
Rocky Enterprise Linux 9.2 Manual Pages on command 'openvpn.8'

$ man openvpn.8

OPENVPN(8) System Manager's Manual OPENVPN(8)

NAME

 openvpn - Secure IP tunnel daemon

SYNOPSIS

 openvpn [options ...]

 openvpn --help

INTRODUCTION

 OpenVPN is an open source VPN daemon by James Yonan. Because OpenVPN tries to be a univer?

 sal VPN tool offering a great deal of flexibility, there are a lot of options on this man?

 ual page. If you're new to OpenVPN, you might want to skip ahead to the examples section

 where you will see how to construct simple VPNs on the command line without even needing a

 configuration file.

 Also note that there's more documentation and examples on the OpenVPN web site:

 https://openvpn.net/

 And if you would like to see a shorter version of this manual, see the openvpn usage mes?

 sage which can be obtained by running openvpn without any parameters.

DESCRIPTION

 OpenVPN is a robust and highly flexible VPN daemon. OpenVPN supports SSL/TLS security,

 ethernet bridging, TCP or UDP tunnel transport through proxies or NAT, support for dynamic

 IP addresses and DHCP, scalability to hundreds or thousands of users, and portability to

 most major OS platforms.

 OpenVPN is tightly bound to the OpenSSL library, and derives much of its crypto capabili?

 ties from it. Page 1/113

 OpenVPN supports conventional encryption using a pre-shared secret key (Static Key mode)

 or public key security (SSL/TLS mode) using client & server certificates. OpenVPN also

 supports non-encrypted TCP/UDP tunnels.

 OpenVPN is designed to work with the TUN/TAP virtual networking interface that exists on

 most platforms.

 Overall, OpenVPN aims to offer many of the key features of IPSec but with a relatively

 lightweight footprint.

OPTIONS

 OpenVPN allows any option to be placed either on the command line or in a configuration

 file. Though all command line options are preceded by a double-leading-dash ("--"), this

 prefix can be removed when an option is placed in a configuration file.

 Generic Options

 This section covers generic options which are accessible regardless of which mode OpenVPN

 is configured as.

 --help Show options.

 --auth-nocache

 Don't cache --askpass or --auth-user-pass username/passwords in virtual memory.

 If specified, this directive will cause OpenVPN to immediately forget user?

 name/password inputs after they are used. As a result, when OpenVPN needs a user?

 name/password, it will prompt for input from stdin, which may be multiple times

 during the duration of an OpenVPN session.

 When using --auth-nocache in combination with a user/password file and --chroot or

 --daemon, make sure to use an absolute path.

 This directive does not affect the --http-proxy username/password. It is always

 cached.

 --cd dir

 Change directory to dir prior to reading any files such as configuration files, key

 files, scripts, etc. dir should be an absolute path, with a leading "/", and with?

 out any references to the current directory such as . or ...

 This option is useful when you are running OpenVPN in --daemon mode, and you want

 to consolidate all of your OpenVPN control files in one location.

 --chroot dir

 Chroot to dir after initialization. --chroot essentially redefines dir as being the Page 2/113

 top level directory tree (/). OpenVPN will therefore be unable to access any files

 outside this tree. This can be desirable from a security standpoint.

 Since the chroot operation is delayed until after initialization, most OpenVPN op?

 tions that reference files will operate in a pre-chroot context.

 In many cases, the dir parameter can point to an empty directory, however complica?

 tions can result when scripts or restarts are executed after the chroot operation.

 Note: The SSL library will probably need /dev/urandom to be available inside the

 chroot directory dir. This is because SSL libraries occasionally need to collect

 fresh random. Newer linux kernels and some BSDs implement a getrandom() or geten?

 tropy() syscall that removes the need for /dev/urandom to be available.

 --config file

 Load additional config options from file where each line corresponds to one command

 line option, but with the leading '--' removed.

 If --config file is the only option to the openvpn command, the --config can be re?

 moved, and the command can be given as openvpn file

 Note that configuration files can be nested to a reasonable depth.

 Double quotation or single quotation characters ("", '') can be used to enclose

 single parameters containing whitespace, and "#" or ";" characters in the first

 column can be used to denote comments.

 Note that OpenVPN 2.0 and higher performs backslash-based shell escaping for char?

 acters not in single quotations, so the following mappings should be observed:

 \\ Maps to a single backslash character (\).

 \" Pass a literal doublequote character ("), don't

 interpret it as enclosing a parameter.

 \[SPACE] Pass a literal space or tab character, don't

 interpret it as a parameter delimiter.

 For example on Windows, use double backslashes to represent pathnames:

 secret "c:\\OpenVPN\\secret.key"

 For examples of configuration files, see

 https://openvpn.net/community-resources/how-to/

 Here is an example configuration file:

 #

 # Sample OpenVPN configuration file for Page 3/113

 # using a pre-shared static key.

 #

 # '#' or ';' may be used to delimit comments.

 # Use a dynamic tun device.

 dev tun

 # Our remote peer

 remote mypeer.mydomain

 # 10.1.0.1 is our local VPN endpoint

 # 10.1.0.2 is our remote VPN endpoint

 ifconfig 10.1.0.1 10.1.0.2

 # Our pre-shared static key

 secret static.key

 --daemon progname

 Become a daemon after all initialization functions are completed. This option will

 cause all message and error output to be sent to the syslog file (such as

 /var/log/messages), except for the output of scripts and ifconfig commands, which

 will go to /dev/null unless otherwise redirected. The syslog redirection occurs im?

 mediately at the point that --daemon is parsed on the command line even though the

 daemonization point occurs later. If one of the --log options is present, it will

 supersede syslog redirection.

 The optional progname parameter will cause OpenVPN to report its program name to

 the system logger as progname. This can be useful in linking OpenVPN messages in

 the syslog file with specific tunnels. When unspecified, progname defaults to

 "openvpn".

 When OpenVPN is run with the --daemon option, it will try to delay daemonization

 until the majority of initialization functions which are capable of generating fa?

 tal errors are complete. This means that initialization scripts can test the return

 status of the openvpn command for a fairly reliable indication of whether the com?

 mand has correctly initialized and entered the packet forwarding event loop.

 In OpenVPN, the vast majority of errors which occur after initialization are

 non-fatal.

