FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-install.1’
$ man npm-install.1
NPM-INSTALL(1) NPM-INSTALL(1)
NAME
npm-install - Install a package
Synopsis
npm install (with no args, in package dir)
npm install [<@scope>/][<name>
npm install [<@scope>/[<name>@<tag>
npm install [<@scope>/][<name>@<version>
npm install [<@scope>/|[<name>@<version range>
npm install <alias>@npm:<name>
npm install <git-host>:<git-user>/<repo-name>
npm install <git repo url>
npm install <tarball file>
npm install <tarball url>
npm install <folder>
aliases: npm i, npm add
common options: [-P|--save-prod|-D|--save-dev|-O|--save-optional|--save-peer] [-E|--save-exact] [-B|--save-bundle]
[--no-save] [--dry-run]
Description
This command installs a package and any packages that it depends on. If the package has a
package-lock, or an npm shrinkwrap file, or a yarn lock file, the installation of depen?
dencies will be driven by that, respecting the following order of precedence:

? npm-shrinkwrap.json Page 1/14

? package-lock.json
? yarn.lock
See npm help package-lock.json and npm help shrinkwrap.
A package is:
? a) a folder containing a program described by a npm help package.json file
? b) a gzipped tarball containing (a)
? ¢) a url that resolves to (b)
? d) a <name>@-<version> that is published on the registry (see npm help registry) with (c)
? e) a <name>@<tag> (see npm help dist-tag) that points to (d)
? f) a <name> that has a "latest" tag satisfying (e)
? g) a <git remote url> that resolves to (a)
Even if you never publish your package, you can still get a lot of benefits of using npm
if you just want to write a node program (a), and perhaps if you also want to be able to
easily install it elsewhere after packing it up into a tarball (b).
? npm install (in a package directory, no arguments):
Install the dependencies to the local node_modules folder.
In global mode (ie, with -g or --global appended to the command),
it installs the current package context (ie, the current working
directory) as a global package.
By default, npm install will install all modules listed as
dependencies in npm help package.json.
With the --production flag (or when the NODE_ENV environment
variable is set to production), npm will not install modules listed
in devDependencies. To install all modules listed in both
dependencies and devDependencies when NODE_ENV environment
variable is set to production, you can use --production=false. NOTE: The --production
flag has no particular meaning when adding a
dependency to a project.
? npm install <folder>:
If <folder> sits inside the root of your project, its dependencies will be installed
and may
be hoisted to the top-level node_modules as they would for other

types of dependencies. If <folder> sits outside the root of your project, Page 2/14

npm will not install the package dependencies in the directory <folder>,
but it will create a symlink to <folder>. NOTE: If you want to install the content of
a directory like a package from the registry instead of creating a link, you would need
to use npm help pack while in the <folder> directory, and then install the resulting
tarball instead of the <folder> using npm install <tarball file>
Example:
npm install ../../other-package
npm install ./sub-package
? npm install <tarball file>;
Install a package that is sitting on the filesystem. Note: if you just
want to link a dev directory into your npm root, you can do this more
easily by using npm help link.
Tarball requirements:
? The filename must use .tar, .tar.gz, or .tgz as the extension.
? The package contents should reside in a subfolder inside the tarball (usually it is
called package/). npm strips one directory layer when installing the package (an

equivalent of tar x --strip-components=1 is run).

? The package must contain a package.json file with name and version properties. Exam?

ple:
npm install ./package.tgz

? npm install <tarball url>:
Fetch the tarball url, and then install it. In order to distinguish between
this and other options, the argument must start with "http://" or "https://"
Example:
npm install https://github.com/indexzero/forever/tarball/v0.5.6

? npm install [<x@scope>/][<name>:
Do a <name>@<tag> install, where <tag> is the "tag" config. (See
npm help config. The config's default value is latest.)
In most cases, this will install the version of the modules tagged as
latest on the npm registry.
Example:
npm install sax

npm install saves any specified packages into dependencies by default.

