PDF generator

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-version.1'

$ man npm-version.1
NPM-VERSION(1) NPM-VERSION(1)
NAME
npm-version - Bump a package version
Synopsis
npm version [<newversion> | major | minor | patch | premajor | preminor | prepatch | prerelease
[--preid=<prerelease-id>] | from-git]
‘npm [-v | --version]' to print npm version
'npm view <pkg> version' to view a package's published version
'npm Is' to inspect current package/dependency versions
Configuration
<!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit
manually --> <!-- see lib/utils/config/definitions.js -->
allow-same-version
? Default: false
? Type: Boolean
Prevents throwing an error when npm version is used to set the new version to the same
value as the current version. <!-- automatically generated, do not edit manually --> <!--
see lib/utils/config/definitions.js -->
commit-hooks
? Default: true
? Type: Boolean
Run git commit hooks when using the npm version command. <!-- automatically generated, do

not edit manually --> <!-- see lib/utils/config/definitions.js --> Page 1/5

git-tag-version
? Default: true
? Type: Boolean
Tag the commit when using the npm version command. <!-- automatically generated, do not
edit manually --> <!-- see lib/utils/config/definitions.js -->

json
? Default: false
? Type: Boolean
Whether or not to output JSON data, rather than the normal output.
? In npm pkg set it enables parsing set values with JSON.parse() before saving them to

your package.json.

Not supported by all npm commands. <!-- automatically generated, do not edit manually -->
<!-- see lib/utils/config/definitions.js -->

preid
? Default: ™
? Type: String
The "prerelease identifier" to use as a prefix for the "prerelease" part of a semver. Like
the rc in 1.2.0-rc.8. <!-- automatically generated, do not edit manually --> <!-- see
lib/utils/config/definitions.js -->

sign-git-tag
? Default: false
? Type: Boolean
If set to true, then the npm version command will tag the version using -s to add a signa?
ture.
Note that git requires you to have set up GPG keys in your git configs for this to work
properly. <!-- automatically generated, do not edit manually --> <!-- see lib/utils/con?
fig/definitions.js -->

workspace
? Default:
? Type: String (can be set multiple times)
Enable running a command in the context of the configured workspaces of the current
project while filtering by running only the workspaces defined by this configuration op?

tion. Page 2/5

Valid values for the workspace config are either:

? Workspace names

? Path to a workspace directory

? Path to a parent workspace directory (will result in selecting all workspaces within
that folder)

When set for the npm init command, this may be set to the folder of a workspace which does

not yet exist, to create the folder and set it up as a brand new workspace within the

project.

This value is not exported to the environment for child processes. <!-- automatically

generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

workspaces

? Default: null

? Type: null or Boolean

Set to true to run the command in the context of all configured workspaces.

Explicitly setting this to false will cause commands like install to ignore workspaces al?

together. When not set explicitly:

? Commands that operate on the node_modules tree (install, update, etc.) will link
workspaces into the node_modules folder. - Commands that do other things (test, exec,
publish, etc.) will operate on the root project, unless one or more workspaces are spec?
ified in the workspace config.

This value is not exported to the environment for child processes. <!-- automatically

generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

include-workspace-root

? Default: false

? Type: Boolean

Include the workspace root when workspaces are enabled for a command.

When false, specifying individual workspaces via the workspace config, or all workspaces

via the workspaces flag, will cause npm to operate only on the specified workspaces, and

not on the root project. <!-- automatically generated, do not edit manually --> <!-- see
lib/utils/config/definitions.js -->

<l-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

Description

Run this in a package directory to bump the version and write the new data back to pack? Page 3/5

age.json, package-lock.json, and, if present, npm-shrinkwrap.json.
The newversion argument should be a valid semver string, a valid second argument to
semver.inc https://github.com/npm/node-semver#functions (one of patch, minor, major,
prepatch, preminor, premajor, prerelease), or from-git. In the second case, the existing
version will be incremented by 1 in the specified field. from-git will try to read the
latest git tag, and use that as the new npm version.
If run in a git repo, it will also create a version commit and tag. This behavior is con?
trolled by git-tag-version (see below), and can be disabled on the command line by running
npm --no-git-tag-version version. It will fail if the working directory is not clean, un?
less the -f or --force flag is set.
If supplied with -m or --message config option, npm will use it as a commit message when
creating a version commit. If the message config contains %s then that will be replaced
with the resulting version number. For example:
npm version patch -m "Upgrade to %s for reasons”
If the sign-git-tag config is set, then the tag will be signed using the -s flag to git.
Note that you must have a default GPG key set up in your git config for this to work prop?
erly. For example:
$ npm config set sign-git-tag true
$ npm version patch
You need a passphrase to unlock the secret key for
user: "isaacs (http://blog.izs.me/) <i@izs.me>"
2048-bit RSA key, ID 6C481CF6, created 2010-08-31
Enter passphrase:
If preversion, version, or postversion are in the scripts property of the package.json,
they will be executed as part of running npm version.
The exact order of execution is as follows:
1. Check to make sure the git working directory is clean before we get started. Your
scripts may add files to the commit in future steps. This step is skipped if the
--force flag is set.
2. Run the preversion script. These scripts have access to the old version in pack?
age.json. A typical use would be running your full test suite before deploying. Any
files you want added to the commit should be explicitly added using git add.

3. Bump version in package.json as requested (patch, minor, major, etc).

Page 4/5

4. Run the version script. These scripts have access to the new version in package.json
(so they can incorporate it into file headers in generated files for example). Again,
scripts should explicitly add generated files to the commit using git add.

5. Commit and tag.

6. Run the postversion script. Use it to clean up the file system or automatically push
the commit and/or tag.

Take the following example:

{
"scripts": {
"preversion”: "npm test",
"version": "npm run build && git add -A dist",
"postversion”: "git push && git push --tags && rm -rf build/temp"
}
}

This runs all your tests and proceeds only if they pass. Then runs your build script, and
adds everything in the dist directory to the commit. After the commit, it pushes the new
commit and tag up to the server, and deletes the build/temp directory.
See Also
? npm help init
? npm help run-script
? npm help scripts
? npm help package.json
? npm help config

undefined NaN NPM-VERSION(1)

Page 5/5

