
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-audit.1'

$ man npm-audit.1

NPM-AUDIT(1) NPM-AUDIT(1)

NAME

 npm-audit - Run a security audit

 Synopsis

 npm audit [--json] [--production] [--audit-level=(low|moderate|high|critical)]

 npm audit fix [--force|--package-lock-only|--dry-run|--production|--only=(dev|prod)]

 common options: [--production] [--only=(dev|prod)]

 Description

 The audit command submits a description of the dependencies configured in your project to

 your default registry and asks for a report of known vulnerabilities. If any vulnerabili?

 ties are found, then the impact and appropriate remediation will be calculated. If the

 fix argument is provided, then remediations will be applied to the package tree.

 The command will exit with a 0 exit code if no vulnerabilities were found.

 Note that some vulnerabilities cannot be fixed automatically and will require manual in?

 tervention or review. Also note that since npm audit fix runs a full-fledged npm install

 under the hood, all configs that apply to the installer will also apply to npm install --

 so things like npm audit fix --package-lock-only will work as expected.

 By default, the audit command will exit with a non-zero code if any vulnerability is

 found. It may be useful in CI environments to include the --audit-level parameter to spec?

 ify the minimum vulnerability level that will cause the command to fail. This option does

 not filter the report output, it simply changes the command's failure threshold.

 Audit Endpoints

 There are two audit endpoints that npm may use to fetch vulnerability information: the Page 1/7

 Bulk Advisory endpoint and the Quick Audit endpoint.

 Bulk Advisory Endpoint

 As of version 7, npm uses the much faster Bulk Advisory endpoint to optimize the speed of

 calculating audit results.

 npm will generate a JSON payload with the name and list of versions of each package in the

 tree, and POST it to the default configured registry at the path /-/npm/v1/security/advi?

 sories/bulk.

 Any packages in the tree that do not have a version field in their package.json file will

 be ignored. If any --omit options are specified (either via the --omit config, or one of

 the shorthands such as --production, --only=dev, and so on), then packages will be omitted

 from the submitted payload as appropriate.

 If the registry responds with an error, or with an invalid response, then npm will attempt

 to load advisory data from the Quick Audit endpoint.

 The expected result will contain a set of advisory objects for each dependency that

 matches the advisory range. Each advisory object contains a name, url, id, severity, vul?

 nerable_versions, and title.

 npm then uses these advisory objects to calculate vulnerabilities and meta-vulnerabilities

 of the dependencies within the tree.

 Quick Audit Endpoint

 If the Bulk Advisory endpoint returns an error, or invalid data, npm will attempt to load

 advisory data from the Quick Audit endpoint, which is considerably slower in most cases.

 The full package tree as found in package-lock.json is submitted, along with the following

 pieces of additional metadata:

 ? npm_version

 ? node_version

 ? platform

 ? arch

 ? node_env

 All packages in the tree are submitted to the Quick Audit endpoint. Omitted dependency

 types are skipped when generating the report.

 Scrubbing

 Out of an abundance of caution, npm versions 5 and 6 would "scrub" any packages from the

 submitted report if their name contained a / character, so as to avoid leaking the names Page 2/7

 of potentially private packages or git URLs.

 However, in practice, this resulted in audits often failing to properly detect meta-vul?

 nerabilities, because the tree would appear to be invalid due to missing dependencies, and

 prevented the detection of vulnerabilities in package trees that used git dependencies or

 private modules.

 This scrubbing has been removed from npm as of version 7.

 Calculating Meta-Vulnerabilities and Remediations

 npm uses the @npmcli/metavuln-calculator http://npm.im/@npmcli/metavuln-calculator module

 to turn a set of security advisories into a set of "vulnerability" objects. A "meta-vul?

 nerability" is a dependency that is vulnerable by virtue of dependence on vulnerable ver?

 sions of a vulnerable package.

 For example, if the package foo is vulnerable in the range >=1.0.2 <2.0.0, and the package

 bar depends on foo@^1.1.0, then that version of bar can only be installed by installing a

 vulnerable version of foo. In this case, bar is a "metavulnerability".