Page 3/14

Additionally, you can control where and how they get saved with some
additional flags:

? -P, --save-prod: Package will appear in your dependencies. This is the default
unless -D or -O are present.

? -D, --save-dev: Package will appear in your devDependencies.

? -0, --save-optional: Package will appear in your optionalDependencies.

? --no-save: Prevents saving to dependencies. When using any of the above options
to save dependencies to your package.json, there are two additional, optional
flags:

? -E, --save-exact: Saved dependencies will be configured with an exact version
rather than using npm's default semver range operator.

? -B, --save-bundle: Saved dependencies will also be added to your bundleDependen?
cies list. Further, if you have an npm-shrinkwrap.json or package-lock.json then
it will be updated as well. <scope> is optional. The package will be downloaded
from the registry associated with the specified scope. If no registry is associ?
ated with the given scope the default registry is assumed. See npm help scope.
Note: if you do not include the @-symbol on your scope name, npm will interpret
this as a GitHub repository instead, see below. Scopes names must also be fol?
lowed by a slash. Examples:
npm install sax
npm install githubname/reponame
npm install @myorg/privatepackage
npm install node-tap --save-dev
npm install dtrace-provider --save-optional
npm install readable-stream --save-exact
npm install ansi-regex --save-bundle

? Note*: If there is a file or folder named <name> in the current working direc?
tory, then it will try to install that, and only try to fetch the package by name
if it is not valid.

? npm install <alias>@npm:<name>:
Install a package under a custom alias. Allows multiple versions of
a same-name package side-by-side, more convenient import names for

packages with otherwise long ones, and using git forks replacements Page 4/14

or forked npm packages as replacements. Aliasing works only on your
project and does not rename packages in transitive dependencies.
Aliases should follow the naming conventions stated in
validate-npm-package-name https://www.npmjs.com/package/validate-npm-package-name#nam?
ing-rules.
Examples:
npm install my-react@npm:react
npm install jqguery2@npm:jquery@?2
npm install jguery3@npm:jquery@3
npm install npa@npm:npm-package-arg
? npm install [<@scope>/[<name>@<tag>:
Install the version of the package that is referenced by the specified tag.
If the tag does not exist in the registry data for that package, then this
will fail.
Example:
npm install sax@latest
npm install @myorg/mypackage@latest
? npm install [<@scope>/]<name>@<version>:
Install the specified version of the package. This will fail if the
version has not been published to the registry.
Example:
npm install sax@0.1.1
npm install @myorg/privatepackage@1.5.0
? npm install [<@scope>/]<name>@<version range>:
Install a version of the package matching the specified version range.
This will follow the same rules for resolving dependencies described in
npm help package.json.
Note that most version ranges must be put in quotes so that your shell
will treat it as a single argument.
Example:
npm install sax@">=0.1.0 <0.2.0"
npm install @myorg/privatepackage@"16 - 17"

? npm install <git remote url>: Page 5/14

Installs the package from the hosted git provider, cloning it with

git. For a full git remote url, only that URL will be attempted.

<protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish> | #semver:<semver>]

<protocol> is one of git, git+ssh, git+http, git+https, or
git+file.
If #<commit-ish> is provided, it will be used to clone exactly that
commit. If the commit-ish has the format #semver:<semver>, <semver>
can be any valid semver range or exact version, and npm will look for
any tags or refs matching that range in the remote repository, much as
it would for a registry dependency. If neither #<commit-ish> or
#semver:<semver> is specified, then the default branch of the
repository is used.
If the repository makes use of submodules, those submodules will be
cloned as well.
If the package being installed contains a prepare script, its
dependencies and devDependencies will be installed, and the prepare
script will be run, before the package is packaged and installed.
The following git environment variables are recognized by npm and will
be added to the environment when running git:
? GIT_ASKPASS
? GIT_EXEC_PATH
? GIT_PROXY_COMMAND
? GIT_SSH
? GIT_SSH_COMMAND
? GIT_SSL_CAINFO
? GIT_SSL_NO_VERIFY See the git man page for details. Examples:
npm install git+ssh://git@github.com:npm/cli.git#v1.0.27
npm install git+ssh://git@github.com:npm/cli#pull/273
npm install git+ssh://git@github.com:npm/cli#semver:"5.0
npm install git+https://isaacs@github.com/npm/cli.qgit
npm install git://github.com/npm/cli.git#v1.0.27
GIT_SSH_COMMAND='"ssh -i ~/.ssh/custom_ident' npm install git+ssh://git@github.com:npm/cli.git

