
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-install.1'

$ man npm-install.1

NPM-INSTALL(1) NPM-INSTALL(1)

NAME

 npm-install - Install a package

 Synopsis

 npm install (with no args, in package dir)

 npm install [<@scope>/]<name>

 npm install [<@scope>/]<name>@<tag>

 npm install [<@scope>/]<name>@<version>

 npm install [<@scope>/]<name>@<version range>

 npm install <alias>@npm:<name>

 npm install <git-host>:<git-user>/<repo-name>

 npm install <git repo url>

 npm install <tarball file>

 npm install <tarball url>

 npm install <folder>

 aliases: npm i, npm add

 common options: [-P|--save-prod|-D|--save-dev|-O|--save-optional|--save-peer] [-E|--save-exact] [-B|--save-bundle]

[--no-save] [--dry-run]

 Description

 This command installs a package and any packages that it depends on. If the package has a

 package-lock, or an npm shrinkwrap file, or a yarn lock file, the installation of depen?

 dencies will be driven by that, respecting the following order of precedence:

 ? npm-shrinkwrap.json Page 1/14

 ? package-lock.json

 ? yarn.lock

 See npm help package-lock.json and npm help shrinkwrap.

 A package is:

 ? a) a folder containing a program described by a npm help package.json file

 ? b) a gzipped tarball containing (a)

 ? c) a url that resolves to (b)

 ? d) a <name>@<version> that is published on the registry (see npm help registry) with (c)

 ? e) a <name>@<tag> (see npm help dist-tag) that points to (d)

 ? f) a <name> that has a "latest" tag satisfying (e)

 ? g) a <git remote url> that resolves to (a)

 Even if you never publish your package, you can still get a lot of benefits of using npm

 if you just want to write a node program (a), and perhaps if you also want to be able to

 easily install it elsewhere after packing it up into a tarball (b).

 ? npm install (in a package directory, no arguments):

 Install the dependencies to the local node_modules folder.

 In global mode (ie, with -g or --global appended to the command),

 it installs the current package context (ie, the current working

 directory) as a global package.

 By default, npm install will install all modules listed as

 dependencies in npm help package.json.

 With the --production flag (or when the NODE_ENV environment

 variable is set to production), npm will not install modules listed

 in devDependencies. To install all modules listed in both

 dependencies and devDependencies when NODE_ENV environment

 variable is set to production, you can use --production=false. NOTE: The --production

 flag has no particular meaning when adding a

 dependency to a project.

 ? npm install <folder>:

 If <folder> sits inside the root of your project, its dependencies will be installed

 and may

 be hoisted to the top-level node_modules as they would for other

 types of dependencies. If <folder> sits outside the root of your project, Page 2/14

 npm will not install the package dependencies in the directory <folder>,

 but it will create a symlink to <folder>. NOTE: If you want to install the content of

 a directory like a package from the registry instead of creating a link, you would need

 to use npm help pack while in the <folder> directory, and then install the resulting

 tarball instead of the <folder> using npm install <tarball file>

 Example:

 npm install ../../other-package

 npm install ./sub-package

 ? npm install <tarball file>:

 Install a package that is sitting on the filesystem. Note: if you just

 want to link a dev directory into your npm root, you can do this more

 easily by using npm help link.

 Tarball requirements:

 ? The filename must use .tar, .tar.gz, or .tgz as the extension.

 ? The package contents should reside in a subfolder inside the tarball (usually it is

 called package/). npm strips one directory layer when installing the package (an

 equivalent of tar x --strip-components=1 is run).

 ? The package must contain a package.json file with name and version properties. Exam?

 ple:

 npm install ./package.tgz

 ? npm install <tarball url>:

 Fetch the tarball url, and then install it. In order to distinguish between

 this and other options, the argument must start with "http://" or "https://"

 Example:

 npm install https://github.com/indexzero/forever/tarball/v0.5.6

 ? npm install [<@scope>/]<name>:

 Do a <name>@<tag> install, where <tag> is the "tag" config. (See

 npm help config. The config's default value is latest.)

 In most cases, this will install the version of the modules tagged as

 latest on the npm registry.

 Example:

 npm install sax

 npm install saves any specified packages into dependencies by default. Page 3/14

 Additionally, you can control where and how they get saved with some

 additional flags:

 ? -P, --save-prod: Package will appear in your dependencies. This is the default

 unless -D or -O are present.