 Note: as soon as OpenVPN has daemonized, it can not ask for usernames, passwords,

 or key pass phrases anymore. This has certain consequences, namely that using a Page 4/113

 password-protected private key will fail unless the --askpass option is used to

 tell OpenVPN to ask for the pass phrase (this requirement is new in v2.3.7, and is

 a consequence of calling daemon() before initializing the crypto layer).

 Further, using --daemon together with --auth-user-pass (entered on console) and

 --auth-nocache will fail as soon as key renegotiation (and reauthentication) oc?

 curs.

 --disable-occ

 Don't output a warning message if option inconsistencies are detected between

 peers. An example of an option inconsistency would be where one peer uses --dev tun

 while the other peer uses --dev tap.

 Use of this option is discouraged, but is provided as a temporary fix in situations

 where a recent version of OpenVPN must connect to an old version.

 --engine engine-name

 Enable OpenSSL hardware-based crypto engine functionality.

 If engine-name is specified, use a specific crypto engine. Use the --show-engines

 standalone option to list the crypto engines which are supported by OpenSSL.

 --fast-io

 (Experimental) Optimize TUN/TAP/UDP I/O writes by avoiding a call to poll/epoll/se?

 lect prior to the write operation. The purpose of such a call would normally be to

 block until the device or socket is ready to accept the write. Such blocking is un?

 necessary on some platforms which don't support write blocking on UDP sockets or

 TUN/TAP devices. In such cases, one can optimize the event loop by avoiding the

 poll/epoll/select call, improving CPU efficiency by 5% to 10%.

 This option can only be used on non-Windows systems, when --proto udp is specified,

 and when --shaper is NOT specified.

 --group group

 Similar to the --user option, this option changes the group ID of the OpenVPN

 process to group after initialization.

 --ignore-unknown-option args

 Valid syntax:

 ignore-unknown-options opt1 opt2 opt3 ... optN

 When one of options opt1 ... optN is encountered in the configuration file the con?

 figuration file parsing does not fail if this OpenVPN version does not support the Page 5/113

 option. Multiple --ignore-unknown-option options can be given to support a larger

 number of options to ignore.

 This option should be used with caution, as there are good security reasons for

 having OpenVPN fail if it detects problems in a config file. Having said that,

 there are valid reasons for wanting new software features to gracefully degrade

 when encountered by older software versions.

 --ignore-unknown-option is available since OpenVPN 2.3.3.

 --iproute cmd

 Set alternate command to execute instead of default iproute2 command. May be used

 in order to execute OpenVPN in unprivileged environment.

 --keying-material-exporter args

 Save Exported Keying Material [RFC5705] of len bytes (must be between 16 and 4095

 bytes) using label in environment (exported_keying_material) for use by plugins in

 OPENVPN_PLUGIN_TLS_FINAL callback.

 Valid syntax:

 keying-material-exporter label len

 Note that exporter labels have the potential to collide with existing PRF labels.

 In order to prevent this, labels MUST begin with EXPORTER.

 --mlock

 Disable paging by calling the POSIX mlockall function. Requires that OpenVPN be

 initially run as root (though OpenVPN can subsequently downgrade its UID using the

 --user option).

 Using this option ensures that key material and tunnel data are never written to

 disk due to virtual memory paging operations which occur under most modern operat?

 ing systems. It ensures that even if an attacker was able to crack the box running

 OpenVPN, he would not be able to scan the system swap file to recover previously

 used ephemeral keys, which are used for a period of time governed by the --reneg

 options (see below), then are discarded.

 The downside of using --mlock is that it will reduce the amount of physical memory

 available to other applications.

 The limit on how much memory can be locked and how that limit is enforced are

 OS-dependent. On Linux the default limit that an unprivileged process may lock

 (RLIMIT_MEMLOCK) is low, and if privileges are dropped later, future memory alloca? Page 6/113

 tions will very likely fail. The limit can be increased using ulimit or systemd di?

 rectives depending on how OpenVPN is started.

 --nice n

 Change process priority after initialization (n greater than 0 is lower priority, n

 less than zero is higher priority).

 --persist-key

 Don't re-read key files across SIGUSR1 or --ping-restart.

 This option can be combined with --user nobody to allow restarts triggered by the

 SIGUSR1 signal. Normally if you drop root privileges in OpenVPN, the daemon cannot

 be restarted since it will now be unable to re-read protected key files.

 This option solves the problem by persisting keys across SIGUSR1 resets, so they

 don't need to be re-read.

 --providers providers

 Load the list of (OpenSSL) providers. This is mainly useful for using an external

 provider for key management like tpm2-openssl or to load the legacy provider with

 --providers legacy default

 Behaviour of changing this option between SIGHUP might not be well behaving. If

 you need to change/add/remove this option, fully restart OpenVPN.

 --remap-usr1 signal

 Control whether internally or externally generated SIGUSR1 signals are remapped to

 SIGHUP (restart without persisting state) or SIGTERM (exit).

 signal can be set to SIGHUP or SIGTERM. By default, no remapping occurs.

 --script-security level

 This directive offers policy-level control over OpenVPN's usage of external pro?

 grams and scripts. Lower level values are more restrictive, higher values are more

 permissive. Settings for level:

 0 Strictly no calling of external programs.

 1 (Default) Only call built-in executables such as ifconfig, ip, route, or

 netsh.

 2 Allow calling of built-in executables and user-defined scripts.

 3 Allow passwords to be passed to scripts via environmental variables (poten?

 tially unsafe).

 OpenVPN releases before v2.3 also supported a method flag which indicated how Open? Page 7/113

 VPN should call external commands and scripts. This could be either execve or sys?

 tem. As of OpenVPN 2.3, this flag is no longer accepted. In most *nix environments

 the execve() approach has been used without any issues.

 Some directives such as --up allow options to be passed to the external script. In

 these cases make sure the script name does not contain any spaces or the configura?

 tion parser will choke because it can't determine where the script name ends and

 script options start.

 To run scripts in Windows in earlier OpenVPN versions you needed to either add a

 full path to the script interpreter which can parse the script or use the system

 flag to run these scripts. As of OpenVPN 2.3 it is now a strict requirement to have

 full path to the script interpreter when running non-executables files. This is not

 needed for executable files, such as .exe, .com, .bat or .cmd files. For example,

 if you have a Visual Basic script, you must use this syntax now:

 --up 'C:\\Windows\\System32\\wscript.exe C:\\Program\ Files\\OpenVPN\\config\\my-up-script.vbs'

 Please note the single quote marks and the escaping of the backslashes (\) and the

 space character.

