
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-init.1'

$ man npm-init.1

NPM-INIT(1) NPM-INIT(1)

NAME

 npm-init - Create a package.json file

 Synopsis

 npm init [--yes|-y|--scope]

 npm init <@scope> (same as `npm exec <@scope>/create`)

 npm init [<@scope>/]<name> (same as `npm exec [<@scope>/]create-<name>`)

 npm init [-w <dir>] [args...]

 Description

 npm init <initializer> can be used to set up a new or existing npm package.

 initializer in this case is an npm package named create-<initializer>, which will be in?

 stalled by npm help npm-exec, and then have its main bin executed -- presumably creating

 or updating package.json and running any other initialization-related operations.

 The init command is transformed to a corresponding npm exec operation as follows:

 ? npm init foo -> npm exec create-foo

 ? npm init @usr/foo -> npm exec @usr/create-foo

 ? npm init @usr -> npm exec @usr/create

 If the initializer is omitted (by just calling npm init), init will fall back to legacy

 init behavior. It will ask you a bunch of questions, and then write a package.json for

 you. It will attempt to make reasonable guesses based on existing fields, dependencies,

 and options selected. It is strictly additive, so it will keep any fields and values that

 were already set. You can also use -y/--yes to skip the questionnaire altogether. If you

 pass --scope, it will create a scoped package. Page 1/6

 Forwarding additional options

 Any additional options will be passed directly to the command, so npm init foo -- --hello

 will map to npm exec -- create-foo --hello.

 To better illustrate how options are forwarded, here's a more evolved example showing op?

 tions passed to both the npm cli and a create package, both following commands are equiva?

 lent:

 ? npm init foo -y --registry=<url> -- --hello -a

 ? npm exec -y --registry=<url> -- create-foo --hello -a

 Examples

 Create a new React-based project using create-react-app https://npm.im/create-react-app:

 $ npm init react-app ./my-react-app

 Create a new esm-compatible package using create-esm https://npm.im/create-esm:

 $ mkdir my-esm-lib && cd my-esm-lib

 $ npm init esm --yes

 Generate a plain old package.json using legacy init:

 $ mkdir my-npm-pkg && cd my-npm-pkg

 $ git init

 $ npm init

 Generate it without having it ask any questions:

 $ npm init -y

 Workspaces support

 It's possible to create a new workspace within your project by using the workspace config

 option. When using npm init -w <dir> the cli will create the folders and boilerplate ex?

 pected while also adding a reference to your project package.json "workspaces": [] prop?

 erty in order to make sure that new generated workspace is properly set up as such.

 Given a project with no workspaces, e.g:

 .

 +-- package.json

 You may generate a new workspace using the legacy init:

 $ npm init -w packages/a

 That will generate a new folder and package.json file, while also updating your top-level

 package.json to add the reference to this new workspace:

 . Page 2/6

 +-- package.json

 `-- packages

 `-- a

 `-- package.json

 The workspaces init also supports the npm init <initializer> -w <dir> syntax, following

 the same set of rules explained earlier in the initial Description section of this page.

 Similar to the previous example of creating a new React-based project using create-re?

 act-app https://npm.im/create-react-app, the following syntax will make sure to create the

 new react app as a nested workspace within your project and configure your package.json to

 recognize it as such:

 npm init -w packages/my-react-app react-app .

 This will make sure to generate your react app as expected, one important consideration to

 have in mind is that npm exec is going to be run in the context of the newly created

 folder for that workspace, and that's the reason why in this example the initializer uses

 the initializer name followed with a dot to represent the current directory in that con?

 text, e.g: react-app .:

 .

 +-- package.json

 `-- packages

 +-- a

 | `-- package.json

 `-- my-react-app

 +-- README

 +-- package.json

 `-- ...

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 yes

 ? Default: null

 ? Type: null or Boolean

 Automatically answer "yes" to any prompts that npm might print on the command line. <!--

 automatically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js Page 3/6

 -->

 force

 ? Default: false

 ? Type: Boolean

 Removes various protections against unfortunate side effects, common mistakes, unnecessary

 performance degradation, and malicious input.

 ? Allow clobbering non-npm files in global installs.

 ? Allow the npm version command to work on an unclean git repository.

 ? Allow deleting the cache folder with npm cache clean.

 ? Allow installing packages that have an engines declaration requiring a different version

 of npm.

 ? Allow installing packages that have an engines declaration requiring a different version

 of node, even if --engine-strict is enabled.

 ? Allow npm audit fix to install modules outside your stated dependency range (including

 SemVer-major changes).

 ? Allow unpublishing all versions of a published package.

 ? Allow conflicting peerDependencies to be installed in the root project.

 ? Implicitly set --yes during npm init.

 ? Allow clobbering existing values in npm pkg

 If you don't have a clear idea of what you want to do, it is strongly recommended that you

 do not use this option! <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder) Page 4/6

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 See Also

 ? init-package-json module http://npm.im/init-package-json

 ? npm help package.json

 ? npm help version

 ? npm help scope

 ? npm help exec

 ? npm help workspaces Page 5/6

 undefined NaN NPM-INIT(1)

Page 6/6

