
Rocky Enterprise Linux 9.2 Manual Pages on command 'openvpn-examples.5'

$ man openvpn-examples.5

OPENVPN(EXAMPLES) OPENVPN(EXAMPLES)

NAME

 openvpn examples - Secure IP tunnel daemon

INTRODUCTION

 This man page gives a few simple examples to create OpenVPN setups and configuration

 files.

EXAMPLES

 Prior to running these examples, you should have OpenVPN installed on two machines with

 network connectivity between them. If you have not yet installed OpenVPN, consult the IN?

 STALL file included in the OpenVPN distribution.

 Firewall Setup:

 If firewalls exist between the two machines, they should be set to forward the port Open?

 VPN is configured to use, in both directions. The default for OpenVPN is 1194/udp. If

 you do not have control over the firewalls between the two machines, you may still be able

 to use OpenVPN by adding --ping 15 to each of the openvpn commands used below in the exam?

 ples (this will cause each peer to send out a UDP ping to its remote peer once every 15

 seconds which will cause many stateful firewalls to forward packets in both directions

 without an explicit firewall rule).

 Please see your operating system guides for how to configure the firewall on your systems.

 VPN Address Setup:

 For purposes of our example, our two machines will be called bob.example.com and alice.ex?

 ample.com. If you are constructing a VPN over the internet, then replace bob.example.com

 and alice.example.com with the internet hostname or IP address that each machine will use Page 1/5

 to contact the other over the internet.

 Now we will choose the tunnel endpoints. Tunnel endpoints are private IP addresses that

 only have meaning in the context of the VPN. Each machine will use the tunnel endpoint of

 the other machine to access it over the VPN. In our example, the tunnel endpoint for

 bob.example.com will be 10.4.0.1 and for alice.example.com, 10.4.0.2.

 Once the VPN is established, you have essentially created a secure alternate path between

 the two hosts which is addressed by using the tunnel endpoints. You can control which net?

 work traffic passes between the hosts (a) over the VPN or (b) independently of the VPN, by

 choosing whether to use (a) the VPN endpoint address or (b) the public internet address,

 to access the remote host. For example if you are on bob.example.com and you wish to con?

 nect to alice.example.com via ssh without using the VPN (since ssh has its own built-in

 security) you would use the command ssh alice.example.com. However in the same scenario,

 you could also use the command telnet 10.4.0.2 to create a telnet session with alice.exam?

 ple.com over the VPN, that would use the VPN to secure the session rather than ssh.

 You can use any address you wish for the tunnel endpoints but make sure that they are pri?

 vate addresses (such as those that begin with 10 or 192.168) and that they are not part of

 any existing subnet on the networks of either peer, unless you are bridging. If you use an

 address that is part of your local subnet for either of the tunnel endpoints, you will get

 a weird feedback loop.

 Example 1: A simple tunnel without security

 On bob:

 openvpn --remote alice.example.com --dev tun1 \

 --ifconfig 10.4.0.1 10.4.0.2 --verb 9

 On alice:

 openvpn --remote bob.example.com --dev tun1 \

 --ifconfig 10.4.0.2 10.4.0.1 --verb 9

 Now verify the tunnel is working by pinging across the tunnel.

 On bob:

 ping 10.4.0.2

 On alice:

 ping 10.4.0.1

 The --verb 9 option will produce verbose output, similar to the tcpdump(8) program. Omit

 the --verb 9 option to have OpenVPN run quietly. Page 2/5

 Example 2: A tunnel with static-key security (i.e. using a pre-shared secret)

 First build a static key on bob.

 openvpn --genkey --secret key

 This command will build a key file called key (in ascii format). Now copy key to alice.ex?

 ample.com over a secure medium such as by using the scp(1) program.

 On bob:

 openvpn --remote alice.example.com --dev tun1 \

 --ifconfig 10.4.0.1 10.4.0.2 --verb 5 \

 --secret key

 On alice:

 openvpn --remote bob.example.com --dev tun1 \

 --ifconfig 10.4.0.2 10.4.0.1 --verb 5 \

 --secret key

 Now verify the tunnel is working by pinging across the tunnel.

 On bob:

 ping 10.4.0.2

 On alice:

 ping 10.4.0.1

 Example 3: A tunnel with full TLS-based security

 For this test, we will designate bob as the TLS client and alice as the TLS server.

 Note: The client or server designation only has meaning for the TLS subsystem. It has no

 bearing on OpenVPN's peer-to-peer, UDP-based communication model.*

 First, build a separate certificate/key pair for both bob and alice (see above where

 --cert is discussed for more info). Then construct Diffie Hellman parameters (see above

 where --dh is discussed for more info). You can also use the included test files

 client.crt, client.key, server.crt, server.key and ca.crt. The .crt files are certifi?

 cates/public-keys, the .key files are private keys, and ca.crt is a certification author?

 ity who has signed both client.crt and server.crt. For Diffie Hellman parameters you can

 use the included file dh2048.pem.

 WARNING:

 All client, server, and certificate authority certificates and keys included in the

 OpenVPN distribution are totally insecure and should be used for testing only.

 On bob: Page 3/5

 openvpn --remote alice.example.com --dev tun1 \

 --ifconfig 10.4.0.1 10.4.0.2 \

 --tls-client --ca ca.crt \

 --cert client.crt --key client.key \

 --reneg-sec 60 --verb 5

 On alice:

 openvpn --remote bob.example.com --dev tun1 \

 --ifconfig 10.4.0.2 10.4.0.1 \

 --tls-server --dh dh1024.pem --ca ca.crt \

 --cert server.crt --key server.key \

 --reneg-sec 60 --verb 5

 Now verify the tunnel is working by pinging across the tunnel.

 On bob:

 ping 10.4.0.2

 On alice:

 ping 10.4.0.1

 Notice the --reneg-sec 60 option we used above. That tells OpenVPN to renegotiate the data

 channel keys every minute. Since we used --verb 5 above, you will see status information

 on each new key negotiation.

 For production operations, a key renegotiation interval of 60 seconds is probably too fre?

 quent. Omit the --reneg-sec 60 option to use OpenVPN's default key renegotiation interval

 of one hour.

 Routing:

 Assuming you can ping across the tunnel, the next step is to route a real subnet over the

 secure tunnel. Suppose that bob and alice have two network interfaces each, one connected

 to the internet, and the other to a private network. Our goal is to securely connect both

 private networks. We will assume that bob's private subnet is 10.0.0.0/24 and alice's is

 10.0.1.0/24.

 First, ensure that IP forwarding is enabled on both peers. On Linux, enable routing:

 echo 1 > /proc/sys/net/ipv4/ip_forward

 This setting is not persistent. Please see your operating systems documentation how to

 properly configure IP forwarding, which is also persistent through system boots.

 If your system is configured with a firewall. Please see your operating systems guide on Page 4/5

 how to configure the firewall. You typically want to allow traffic coming from and going

 to the tun/tap adapter OpenVPN is configured to use.

 On bob:

 route add -net 10.0.1.0 netmask 255.255.255.0 gw 10.4.0.2

 On alice:

 route add -net 10.0.0.0 netmask 255.255.255.0 gw 10.4.0.1

 Now any machine on the 10.0.0.0/24 subnet can access any machine on the 10.0.1.0/24 subnet

 over the secure tunnel (or vice versa).

 In a production environment, you could put the route command(s) in a script and execute

 with the --up option.

 5 OPENVPN(EXAMPLES)

Page 5/5