 The reason the support for the system flag was removed is due to the security im?

 plications with shell expansions when executing scripts via the system() call.

 --setcon context

 Apply SELinux context after initialization. This essentially provides the ability

 to restrict OpenVPN's rights to only network I/O operations, thanks to SELinux.

 This goes further than --user and --chroot in that those two, while being great se?

 curity features, unfortunately do not protect against privilege escalation by ex?

 ploitation of a vulnerable system call. You can of course combine all three, but

 please note that since setcon requires access to /proc you will have to provide it

 inside the chroot directory (e.g. with mount --bind).

 Since the setcon operation is delayed until after initialization, OpenVPN can be

 restricted to just network-related system calls, whereas by applying the context

 before startup (such as the OpenVPN one provided in the SELinux Reference Policies)

 you will have to allow many things required only during initialization.

 Like with chroot, complications can result when scripts or restarts are executed

 after the setcon operation, which is why you should really consider using the

 --persist-key and --persist-tun options. Page 8/113

 --status args

 Write operational status to file every n seconds.

 Valid syntaxes:

 status file

 status file n

 Status can also be written to the syslog by sending a SIGUSR2 signal.

 With multi-client capability enabled on a server, the status file includes a list

 of clients and a routing table. The output format can be controlled by the --sta?

 tus-version option in that case.

 For clients or instances running in point-to-point mode, it will contain the traf?

 fic statistics.

 --status-version n

 Set the status file format version number to n.

 This only affects the status file on servers with multi-client capability enabled.

 Valid status version values:

 1 Traditional format (default). The client list contains the following fields

 comma-separated: Common Name, Real Address, Bytes Received, Bytes Sent, Con?

 nected Since.

 2 A more reliable format for external processing. Compared to version 1, the

 client list contains some additional fields: Virtual Address, Virtual IPv6

 Address, Username, Client ID, Peer ID, Data Channel Cipher. Future versions

 may extend the number of fields.

 3 Identical to 2, but fields are tab-separated.

 --test-crypto

 Do a self-test of OpenVPN's crypto options by encrypting and decrypting test pack?

 ets using the data channel encryption options specified above. This option does

 not require a peer to function, and therefore can be specified without --dev or

 --remote.

 The typical usage of --test-crypto would be something like this:

 openvpn --test-crypto --secret key

 or

 openvpn --test-crypto --secret key --verb 9

 This option is very useful to test OpenVPN after it has been ported to a new plat? Page 9/113

 form, or to isolate problems in the compiler, OpenSSL crypto library, or OpenVPN's

 crypto code. Since it is a self-test mode, problems with encryption and authentica?

 tion can be debugged independently of network and tunnel issues.

 --tmp-dir dir

 Specify a directory dir for temporary files. This directory will be used by openvpn

 processes and script to communicate temporary data with openvpn main process. Note

 that the directory must be writable by the OpenVPN process after it has dropped

 it's root privileges.

 This directory will be used by in the following cases:

 ? --client-connect scripts and OPENVPN_PLUGIN_CLIENT_CONNECT plug-in hook to dynam?

 ically generate client-specific configuration client_connect_config_file and re?

 turn success/failure via client_connect_deferred_file when using deferred client

 connect method

 ? OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY plug-in hooks returns success/failure via

 auth_control_file when using deferred auth method

 ? OPENVPN_PLUGIN_ENABLE_PF plugin hook to pass filtering rules via pf_file

 --use-prediction-resistance

 Enable prediction resistance on mbed TLS's RNG.

 Enabling prediction resistance causes the RNG to reseed in each call for random.

 Reseeding this often can quickly deplete the kernel entropy pool.

 If you need this option, please consider running a daemon that adds entropy to the

 kernel pool.

 --user user

 Change the user ID of the OpenVPN process to user after initialization, dropping

 privileges in the process. This option is useful to protect the system in the event

 that some hostile party was able to gain control of an OpenVPN session. Though

 OpenVPN's security features make this unlikely, it is provided as a second line of

 defense.

 By setting user to nobody or somebody similarly unprivileged, the hostile party

 would be limited in what damage they could cause. Of course once you take away

 privileges, you cannot return them to an OpenVPN session. This means, for example,

 that if you want to reset an OpenVPN daemon with a SIGUSR1 signal (for example in

 response to a DHCP reset), you should make use of one or more of the --persist op? Page 10/113

 tions to ensure that OpenVPN doesn't need to execute any privileged operations in

 order to restart (such as re-reading key files or running ifconfig on the TUN de?

 vice).

 --writepid file

 Write OpenVPN's main process ID to file.

 Log options

 --echo parms

 Echo parms to log output.

 Designed to be used to send messages to a controlling application which is receiv?

 ing the OpenVPN log output.

 --errors-to-stderr

 Output errors to stderr instead of stdout unless log output is redirected by one of

 the --log options.

 --log file

 Output logging messages to file, including output to stdout/stderr which is gener?

 ated by called scripts. If file already exists it will be truncated. This option

 takes effect immediately when it is parsed in the command line and will supersede

 syslog output if --daemon or --inetd is also specified. This option is persistent

 over the entire course of an OpenVPN instantiation and will not be reset by SIGHUP,

 SIGUSR1, or --ping-restart.

 Note that on Windows, when OpenVPN is started as a service, logging occurs by de?

 fault without the need to specify this option.

 --log-append file

 Append logging messages to file. If file does not exist, it will be created. This

 option behaves exactly like --log except that it appends to rather than truncating

 the log file.

 --machine-readable-output

 Always write timestamps and message flags to log messages, even when they otherwise

 would not be prefixed. In particular, this applies to log messages sent to stdout.

 --mute n

 Log at most n consecutive messages in the same category. This is useful to limit

 repetitive logging of similar message types.

 --mute-replay-warnings Page 11/113

 Silence the output of replay warnings, which are a common false alarm on WiFi net?

 works. This option preserves the security of the replay protection code without the

 verbosity associated with warnings about duplicate packets.

 --suppress-timestamps

 Avoid writing timestamps to log messages, even when they otherwise would be

 prepended. In particular, this applies to log messages sent to stdout.

 --syslog progname

 Direct log output to system logger, but do not become a daemon. See --daemon direc?

 tive above for description of progname parameter.