 ? -D, --save-dev: Package will appear in your devDependencies.

 ? -O, --save-optional: Package will appear in your optionalDependencies.

 ? --no-save: Prevents saving to dependencies. When using any of the above options

 to save dependencies to your package.json, there are two additional, optional

 flags:

 ? -E, --save-exact: Saved dependencies will be configured with an exact version

 rather than using npm's default semver range operator.

 ? -B, --save-bundle: Saved dependencies will also be added to your bundleDependen?

 cies list. Further, if you have an npm-shrinkwrap.json or package-lock.json then

 it will be updated as well. <scope> is optional. The package will be downloaded

 from the registry associated with the specified scope. If no registry is associ?

 ated with the given scope the default registry is assumed. See npm help scope.

 Note: if you do not include the @-symbol on your scope name, npm will interpret

 this as a GitHub repository instead, see below. Scopes names must also be fol?

 lowed by a slash. Examples:

 npm install sax

 npm install githubname/reponame

 npm install @myorg/privatepackage

 npm install node-tap --save-dev

 npm install dtrace-provider --save-optional

 npm install readable-stream --save-exact

 npm install ansi-regex --save-bundle

 ? Note*: If there is a file or folder named <name> in the current working direc?

 tory, then it will try to install that, and only try to fetch the package by name

 if it is not valid.

 ? npm install <alias>@npm:<name>:

 Install a package under a custom alias. Allows multiple versions of

 a same-name package side-by-side, more convenient import names for

 packages with otherwise long ones, and using git forks replacements Page 4/14

 or forked npm packages as replacements. Aliasing works only on your

 project and does not rename packages in transitive dependencies.

 Aliases should follow the naming conventions stated in

 validate-npm-package-name https://www.npmjs.com/package/validate-npm-package-name#nam?

 ing-rules.

 Examples:

 npm install my-react@npm:react

 npm install jquery2@npm:jquery@2

 npm install jquery3@npm:jquery@3

 npm install npa@npm:npm-package-arg

 ? npm install [<@scope>/]<name>@<tag>:

 Install the version of the package that is referenced by the specified tag.

 If the tag does not exist in the registry data for that package, then this

 will fail.

 Example:

 npm install sax@latest

 npm install @myorg/mypackage@latest

 ? npm install [<@scope>/]<name>@<version>:

 Install the specified version of the package. This will fail if the

 version has not been published to the registry.

 Example:

 npm install sax@0.1.1

 npm install @myorg/privatepackage@1.5.0

 ? npm install [<@scope>/]<name>@<version range>:

 Install a version of the package matching the specified version range.

 This will follow the same rules for resolving dependencies described in

 npm help package.json.

 Note that most version ranges must be put in quotes so that your shell

 will treat it as a single argument.

 Example:

 npm install sax@">=0.1.0 <0.2.0"

 npm install @myorg/privatepackage@"16 - 17"

 ? npm install <git remote url>: Page 5/14

 Installs the package from the hosted git provider, cloning it with

 git. For a full git remote url, only that URL will be attempted.

 <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish> | #semver:<semver>]

 <protocol> is one of git, git+ssh, git+http, git+https, or

 git+file.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can be any valid semver range or exact version, and npm will look for

 any tags or refs matching that range in the remote repository, much as

 it would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then the default branch of the

 repository is used.

 If the repository makes use of submodules, those submodules will be

 cloned as well.

 If the package being installed contains a prepare script, its

 dependencies and devDependencies will be installed, and the prepare

 script will be run, before the package is packaged and installed.

 The following git environment variables are recognized by npm and will

 be added to the environment when running git:

 ? GIT_ASKPASS

 ? GIT_EXEC_PATH

 ? GIT_PROXY_COMMAND

 ? GIT_SSH

 ? GIT_SSH_COMMAND

 ? GIT_SSL_CAINFO

 ? GIT_SSL_NO_VERIFY See the git man page for details. Examples:

 npm install git+ssh://git@github.com:npm/cli.git#v1.0.27

 npm install git+ssh://git@github.com:npm/cli#pull/273

 npm install git+ssh://git@github.com:npm/cli#semver:^5.0

 npm install git+https://isaacs@github.com/npm/cli.git

 npm install git://github.com/npm/cli.git#v1.0.27

 GIT_SSH_COMMAND='ssh -i ~/.ssh/custom_ident' npm install git+ssh://git@github.com:npm/cli.git

 ? npm install <githubname>/<githubrepo>[#<commit-ish>]: Page 6/14

 ? npm install github:<githubname>/<githubrepo>[#<commit-ish>]:

 Install the package at https://github.com/githubname/githubrepo by

 attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver>

 can be any valid semver range or exact version, and npm will look for

 any tags or refs matching that range in the remote repository, much as

 it would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then master is used.

