
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-version.1'

$ man npm-version.1

NPM-VERSION(1) NPM-VERSION(1)

NAME

 npm-version - Bump a package version

 Synopsis

 npm version [<newversion> | major | minor | patch | premajor | preminor | prepatch | prerelease

[--preid=<prerelease-id>] | from-git]

 'npm [-v | --version]' to print npm version

 'npm view <pkg> version' to view a package's published version

 'npm ls' to inspect current package/dependency versions

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 allow-same-version

 ? Default: false

 ? Type: Boolean

 Prevents throwing an error when npm version is used to set the new version to the same

 value as the current version. <!-- automatically generated, do not edit manually --> <!--

 see lib/utils/config/definitions.js -->

 commit-hooks

 ? Default: true

 ? Type: Boolean

 Run git commit hooks when using the npm version command. <!-- automatically generated, do

 not edit manually --> <!-- see lib/utils/config/definitions.js --> Page 1/5

 git-tag-version

 ? Default: true

 ? Type: Boolean

 Tag the commit when using the npm version command. <!-- automatically generated, do not

 edit manually --> <!-- see lib/utils/config/definitions.js -->

 json

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before saving them to

 your package.json.

 Not supported by all npm commands. <!-- automatically generated, do not edit manually -->

 <!-- see lib/utils/config/definitions.js -->

 preid

 ? Default: ""

 ? Type: String

 The "prerelease identifier" to use as a prefix for the "prerelease" part of a semver. Like

 the rc in 1.2.0-rc.8. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 sign-git-tag

 ? Default: false

 ? Type: Boolean

 If set to true, then the npm version command will tag the version using -s to add a signa?

 ture.

 Note that git requires you to have set up GPG keys in your git configs for this to work

 properly. <!-- automatically generated, do not edit manually --> <!-- see lib/utils/con?

 fig/definitions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion. Page 2/5

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 Description

 Run this in a package directory to bump the version and write the new data back to pack? Page 3/5

 age.json, package-lock.json, and, if present, npm-shrinkwrap.json.

 The newversion argument should be a valid semver string, a valid second argument to

 semver.inc https://github.com/npm/node-semver#functions (one of patch, minor, major,

 prepatch, preminor, premajor, prerelease), or from-git. In the second case, the existing

 version will be incremented by 1 in the specified field. from-git will try to read the

 latest git tag, and use that as the new npm version.

 If run in a git repo, it will also create a version commit and tag. This behavior is con?

 trolled by git-tag-version (see below), and can be disabled on the command line by running

 npm --no-git-tag-version version. It will fail if the working directory is not clean, un?

 less the -f or --force flag is set.

 If supplied with -m or --message config option, npm will use it as a commit message when

 creating a version commit. If the message config contains %s then that will be replaced

 with the resulting version number. For example:

 npm version patch -m "Upgrade to %s for reasons"

 If the sign-git-tag config is set, then the tag will be signed using the -s flag to git.

 Note that you must have a default GPG key set up in your git config for this to work prop?

 erly. For example:

 $ npm config set sign-git-tag true

 $ npm version patch

 You need a passphrase to unlock the secret key for

 user: "isaacs (http://blog.izs.me/) <i@izs.me>"

 2048-bit RSA key, ID 6C481CF6, created 2010-08-31

 Enter passphrase:

 If preversion, version, or postversion are in the scripts property of the package.json,

 they will be executed as part of running npm version.

 The exact order of execution is as follows:

 1. Check to make sure the git working directory is clean before we get started. Your

 scripts may add files to the commit in future steps. This step is skipped if the

 --force flag is set.

 2. Run the preversion script. These scripts have access to the old version in pack?

 age.json. A typical use would be running your full test suite before deploying. Any

 files you want added to the commit should be explicitly added using git add.

 3. Bump version in package.json as requested (patch, minor, major, etc). Page 4/5

 4. Run the version script. These scripts have access to the new version in package.json

 (so they can incorporate it into file headers in generated files for example). Again,

 scripts should explicitly add generated files to the commit using git add.

 5. Commit and tag.

 6. Run the postversion script. Use it to clean up the file system or automatically push

 the commit and/or tag.

 Take the following example:

 {

 "scripts": {

 "preversion": "npm test",

 "version": "npm run build && git add -A dist",

 "postversion": "git push && git push --tags && rm -rf build/temp"

 }

 }

 This runs all your tests and proceeds only if they pass. Then runs your build script, and

 adds everything in the dist directory to the commit. After the commit, it pushes the new

 commit and tag up to the server, and deletes the build/temp directory.

 See Also

 ? npm help init

 ? npm help run-script

 ? npm help scripts

 ? npm help package.json

 ? npm help config

 undefined NaN NPM-VERSION(1)

Page 5/5