 --verb n

 Set output verbosity to n (default 1). Each level shows all info from the previous

 levels. Level 3 is recommended if you want a good summary of what's happening with?

 out being swamped by output.

 0 No output except fatal errors.

 1 to 4 Normal usage range.

 5 Outputs R and W characters to the console for each packet read and write,

 uppercase is used for TCP/UDP packets and lowercase is used for TUN/TAP

 packets.

 6 to 11

 Debug info range (see errlevel.h in the source code for additional informa?

 tion on debug levels).

 Protocol options

 Options in this section affect features available in the OpenVPN wire protocol. Many of

 these options also define the encryption options of the data channel in the OpenVPN wire

 protocol. These options must be configured in a compatible way between both the local and

 remote side.

 --allow-compression mode

 As described in the --compress option, compression is a potentially dangerous op?

 tion. This option allows controlling the behaviour of OpenVPN when compression is

 used and allowed.

 Valid syntaxes:

 allow-compression

 allow-compression mode Page 12/113

 The mode argument can be one of the following values:

 asym (default)

 OpenVPN will only decompress downlink packets but not compress uplink pack?

 ets. This also allows migrating to disable compression when changing both

 server and client configurations to remove compression at the same time is

 not a feasible option.

 no OpenVPN will refuse any non-stub compression.

 yes OpenVPN will send and receive compressed packets.

 --auth alg

 Authenticate data channel packets and (if enabled) tls-auth control channel packets

 with HMAC using message digest algorithm alg. (The default is SHA1). HMAC is a

 commonly used message authentication algorithm (MAC) that uses a data string, a se?

 cure hash algorithm and a key to produce a digital signature.

 The OpenVPN data channel protocol uses encrypt-then-mac (i.e. first encrypt a

 packet then HMAC the resulting ciphertext), which prevents padding oracle attacks.

 If an AEAD cipher mode (e.g. GCM) is chosen then the specified --auth algorithm is

 ignored for the data channel and the authentication method of the AEAD cipher is

 used instead. Note that alg still specifies the digest used for tls-auth.

 In static-key encryption mode, the HMAC key is included in the key file generated

 by --genkey. In TLS mode, the HMAC key is dynamically generated and shared between

 peers via the TLS control channel. If OpenVPN receives a packet with a bad HMAC it

 will drop the packet. HMAC usually adds 16 or 20 bytes per packet. Set alg=none to

 disable authentication.

 For more information on HMAC see

 http://www.cs.ucsd.edu/users/mihir/papers/hmac.html

 --cipher alg

 This option is deprecated for server-client mode. --data-ciphers or possibly

 --data-ciphers-fallback` should be used instead.

 Encrypt data channel packets with cipher algorithm alg.

 The default is BF-CBC, an abbreviation for Blowfish in Cipher Block Chaining mode.

 When cipher negotiation (NCP) is allowed, OpenVPN 2.4 and newer on both client and

 server side will automatically upgrade to AES-256-GCM. See --data-ciphers and

 --ncp-disable for more details on NCP. Page 13/113

 Using BF-CBC is no longer recommended, because of its 64-bit block size. This small

 block size allows attacks based on collisions, as demonstrated by SWEET32. See

 https://community.openvpn.net/openvpn/wiki/SWEET32 for details. Due to this, sup?

 port for BF-CBC, DES, CAST5, IDEA and RC2 ciphers will be removed in OpenVPN 2.6.

 To see other ciphers that are available with OpenVPN, use the --show-ciphers op?

 tion.

 Set alg to none to disable encryption.

 --compress algorithm

 DEPRECATED Enable a compression algorithm. Compression is generally not recom?

 mended. VPN tunnels which use compression are susceptible to the VORALCE attack

 vector.

 The algorithm parameter may be lzo, lz4, lz4-v2, stub, stub-v2 or empty. LZO and

 LZ4 are different compression algorithms, with LZ4 generally offering the best per?

 formance with least CPU usage.

 The lz4-v2 and stub-v2 variants implement a better framing that does not add over?

 head when packets cannot be compressed. All other variants always add one extra

 framing byte compared to no compression framing.

 If the algorithm parameter is stub, stub-v2 or empty, compression will be turned

 off, but the packet framing for compression will still be enabled, allowing a dif?

 ferent setting to be pushed later. Additionally, stub and stub-v2 wil disable an?

 nouncing lzo and lz4 compression support via IV_ variables to the server.

 Note: the stub (or empty) option is NOT compatible with the older option --comp-lzo

 no.

 Security Considerations

 Compression and encryption is a tricky combination. If an attacker knows or is able

 to control (parts of) the plain-text of packets that contain secrets, the attacker

 might be able to extract the secret if compression is enabled. See e.g. the CRIME

 and BREACH attacks on TLS and VORACLE on VPNs which also leverage to break encryp?

 tion. If you are not entirely sure that the above does not apply to your traffic,

 you are advised to not enable compression.

 --comp-lzo mode

 DEPRECATED Enable LZO compression algorithm. Compression is generally not recom?

 mended. VPN tunnels which uses compression are suspectible to the VORALCE attack Page 14/113

 vector.

 Use LZO compression -- may add up to 1 byte per packet for incompressible data.

 mode may be yes, no, or adaptive (default).

 In a server mode setup, it is possible to selectively turn compression on or off

 for individual clients.

 First, make sure the client-side config file enables selective compression by hav?

 ing at least one --comp-lzo directive, such as --comp-lzo no. This will turn off

 compression by default, but allow a future directive push from the server to dynam?

 ically change the on/off/adaptive setting.

 Next in a --client-config-dir file, specify the compression setting for the client,

 for example:

 comp-lzo yes

 push "comp-lzo yes"

 The first line sets the comp-lzo setting for the server side of the link, the sec?

 ond sets the client side.

 --comp-noadapt

 DEPRECATED When used in conjunction with --comp-lzo, this option will disable Open?

 VPN's adaptive compression algorithm. Normally, adaptive compression is enabled

 with --comp-lzo.

 Adaptive compression tries to optimize the case where you have compression enabled,

 but you are sending predominantly incompressible (or pre-compressed) packets over

 the tunnel, such as an FTP or rsync transfer of a large, compressed file. With

 adaptive compression, OpenVPN will periodically sample the compression process to

 measure its efficiency. If the data being sent over the tunnel is already com?

 pressed, the compression efficiency will be very low, triggering openvpn to disable

 compression for a period of time until the next re-sample test.