 As with regular git dependencies, dependencies and devDependencies

 will be installed if the package has a prepare script before the

 package is done installing.

 Examples:

 npm install mygithubuser/myproject

 npm install github:mygithubuser/myproject

 ? npm install gist:[<githubname>/]<gistID>[#<commit-ish>|#semver:<semver>]:

 Install the package at https://gist.github.com/gistID by attempting to

 clone it using git. The GitHub username associated with the gist is

 optional and will not be saved in package.json.

 As with regular git dependencies, dependencies and devDependencies will

 be installed if the package has a prepare script before the package is

 done installing.

 Example:

 npm install gist:101a11beef

 ? npm install bitbucket:<bitbucketname>/<bitbucketrepo>[#<commit-ish>]:

 Install the package at https://bitbucket.org/bitbucketname/bitbucketrepo

 by attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver> can

 be any valid semver range or exact version, and npm will look for any tags

 or refs matching that range in the remote repository, much as it would for a

 registry dependency. If neither #<commit-ish> or #semver:<semver> is

 specified, then master is used. Page 7/14

 As with regular git dependencies, dependencies and devDependencies will

 be installed if the package has a prepare script before the package is

 done installing.

 Example:

 npm install bitbucket:mybitbucketuser/myproject

 ? npm install gitlab:<gitlabname>/<gitlabrepo>[#<commit-ish>]:

 Install the package at https://gitlab.com/gitlabname/gitlabrepo

 by attempting to clone it using git.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver> can

 be any valid semver range or exact version, and npm will look for any tags

 or refs matching that range in the remote repository, much as it would for a

 registry dependency. If neither #<commit-ish> or #semver:<semver> is

 specified, then master is used.

 As with regular git dependencies, dependencies and devDependencies will

 be installed if the package has a prepare script before the package is

 done installing.

 Example:

 npm install gitlab:mygitlabuser/myproject

 npm install gitlab:myusr/myproj#semver:^5.0

 You may combine multiple arguments and even multiple types of arguments. For example:

 npm install sax@">=0.1.0 <0.2.0" bench supervisor

 The --tag argument will apply to all of the specified install targets. If a tag with the

 given name exists, the tagged version is preferred over newer versions.

 The --dry-run argument will report in the usual way what the install would have done with?

 out actually installing anything.

 The --package-lock-only argument will only update the package-lock.json, instead of check?

 ing node_modules and downloading dependencies.

 The -f or --force argument will force npm to fetch remote resources even if a local copy

 exists on disk.

 npm install sax --force

 Configuration

 See the npm help config help doc. Many of the configuration params have some effect on Page 8/14

 installation, since that's most of what npm does.

 These are some of the most common options related to installation. <!-- AUTOGENERATED

 CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit manually --> <!--

 see lib/utils/config/definitions.js -->

 save

 ? Default: true

 ? Type: Boolean

 Save installed packages to a package.json file as dependencies.

 When used with the npm rm command, removes the dependency from package.json. <!-- auto?

 matically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 save-exact

 ? Default: false

 ? Type: Boolean

 Dependencies saved to package.json will be configured with an exact version rather than

 using npm's default semver range operator. <!-- automatically generated, do not edit man?

 ually --> <!-- see lib/utils/config/definitions.js -->

 global

 ? Default: false

 ? Type: Boolean

 Operates in "global" mode, so that packages are installed into the prefix folder instead

 of the current working directory. See npm help folders for more on the differences in be?

 havior.

 ? packages are installed into the {prefix}/lib/node_modules folder, instead of the current

 working directory.

 ? bin files are linked to {prefix}/bin

 ? man pages are linked to {prefix}/share/man

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 global-style

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package into your local node_modules folder with the same layout

 it uses with the global node_modules folder. Only your direct dependencies will show in Page 9/14

 node_modules and everything they depend on will be flattened in their node_modules fold?

 ers. This obviously will eliminate some deduping. If used with legacy-bundling,

 legacy-bundling will be preferred. <!-- automatically generated, do not edit manually -->

 <!-- see lib/utils/config/definitions.js -->

 legacy-bundling

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package such that versions of npm prior to 1.4, such as the one

 included with node 0.8, can install the package. This eliminates all automatic deduping.

