hostname via
DHCPv4/DHCPV6 or reverse DNS lookup on this device only when the device has the
default route for the given address family (IPv4/IPv6). If set to NM_TERNARY_FALSE
(0), the hostname can be set from this device even if it doesn't have the default
route. When set to NM_TERNARY_DEFAULT (-1), the value from global configuration is
used. If the property doesn't have a value in the global configuration, NetworkManager
assumes the value to be NM_TERNARY_FALSE (0).
Format: NMTernary (int32)

priority
The relative priority of this connection to determine the system hostname. A lower
numerical value is better (higher priority). A connection with higher priority is
considered before connections with lower priority. If the value is zero, it can be
overridden by a global value from NetworkManager configuration. If the property
doesn't have a value in the global configuration, the value is assumed to be 100.
Negative values have the special effect of excluding other connections with a greater
numerical priority value; so in presence of at least one negative priority, only
connections with the lowest priority value will be used to determine the hostname.
Format: int32

veth setting

Veth Settings.

Properties:

peer
Alias: peer
This property specifies the peer interface name of the veth. This property is
mandatory.
Format: string

Secret flag types:

Each password or secret property in a setting has an associated flags property that

describes how to handle that secret. The flags property is a bitfield that contains zero

or more of the following values logically OR-ed together.

? 0x0 (none) - the system is responsible for providing and storing this secret. This may

be required so that secrets are already available before the user logs in. It also Page 90/91

commonly means that the secret will be stored in plain text on disk, accessible to
root only. For example via the keyfile settings plugin as described in the "PLUGINS"
section in NetworkManager.conf(5).

? 0x1 (agent-owned) - a user-session secret agent is responsible for providing and
storing this secret; when it is required, agents will be asked to provide it.

? 0x2 (not-saved) - this secret should not be saved but should be requested from the
user each time it is required. This flag should be used for One-Time-Pad secrets, PIN
codes from hardware tokens, or if the user simply does not want to save the secret.

? 0x4 (not-required) - in some situations it cannot be automatically determined that a
secret is required or not. This flag hints that the secret is not required and should
not be requested from the user.

FILES
/etc/NetworkManager/system-connections or distro plugin-specific location
SEE ALSO

nmcli(1), nmcli-examples(7), NetworkManager(8), nm-settings-dbus(5), nm-settings-

keyfile(5), NetworkManager.conf(5)

NetworkManager 1.36.6 NM-SETTINGS-NMCLI(5)

Page 91/91