 --key-direction

 Alternative way of specifying the optional direction parameter for the --tls-auth

 and --secret options. Useful when using inline files (See section on inline files).

 --keysize n

 DEPRECATED This option will be removed in OpenVPN 2.6.

 Size of cipher key in bits (optional). If unspecified, defaults to cipher-specific

 default. The --show-ciphers option (see below) shows all available OpenSSL ciphers, Page 15/113

 their default key sizes, and whether the key size can be changed. Use care in

 changing a cipher's default key size. Many ciphers have not been extensively crypt?

 analyzed with non-standard key lengths, and a larger key may offer no real guaran?

 tee of greater security, or may even reduce security.

 --data-ciphers cipher-list

 Restrict the allowed ciphers to be negotiated to the ciphers in cipher-list. ci?

 pher-list is a colon-separated list of ciphers, and defaults to

 AES-256-GCM:AES-128-GCM.

 For servers, the first cipher from cipher-list that is also supported by the client

 will be pushed to clients that support cipher negotiation.

 Starting with OpenVPN 2.5.9 a cipher can be prefixed with a ? to mark it as op?

 tional. This allows including ciphers in the list that may not be available on all

 platforms. E.g. AES-256-GCM:AES-128-GCM:?CHACHA20-POLY1305 would only enable

 Chacha20-Poly1305 if the underlying SSL library (and its configuration) supports

 it.

 Cipher negotiation is enabled in client-server mode only. I.e. if --mode is set to

 'server' (server-side, implied by setting --server), or if --pull is specified

 (client-side, implied by setting --client).

 If no common cipher is found during cipher negotiation, the connection is termi?

 nated. To support old clients/old servers that do not provide any cipher negotia?

 tion support see --data-ciphers-fallback.

 Additionally, to allow for more smooth transition, if NCP is enabled, OpenVPN will

 inherit the cipher of the peer if that cipher is different from the local --cipher

 setting, but the peer cipher is one of the ciphers specified in --data-ciphers.

 E.g. a non-NCP client (<=v2.3, or with --ncp-disabled set) connecting to a NCP

 server (v2.4+) with --cipher BF-CBC and --data-ciphers AES-256-GCM:AES-256-CBC set

 can either specify --cipher BF-CBC or --cipher AES-256-CBC and both will work.

 Note for using NCP with an OpenVPN 2.4 peer: This list must include the AES-256-GCM

 and AES-128-GCM ciphers.

 This list is restricted to be 127 chars long after conversion to OpenVPN ciphers.

 This option was called --ncp-ciphers in OpenVPN 2.4 but has been renamed to

 --data-ciphers in OpenVPN 2.5 to more accurately reflect its meaning.

 --data-ciphers-fallback alg Page 16/113

 Configure a cipher that is used to fall back to if we could not determine which ci?

 pher the peer is willing to use.

 This option should only be needed to connect to peers that are running OpenVPN 2.3

 and older version, and have been configured with --enable-small (typically used on

 routers or other embedded devices).

 --ncp-disable

 DEPRECATED Disable "Negotiable Crypto Parameters". This completely disables cipher

 negotiation.

 --secret args

 Enable Static Key encryption mode (non-TLS). Use pre-shared secret file which was

 generated with --genkey.

 Valid syntaxes:

 secret file

 secret file direction

 The optional direction parameter enables the use of 4 distinct keys (HMAC-send, ci?

 pher-encrypt, HMAC-receive, cipher-decrypt), so that each data flow direction has a

 different set of HMAC and cipher keys. This has a number of desirable security

 properties including eliminating certain kinds of DoS and message replay attacks.

 When the direction parameter is omitted, 2 keys are used bidirectionally, one for

 HMAC and the other for encryption/decryption.

 The direction parameter should always be complementary on either side of the con?

 nection, i.e. one side should use 0 and the other should use 1, or both sides

 should omit it altogether.

 The direction parameter requires that file contains a 2048 bit key. While pre-1.5

 versions of OpenVPN generate 1024 bit key files, any version of OpenVPN which sup?

 ports the direction parameter, will also support 2048 bit key file generation using

 the --genkey option.

 Static key encryption mode has certain advantages, the primary being ease of con?

 figuration.

 There are no certificates or certificate authorities or complicated negotiation

 handshakes and protocols. The only requirement is that you have a pre-existing se?

 cure channel with your peer (such as ssh) to initially copy the key. This require?

 ment, along with the fact that your key never changes unless you manually generate Page 17/113

 a new one, makes it somewhat less secure than TLS mode (see below). If an attacker

 manages to steal your key, everything that was ever encrypted with it is compro?

 mised. Contrast that to the perfect forward secrecy features of TLS mode (using

 Diffie Hellman key exchange), where even if an attacker was able to steal your pri?

 vate key, he would gain no information to help him decrypt past sessions.

 Another advantageous aspect of Static Key encryption mode is that it is a hand?

 shake-free protocol without any distinguishing signature or feature (such as a

 header or protocol handshake sequence) that would mark the ciphertext packets as

 being generated by OpenVPN. Anyone eavesdropping on the wire would see nothing but

 random-looking data.

 --tran-window n

 Transition window -- our old key can live this many seconds after a new a key rene?

 gotiation begins (default 3600 seconds). This feature allows for a graceful transi?

 tion from old to new key, and removes the key renegotiation sequence from the crit?

 ical path of tunnel data forwarding.

 Client Options

 The client options are used when connecting to an OpenVPN server configured to use

 --server, --server-bridge, or --mode server in its configuration.

 --allow-pull-fqdn

 Allow client to pull DNS names from server (rather than being limited to IP ad?

 dress) for --ifconfig, --route, and --route-gateway.

 --allow-recursive-routing

 When this option is set, OpenVPN will not drop incoming tun packets with same des?

 tination as host.

 --auth-token token

 This is not an option to be used directly in any configuration files, but rather

 push this option from a --client-connect script or a --plugin which hooks into the

 OPENVPN_PLUGIN_CLIENT_CONNECT or OPENVPN_PLUGIN_CLIENT_CONNECT_V2 calls. This op?

 tion provides a possibility to replace the clients password with an authentication

 token during the lifetime of the OpenVPN client.