? npm install <githubname>/<githubrepo>[#<commit-ish>]:

Page 6/14

? npm install github:<githubname>/<githubrepo>[#<commit-ish>]:
Install the package at https://github.com/githubname/githubrepo by
attempting to clone it using git.
If #<commit-ish> is provided, it will be used to clone exactly that
commit. If the commit-ish has the format #semver:<semver>, <semver>
can be any valid semver range or exact version, and npm will look for
any tags or refs matching that range in the remote repository, much as
it would for a registry dependency. If neither #<commit-ish> or
#semver:<semver> is specified, then master is used.
As with regular git dependencies, dependencies and devDependencies
will be installed if the package has a prepare script before the
package is done installing.
Examples:
npm install mygithubuser/myproject

npm install github:mygithubuser/myproject

? npm install gist:[<githubname>/]<gistID>[#<commit-ish>|#semver:<semver>]:

Install the package at https://gist.github.com/gistID by attempting to
clone it using git. The GitHub username associated with the gist is

optional and will not be saved in package.json.

As with regular git dependencies, dependencies and devDependencies will

be installed if the package has a prepare script before the package is
done installing.
Example:
npm install gist:101allbeef

? npm install bitbucket:<bitbucketname>/<hitbucketrepo>[#<commit-ish>]:
Install the package at https://bitbucket.org/bitbucketname/bitbucketrepo
by attempting to clone it using git.

If #<commit-ish> is provided, it will be used to clone exactly that

commit. If the commit-ish has the format #semver:<semver>, <semver> can

be any valid semver range or exact version, and npm will look for any tags
or refs matching that range in the remote repository, much as it would for a
registry dependency. If neither #<commit-ish> or #semver:<semver> is

specified, then master is used.

Page 7/14

As with regular git dependencies, dependencies and devDependencies will
be installed if the package has a prepare script before the package is
done installing.
Example:
npm install bitbucket:mybitbucketuser/myproject
? npm install gitlab:<gitlabname>/<gitlabrepo>[#<commit-ish>]:
Install the package at https://gitlab.com/gitlabname/gitlabrepo
by attempting to clone it using git.
If #<commit-ish> is provided, it will be used to clone exactly that
commit. If the commit-ish has the format #semver:<semver>, <semver> can
be any valid semver range or exact version, and npm will look for any tags
or refs matching that range in the remote repository, much as it would for a
registry dependency. If neither #<commit-ish> or #semver:<semver> is
specified, then master is used.
As with regular git dependencies, dependencies and devDependencies will
be installed if the package has a prepare script before the package is
done installing.
Example:
npm install gitlab:mygitlabuser/myproject
npm install gitlab:myusr/myproj#semver:*5.0
You may combine multiple arguments and even multiple types of arguments. For example:
npm install sax@">=0.1.0 <0.2.0" bench supervisor
The --tag argument will apply to all of the specified install targets. If a tag with the
given name exists, the tagged version is preferred over newer versions.
The --dry-run argument will report in the usual way what the install would have done with?
out actually installing anything.
The --package-lock-only argument will only update the package-lock.json, instead of check?
ing node_modules and downloading dependencies.
The -f or --force argument will force npm to fetch remote resources even if a local copy
exists on disk.
npm install sax --force
Configuration