 Once metavulnerabilities for a given package are calculated, they are cached in the ~/.npm

 folder and only re-evaluated if the advisory range changes, or a new version of the pack?

 age is published (in which case, the new version is checked for metavulnerable status as

 well).

 If the chain of metavulnerabilities extends all the way to the root project, and it cannot

 be updated without changing its dependency ranges, then npm audit fix will require the

 --force option to apply the remediation. If remediations do not require changes to the

 dependency ranges, then all vulnerable packages will be updated to a version that does not

 have an advisory or metavulnerability posted against it.

 Exit Code

 The npm audit command will exit with a 0 exit code if no vulnerabilities were found. The

 npm audit fix command will exit with 0 exit code if no vulnerabilities are found or if the

 remediation is able to successfully fix all vulnerabilities.

 If vulnerabilities were found the exit code will depend on the audit-level configuration

 setting.

 Examples

 Scan your project for vulnerabilities and automatically install any compatible updates to

 vulnerable dependencies:

 $ npm audit fix Page 3/7

 Run audit fix without modifying node_modules, but still updating the pkglock:

 $ npm audit fix --package-lock-only

 Skip updating devDependencies:

 $ npm audit fix --only=prod

 Have audit fix install SemVer-major updates to toplevel dependencies, not just SemVer-com?

 patible ones:

 $ npm audit fix --force

 Do a dry run to get an idea of what audit fix will do, and also output install information

 in JSON format:

 $ npm audit fix --dry-run --json

 Scan your project for vulnerabilities and just show the details, without fixing anything:

 $ npm audit

 Get the detailed audit report in JSON format:

 $ npm audit --json

 Fail an audit only if the results include a vulnerability with a level of moderate or

 higher:

 $ npm audit --audit-level=moderate

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 audit-level

 ? Default: null

 ? Type: null, "info", "low", "moderate", "high", "critical", or "none"

 The minimum level of vulnerability for npm audit to exit with a non-zero exit code. <!--

 automatically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js

 -->

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it should only report what

 it would have done. This can be passed into any of the commands that modify your local in?

 stallation, eg, install, update, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg dist-tags, owner, etc. Page 4/7

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 force

 ? Default: false

 ? Type: Boolean

 Removes various protections against unfortunate side effects, common mistakes, unnecessary

 performance degradation, and malicious input.

 ? Allow clobbering non-npm files in global installs.

 ? Allow the npm version command to work on an unclean git repository.

 ? Allow deleting the cache folder with npm cache clean.

 ? Allow installing packages that have an engines declaration requiring a different version

 of npm.

 ? Allow installing packages that have an engines declaration requiring a different version

 of node, even if --engine-strict is enabled.

 ? Allow npm audit fix to install modules outside your stated dependency range (including

 SemVer-major changes).

 ? Allow unpublishing all versions of a published package.

 ? Allow conflicting peerDependencies to be installed in the root project.

 ? Implicitly set --yes during npm init.

 ? Allow clobbering existing values in npm pkg

 If you don't have a clear idea of what you want to do, it is strongly recommended that you

 do not use this option! <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 json

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before saving them to

 your package.json.

 Not supported by all npm commands. <!-- automatically generated, do not edit manually -->

 <!-- see lib/utils/config/definitions.js -->

 package-lock-only

 ? Default: false Page 5/7

 ? Type: Boolean

 If set to true, the current operation will only use the package-lock.json, ignoring

 node_modules.

 For update this means only the package-lock.json will be updated, instead of checking

 node_modules and downloading dependencies.

 For list this means the output will be based on the tree described by the pack?

 age-lock.json, rather than the contents of node_modules. <!-- automatically generated, do

 not edit manually --> <!-- see lib/utils/config/definitions.js -->

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'production', otherwise

 empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the package-lock.json or

 npm-shrinkwrap.json file. They are just not physically installed on disk.

 If a package type appears in both the --include and --omit lists, then it will be in?

 cluded.

 If the resulting omit list includes 'dev', then the NODE_ENV environment variable will be

 set to 'production' for all lifecycle scripts. <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the Page 6/7

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 See Also

 ? npm help install

 ? npm help config

 undefined NaN NPM-AUDIT(1)

Page 7/7