 Whenever the connection is renegotiated and the --auth-user-pass-verify script or

 --plugin making use of the OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY hook is triggered,

 it will pass over this token as the password instead of the password the user pro? Page 18/113

 vided. The authentication token can only be reset by a full reconnect where the

 server can push new options to the client. The password the user entered is never

 preserved once an authentication token has been set. If the OpenVPN server side re?

 jects the authentication token then the client will receive an AUTH_FAILED and dis?

 connect.

 The purpose of this is to enable two factor authentication methods, such as HOTP or

 TOTP, to be used without needing to retrieve a new OTP code each time the connec?

 tion is renegotiated. Another use case is to cache authentication data on the

 client without needing to have the users password cached in memory during the life

 time of the session.

 To make use of this feature, the --client-connect script or --plugin needs to put

 push "auth-token UNIQUE_TOKEN_VALUE"

 into the file/buffer for dynamic configuration data. This will then make the Open?

 VPN server to push this value to the client, which replaces the local password with

 the UNIQUE_TOKEN_VALUE.

 Newer clients (2.4.7+) will fall back to the original password method after a

 failed auth. Older clients will keep using the token value and react according to

 --auth-retry

 --auth-token-user base64username

 Companion option to --auth-token. This options allows to override the username used

 by the client when reauthenticating with the auth-token. It also allows to use

 --auth-token in setups that normally do not use username and password.

 The username has to be base64 encoded.

 --auth-user-pass

 Authenticate with server using username/password.

 Valid syntaxes:

 auth-user-pass

 auth-user-pass up

 If up is present, it must be a file containing username/password on 2 lines. If the

 password line is missing, OpenVPN will prompt for one.

 If up is omitted, username/password will be prompted from the console.

 The server configuration must specify an --auth-user-pass-verify script to verify

 the username/password provided by the client. Page 19/113

 --auth-retry type

 Controls how OpenVPN responds to username/password verification errors such as the

 client-side response to an AUTH_FAILED message from the server or verification

 failure of the private key password.

 Normally used to prevent auth errors from being fatal on the client side, and to

 permit username/password requeries in case of error.

 An AUTH_FAILED message is generated by the server if the client fails

 --auth-user-pass authentication, or if the server-side --client-connect script re?

 turns an error status when the client tries to connect.

 type can be one of:

 none Client will exit with a fatal error (this is the default).

 nointeract

 Client will retry the connection without requerying for an --auth-user-pass

 username/password. Use this option for unattended clients.

 interact

 Client will requery for an --auth-user-pass username/password and/or private

 key password before attempting a reconnection.

 Note that while this option cannot be pushed, it can be controlled from the manage?

 ment interface.

 --client

 A helper directive designed to simplify the configuration of OpenVPN's client mode.

 This directive is equivalent to:

 pull

 tls-client

 --client-nat args

 This pushable client option sets up a stateless one-to-one NAT rule on packet ad?

 dresses (not ports), and is useful in cases where routes or ifconfig settings

 pushed to the client would create an IP numbering conflict.

 Examples:

 client-nat snat 192.168.0.0/255.255.0.0

 client-nat dnat 10.64.0.0/255.255.0.0

 network/netmask (for example 192.168.0.0/255.255.0.0) defines the local view of a

 resource from the client perspective, while alias/netmask (for example Page 20/113

 10.64.0.0/255.255.0.0) defines the remote view from the server perspective.

 Use snat (source NAT) for resources owned by the client and dnat (destination NAT)

 for remote resources.

 Set --verb 6 for debugging info showing the transformation of src/dest addresses in

 packets.

 --connect-retry n

 Wait n seconds between connection attempts (default 5). Repeated reconnection at?

 tempts are slowed down after 5 retries per remote by doubling the wait time after

 each unsuccessful attempt. An optional argument max specifies the maximum value of

 wait time in seconds at which it gets capped (default 300).

 --connect-retry-max n

 n specifies the number of times each --remote or <connection> entry is tried. Spec?

 ifying n as 1 would try each entry exactly once. A successful connection resets the

 counter. (default unlimited).

 --connect-timeout n

 See --server-poll-timeout.

 --explicit-exit-notify n

 In UDP client mode or point-to-point mode, send server/peer an exit notification if

 tunnel is restarted or OpenVPN process is exited. In client mode, on exit/restart,

 this option will tell the server to immediately close its client instance object

 rather than waiting for a timeout.

 The n parameter (default 1 if not present) controls the maximum number of attempts

 that the client will try to resend the exit notification message.

 In UDP server mode, send RESTART control channel command to connected clients. The

 n parameter (default 1 if not present) controls client behavior. With n = 1 client

 will attempt to reconnect to the same server, with n = 2 client will advance to the

 next server.

 OpenVPN will not send any exit notifications unless this option is enabled.

 --inactive args

 Causes OpenVPN to exit after n seconds of inactivity on the TUN/TAP device. The

 time length of inactivity is measured since the last incoming or outgoing tunnel

 packet. The default value is 0 seconds, which disables this feature.

 Valid syntaxes: Page 21/113

 inactive n

 inactive n bytes

 If the optional bytes parameter is included, exit if less than bytes of combined

 in/out traffic are produced on the tun/tap device in n seconds.

 In any case, OpenVPN's internal ping packets (which are just keepalives) and TLS

 control packets are not considered "activity", nor are they counted as traffic, as

 they are used internally by OpenVPN and are not an indication of actual user activ?

 ity.

 --proto-force p

 When iterating through connection profiles, only consider profiles using protocol p

 (tcp | udp).

 Note that this specifically only filters by the transport layer protocol, i.e. UDP

 or TCP. This does not affect whether IPv4 or IPv6 is used as IP protocol.

 For implementation reasons the option accepts the 4 and 6 suffixes when specifying

 the protocol (i.e. udp4 / udp6 / tcp4 / tcp6). However, these behave the same as

 without the suffix and should be avoided to prevent confusion.

 --pull This option must be used on a client which is connecting to a multi-client server.

 It indicates to OpenVPN that it should accept options pushed by the server, pro?

 vided they are part of the legal set of pushable options (note that the --pull op?

 tion is implied by --client).

 In particular, --pull allows the server to push routes to the client, so you should

 not use --pull or --client in situations where you don't trust the server to have

 control over the client's routing table.

 --pull-filter args

 Filter options on the client pushed by the server to the client.