See the npm help config help doc. Many of the configuration params have some effect on Page 8/14

installation, since that's most of what npm does.
These are some of the most common options related to installation. <!-- AUTOGENERATED
CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit manually --> <!--
see lib/utils/config/definitions.js -->
save
? Default: true
? Type: Boolean
Save installed packages to a package.json file as dependencies.
When used with the npm rm command, removes the dependency from package.json. <!-- auto?
matically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->
save-exact
? Default: false
? Type: Boolean
Dependencies saved to package.json will be configured with an exact version rather than
using npm's default semver range operator. <!-- automatically generated, do not edit man?
ually --> <!-- see lib/utils/config/definitions.js -->
global
? Default: false
? Type: Boolean
Operates in "global" mode, so that packages are installed into the prefix folder instead
of the current working directory. See npm help folders for more on the differences in be?
havior.
? packages are installed into the {prefix}/lib/node_modules folder, instead of the current
working directory.
? bin files are linked to {prefix}/bin
? man pages are linked to {prefix}/share/man
<!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?
tions.js -->
global-style
? Default: false
? Type: Boolean
Causes npm to install the package into your local node_modules folder with the same layout

it uses with the global node_modules folder. Only your direct dependencies will show in Page 9/14

node_modules and everything they depend on will be flattened in their node_modules fold?
ers. This obviously will eliminate some deduping. If used with legacy-bundling,
legacy-bundling will be preferred. <!-- automatically generated, do not edit manually -->
<l-- see lib/utils/config/definitions.js -->

legacy-bundling
? Default: false
? Type: Boolean
Causes npm to install the package such that versions of npm prior to 1.4, such as the one
included with node 0.8, can install the package. This eliminates all automatic deduping.
If used with global-style this option will be preferred. <!-- automatically generated, do
not edit manually --> <!-- see lib/utils/config/definitions.js -->

strict-peer-deps
? Default: false
? Type: Boolean
If set to true, and --legacy-peer-deps is not set, then any conflicting peerDependencies
will be treated as an install failure, even if npm could reasonably guess the appropriate
resolution based on non-peer dependency relationships.
By default, conflicting peerDependencies deep in the dependency graph will be resolved us?
ing the nearest non-peer dependency specification, even if doing so will result in some
packages receiving a peer dependency outside the range set in their package's peerDepen?
dencies object.
When such and override is performed, a warning is printed, explaining the conflict and the
packages involved. If --strict-peer-deps is set, then this warning is treated as a fail?
ure. <!-- automatically generated, do not edit manually --> <!-- see lib/utils/con?
fig/definitions.js -->

package-lock
? Default: true
? Type: Boolean
If set to false, then ignore package-lock.json files when installing. This will also pre?
vent writing package-lock.json if save is true.
When package package-locks are disabled, automatic pruning of extraneous modules will also
be disabled. To remove extraneous modules with package-locks disabled use npm prune. <!--

automatically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js Page 10/14

>
omit
? Default: 'dev' if the NODE_ENV environment variable is set to 'production’, otherwise
empty.
? Type: "dev", "optional”, or "peer" (can be set multiple times)
Dependency types to omit from the installation tree on disk.
Note that these dependencies are still resolved and added to the package-lock.json or
npm-shrinkwrap.json file. They are just not physically installed on disk.
If a package type appears in both the --include and --omit lists, then it will be in?
cluded.
If the resulting omit list includes 'dev', then the NODE_ENV environment variable will be
set to 'production’ for all lifecycle scripts. <!-- automatically generated, do not edit
manually --> <!-- see lib/utils/config/definitions.js -->
ignore-scripts
? Default: false
? Type: Boolean
If true, npm does not run scripts specified in package.json files.
Note that commands explicitly intended to run a particular script, such as npm start, npm
stop, npm restart, npm test, and npm run-script will still run their intended script if
ignore-scripts is set, but they will not run any pre- or post-scripts. <!-- automatically
generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->
audit
? Default: true
? Type: Boolean
When "true" submit audit reports alongside the current npm command to the default registry
and all registries configured for scopes. See the documentation for npm help audit for de?
tails on what is submitted. <!-- automatically generated, do not edit manually --> <!--
see lib/utils/config/definitions.js -->
bin-links
? Default: true
? Type: Boolean
Tells npm to create symlinks (or .cmd shims on Windows) for package executables.