 If used with global-style this option will be preferred. <!-- automatically generated, do

 not edit manually --> <!-- see lib/utils/config/definitions.js -->

 strict-peer-deps

 ? Default: false

 ? Type: Boolean

 If set to true, and --legacy-peer-deps is not set, then any conflicting peerDependencies

 will be treated as an install failure, even if npm could reasonably guess the appropriate

 resolution based on non-peer dependency relationships.

 By default, conflicting peerDependencies deep in the dependency graph will be resolved us?

 ing the nearest non-peer dependency specification, even if doing so will result in some

 packages receiving a peer dependency outside the range set in their package's peerDepen?

 dencies object.

 When such and override is performed, a warning is printed, explaining the conflict and the

 packages involved. If --strict-peer-deps is set, then this warning is treated as a fail?

 ure. <!-- automatically generated, do not edit manually --> <!-- see lib/utils/con?

 fig/definitions.js -->

 package-lock

 ? Default: true

 ? Type: Boolean

 If set to false, then ignore package-lock.json files when installing. This will also pre?

 vent writing package-lock.json if save is true.

 When package package-locks are disabled, automatic pruning of extraneous modules will also

 be disabled. To remove extraneous modules with package-locks disabled use npm prune. <!--

 automatically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js Page 10/14

 -->

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'production', otherwise

 empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the package-lock.json or

 npm-shrinkwrap.json file. They are just not physically installed on disk.

 If a package type appears in both the --include and --omit lists, then it will be in?

 cluded.

 If the resulting omit list includes 'dev', then the NODE_ENV environment variable will be

 set to 'production' for all lifecycle scripts. <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 ignore-scripts

 ? Default: false

 ? Type: Boolean

 If true, npm does not run scripts specified in package.json files.

 Note that commands explicitly intended to run a particular script, such as npm start, npm

 stop, npm restart, npm test, and npm run-script will still run their intended script if

 ignore-scripts is set, but they will not run any pre- or post-scripts. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 audit

 ? Default: true

 ? Type: Boolean

 When "true" submit audit reports alongside the current npm command to the default registry

 and all registries configured for scopes. See the documentation for npm help audit for de?

 tails on what is submitted. <!-- automatically generated, do not edit manually --> <!--

 see lib/utils/config/definitions.js -->

 bin-links

 ? Default: true

 ? Type: Boolean

 Tells npm to create symlinks (or .cmd shims on Windows) for package executables.

 Set to false to have it not do this. This can be used to work around the fact that some Page 11/14

 file systems don't support symlinks, even on ostensibly Unix systems. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 fund

 ? Default: true

 ? Type: Boolean

 When "true" displays the message at the end of each npm install acknowledging the number

 of dependencies looking for funding. See npm help npm fund for details. <!-- automati?

 cally generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it should only report what

 it would have done. This can be passed into any of the commands that modify your local in?

 stallation, eg, install, update, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg dist-tags, owner, etc.

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js --> Page 12/14

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 Algorithm

 Given a package{dep} structure: A{B,C}, B{C}, C{D}, the npm install algorithm produces:

 A

 +-- B

 +-- C

 +-- D

 That is, the dependency from B to C is satisfied by the fact that A already caused C to be

 installed at a higher level. D is still installed at the top level because nothing con?

 flicts with it.

 For A{B,C}, B{C,D@1}, C{D@2}, this algorithm produces:

 A

 +-- B Page 13/14

 +-- C

 `-- D@2

 +-- D@1

 Because B's D@1 will be installed in the top-level, C now has to install D@2 privately for

 itself. This algorithm is deterministic, but different trees may be produced if two depen?

 dencies are requested for installation in a different order.

 See npm help folders for a more detailed description of the specific folder structures

 that npm creates.

 See Also

 ? npm help folders

 ? npm help update

 ? npm help audit

 ? npm help fund

 ? npm help link

 ? npm help rebuild

 ? npm help scripts

 ? npm help config

 ? npm help npmrc

 ? npm help registry

 ? npm help dist-tag

 ? npm help uninstall

 ? npm help shrinkwrap

 ? npm help package.json

 ? npm help workspaces

 undefined NaN NPM-INSTALL(1)

Page 14/14