 Valid syntaxes:

 pull-filter accept text

 pull-filter ignore text

 pull-filter reject text

 Filter options received from the server if the option starts with text. The action

 flag accept allows the option, ignore removes it and reject flags an error and

 triggers a SIGUSR1 restart. The filters may be specified multiple times, and each

 filter is applied in the order it is specified. The filtering of each option stops Page 22/113

 as soon as a match is found. Unmatched options are accepted by default.

 Prefix comparison is used to match text against the received option so that

 pull-filter ignore "route"

 would remove all pushed options starting with route which would include, for exam?

 ple, route-gateway. Enclose text in quotes to embed spaces.

 pull-filter accept "route 192.168.1."

 pull-filter ignore "route "

 would remove all routes that do not start with 192.168.1.

 Note that reject may result in a repeated cycle of failure and reconnect, unless

 multiple remotes are specified and connection to the next remote succeeds. To

 silently ignore an option pushed by the server, use ignore.

 --push-peer-info

 Push additional information about the client to server. The following data is al?

 ways pushed to the server:

 IV_VER=<version>

 The client OpenVPN version

 IV_PLAT=[linux|solaris|openbsd|mac|netbsd|freebsd|win]

 The client OS platform

 IV_LZO_STUB=1

 If client was built with LZO stub capability

 IV_LZ4=1

 If the client supports LZ4 compressions.

 IV_PROTO

 Details about protocol extensions that the peer supports. The variable is a

 bitfield and the bits are defined as follows (starting a bit 0 for the first

 (unused) bit:

 ? bit 1: The peer supports peer-id floating mechanism

 ? bit 2: The client expects a push-reply and the server may send this reply

 without waiting for a push-request first.

 ? bit 3: The client is capable of doing key derivation using RFC5705 key ma?

 terial exporter.

 ? bit 4: The client is capable of accepting additional arguments to the

 AUTH_PENDING message. Page 23/113

 IV_NCP=2

 Negotiable ciphers, client supports --cipher pushed by the server, a value

 of 2 or greater indicates client supports AES-GCM-128 and AES-GCM-256.

 IV_CIPHERS=<ncp-ciphers>

 The client announces the list of supported ciphers configured with the

 --data-ciphers option to the server.

 IV_GUI_VER=<gui_id> <version>

 The UI version of a UI if one is running, for example de.blinkt.openvpn

 0.5.47 for the Android app.

 IV_SSO=[crtext,][openurl,][proxy_url]

 Additional authentication methods supported by the client. This may be set

 by the client UI/GUI using --setenv

 When --push-peer-info is enabled the additional information consists of the follow?

 ing data:

 IV_HWADDR=<string>

 This is intended to be a unique and persistent ID of the client. The string

 value can be any readable ASCII string up to 64 bytes. OpenVPN 2.x and some

 other implementations use the MAC address of the client's interface used to

 reach the default gateway. If this string is generated by the client, it

 should be consistent and preserved across independent session and preferably

 re-installations and upgrades.

 IV_SSL=<version string>

 The ssl version used by the client, e.g. OpenSSL 1.0.2f 28 Jan 2016.

 IV_PLAT_VER=x.y

 The version of the operating system, e.g. 6.1 for Windows 7.

 UV_<name>=<value>

 Client environment variables whose names start with UV_

 --remote args

 Remote host name or IP address, port and protocol.

 Valid syntaxes:

 remote host

 remote host port

 remote host port proto Page 24/113

 The port and proto arguments are optional. The OpenVPN client will try to connect

 to a server at host:port. The proto argument indicates the protocol to use when

 connecting with the remote, and may be tcp or udp. To enforce IPv4 or IPv6 connec?

 tions add a 4 or 6 suffix; like udp4 / udp6 / tcp4 / tcp6.

 On the client, multiple --remote options may be specified for redundancy, each re?

 ferring to a different OpenVPN server, in the order specified by the list of --re?

 mote options. Specifying multiple --remote options for this purpose is a special

 case of the more general connection-profile feature. See the <connection> documen?

 tation below.

 The client will move on to the next host in the list, in the event of connection

 failure. Note that at any given time, the OpenVPN client will at most be connected

 to one server.

 Examples:

 remote server1.example.net

 remote server1.example.net 1194

 remote server2.example.net 1194 tcp

 Note: Since UDP is connectionless, connection failure is defined by the --ping and

 --ping-restart options.

 Also, if you use multiple --remote options, AND you are dropping root privi?

 leges on the client with --user and/or --group AND the client is running a

 non-Windows OS, if the client needs to switch to a different server, and

 that server pushes back different TUN/TAP or route settings, the client may

 lack the necessary privileges to close and reopen the TUN/TAP interface.

 This could cause the client to exit with a fatal error.

 If --remote is unspecified, OpenVPN will listen for packets from any IP address,

 but will not act on those packets unless they pass all authentication tests. This

 requirement for authentication is binding on all potential peers, even those from

 known and supposedly trusted IP addresses (it is very easy to forge a source IP ad?

 dress on a UDP packet).

 When used in TCP mode, --remote will act as a filter, rejecting connections from

 any host which does not match host.

 If host is a DNS name which resolves to multiple IP addresses, OpenVPN will try

 them in the order that the system getaddrinfo() presents them, so priorization and Page 25/113

 DNS randomization is done by the system library. Unless an IP version is forced by

 the protocol specification (4/6 suffix), OpenVPN will try both IPv4 and IPv6 ad?

 dresses, in the order getaddrinfo() returns them.

 --remote-random

 When multiple --remote address/ports are specified, or if connection profiles are

 being used, initially randomize the order of the list as a kind of basic load-bal?

 ancing measure.

 --remote-random-hostname

 Prepend a random string (6 bytes, 12 hex characters) to hostname to prevent DNS

 caching. For example, "foo.bar.gov" would be modified to "<ran?

 dom-chars>.foo.bar.gov".

 --resolv-retry n

 If hostname resolve fails for --remote, retry resolve for n seconds before failing.

 Set n to "infinite" to retry indefinitely.

 By default, --resolv-retry infinite is enabled. You can disable by setting n=0.

 --single-session

 After initially connecting to a remote peer, disallow any new connections. Using

 this option means that a remote peer cannot connect, disconnect, and then recon?

 nect.

 If the daemon is reset by a signal or --ping-restart, it will allow one new connec?

 tion.

 --single-session can be used with --ping-exit or --inactive to create a single dy?

 namic session that will exit when finished.