Set to false to have it not do this. This can be used to work around the fact that some Page 11/14

file systems don't support symlinks, even on ostensibly Unix systems. <!-- automatically
generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

fund
? Default: true
? Type: Boolean
When "true" displays the message at the end of each npm install acknowledging the number
of dependencies looking for funding. See npm help npm fund for details. <!-- automati?
cally generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

dry-run
? Default: false
? Type: Boolean
Indicates that you don't want npm to make any changes and that it should only report what
it would have done. This can be passed into any of the commands that modify your local in?
stallation, eg, install, update, dedupe, uninstall, as well as pack and publish.
Note: This is NOT honored by other network related commands, eg dist-tags, owner, etc.
<!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?
tions.js -->

workspace
? Default:
? Type: String (can be set multiple times)
Enable running a command in the context of the configured workspaces of the current
project while filtering by running only the workspaces defined by this configuration op?
tion.
Valid values for the workspace config are either:
? Workspace names
? Path to a workspace directory
? Path to a parent workspace directory (will result in selecting all workspaces within

that folder)

When set for the npm init command, this may be set to the folder of a workspace which does
not yet exist, to create the folder and set it up as a brand new workspace within the
project.
This value is not exported to the environment for child processes. <!-- automatically

generated, do not edit manually --> <!-- see lib/utils/config/definitions.js --> Page 12/14

workspaces

? Default: null

? Type: null or Boolean

Set to true to run the command in the context of all configured workspaces.

Explicitly setting this to false will cause commands like install to ignore workspaces al?

together. When not set explicitly:

? Commands that operate on the node_modules tree (install, update, etc.) will link
workspaces into the node_modules folder. - Commands that do other things (test, exec,
publish, etc.) will operate on the root project, unless one or more workspaces are spec?
ified in the workspace config.

This value is not exported to the environment for child processes. <!-- automatically

generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

include-workspace-root

? Default: false

? Type: Boolean

Include the workspace root when workspaces are enabled for a command.

When false, specifying individual workspaces via the workspace config, or all workspaces

via the workspaces flag, will cause npm to operate only on the specified workspaces, and

not on the root project. <!-- automatically generated, do not edit manually --> <!-- see
lib/utils/config/definitions.js -->

<!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

Algorithm

Given a package{dep} structure: A{B,C}, B{C}, C{D}, the npm install algorithm produces:
A
+- B
+-- C
+-D

That is, the dependency from B to C is satisfied by the fact that A already caused C to be

installed at a higher level. D is still installed at the top level because nothing con?

flicts with it.

For A{B,C}, B{C,D@1}, C{D@2}, this algorithm produces:

A

+-B Page 13/14

+--C
--D@2
+- D@1
Because B's D@1 will be installed in the top-level, C now has to install D@2 privately for
itself. This algorithm is deterministic, but different trees may be produced if two depen?
dencies are requested for installation in a different order.
See npm help folders for a more detailed description of the specific folder structures
that npm creates.
See Also
? npm help folders
? npm help update
? npm help audit
? npm help fund
? npm help link
? npm help rebuild
? npm help scripts
? npm help config
? npm help npmrc
? npm help registry
? npm help dist-tag
? npm help uninstall
? npm help shrinkwrap
? npm help package.json
? npm help workspaces

undefined NaN NPM-INSTALL(1)

Page 14/14