 --server-poll-timeout n

 When connecting to a remote server do not wait for more than n seconds for a re?

 sponse before trying the next server. The default value is 120s. This timeout in?

 cludes proxy and TCP connect timeouts.

 --static-challenge args

 Enable static challenge/response protocol

 Valid syntax:

 static-challenge text echo

 The text challenge text is presented to the user which describes what information

 is requested. The echo flag indicates if the user's input should be echoed on the Page 26/113

 screen. Valid echo values are 0 or 1.

 See management-notes.txt in the OpenVPN distribution for a description of the Open?

 VPN challenge/response protocol.

 --show-proxy-settings

 Show sensed HTTP or SOCKS proxy settings. Currently, only Windows clients support

 this option.

 --http-proxy args

 Connect to remote host through an HTTP proxy. This requires at least an address

 server and port argument. If HTTP Proxy-Authenticate is required, a file name to

 an authfile file containing a username and password on 2 lines can be given, or

 stdin to prompt from console. Its content can also be specified in the config file

 with the --http-proxy-user-pass option. (See section on inline files)

 The last optional argument is an auth-method which should be one of none, basic, or

 ntlm.

 HTTP Digest authentication is supported as well, but only via the auto or auto-nct

 flags (below). This must replace the authfile argument.

 The auto flag causes OpenVPN to automatically determine the auth-method and query

 stdin or the management interface for username/password credentials, if required.

 This flag exists on OpenVPN 2.1 or higher.

 The auto-nct flag (no clear-text auth) instructs OpenVPN to automatically determine

 the authentication method, but to reject weak authentication protocols such as HTTP

 Basic Authentication.

 Examples:

 http-proxy proxy.example.net 3128

 http-proxy proxy.example.net 3128 authfile.txt

 http-proxy proxy.example.net 3128 stdin

 http-proxy proxy.example.net 3128 auto basic

 http-proxy proxy.example.net 3128 auto-nct ntlm

 --http-proxy-option args

 Set extended HTTP proxy options. Requires an option type as argument and an op?

 tional parameter to the type. Repeat to set multiple options.

 VERSION version

 Set HTTP version number to version (default 1.0). Page 27/113

 AGENT user-agent

 Set HTTP "User-Agent" string to user-agent.

 CUSTOM-HEADER name content

 Adds the custom Header with name as name and content as the content of the

 custom HTTP header.

 Examples:

 http-proxy-option VERSION 1.1

 http-proxy-option AGENT OpenVPN/2.4

 http-proxy-option X-Proxy-Flag some-flags

 --socks-proxy args

 Connect to remote host through a Socks5 proxy. A required server argument is

 needed. Optionally a port (default 1080) and authfile can be given. The authfile

 is a file containing a username and password on 2 lines, or stdin can be used to

 prompt from console.

 Server Options

 Starting with OpenVPN 2.0, a multi-client TCP/UDP server mode is supported, and can be en?

 abled with the --mode server option. In server mode, OpenVPN will listen on a single port

 for incoming client connections. All client connections will be routed through a single

 tun or tap interface. This mode is designed for scalability and should be able to support

 hundreds or even thousands of clients on sufficiently fast hardware. SSL/TLS authentica?

 tion must be used in this mode.

 --auth-gen-token args

 Returns an authentication token to successfully authenticated clients.

 Valid syntax:

 auth-gen-token [lifetime] [external-auth]

 After successful user/password authentication, the OpenVPN server will with this

 option generate a temporary authentication token and push that to the client. On

 the following renegotiations, the OpenVPN client will pass this token instead of

 the users password. On the server side the server will do the token authentication

 internally and it will NOT do any additional authentications against configured ex?

 ternal user/password authentication mechanisms.

 The tokens implemented by this mechanism include an initial timestamp and a renew

 timestamp and are secured by HMAC. Page 28/113

 The lifetime argument defines how long the generated token is valid. The lifetime

 is defined in seconds. If lifetime is not set or it is set to 0, the token will

 never expire.

 The token will expire either after the configured lifetime of the token is reached

 or after not being renewed for more than 2 * reneg-sec seconds. Clients will be

 sent renewed tokens on every TLS renogiation to keep the client's token updated.

 This is done to invalidate a token if a client is disconnected for a sufficently

 long time, while at the same time permitting much longer token lifetimes for active

 clients.

 This feature is useful for environments which are configured to use One Time Pass?

 words (OTP) as part of the user/password authentications and that authentication

 mechanism does not implement any auth-token support.

 When the external-auth keyword is present the normal authentication method will al?

 ways be called even if auth-token succeeds. Normally other authentications method

 are skipped if auth-token verification suceeds or fails.

 This option postpones this decision to the external authentication methods and

 checks the validity of the account and do other checks.

 In this mode the environment will have a session_id variable that holds the session

 id from auth-gen-token. Also an environment variable session_state is present. This

 variable indicates whether the auth-token has succeeded or not. It can have the

 following values:

 Initial

 No token from client.

 Authenticated

 Token is valid and not expired.

 Expired

 Token is valid but has expired.

 Invalid

 Token is invalid (failed HMAC or wrong length)

 AuthenticatedEmptyUser / ExpiredEmptyUser

 The token is not valid with the username sent from the client but would be

 valid (or expired) if we assume an empty username was used instead. These

 two cases are a workaround for behaviour in OpenVPN 3. If this workaround Page 29/113

 is not needed these two cases should be handled in the same way as Invalid.

 Warning: Use this feature only if you want your authentication method called on ev?

 ery verification. Since the external authentication is called it needs to also in?

 dicate a success or failure of the authentication. It is strongly recommended to

 return an authentication failure in the case of the Invalid/Expired auth-token with

 the external-auth option unless the client could authenticate in another acceptable

 way (e.g. client certificate), otherwise returning success will lead to authentica?

 tion bypass (as does returning success on a wrong password from a script).

 --auth-gen-token-secret file

 Specifies a file that holds a secret for the HMAC used in --auth-gen-token If file

 is not present OpenVPN will generate a random secret on startup. This file should

 be used if auth-token should validate after restarting a server or if client should

 be able to roam between multiple OpenVPN servers with their auth-token.

 --auth-user-pass-optional

 Allow connections by clients that do not specify a username/password. Normally,

 when --auth-user-pass-verify or --management-client-auth are specified (or an au?

 thentication plugin module), the OpenVPN server daemon will require connecting

 clients to specify a username and password. This option makes the submission of a

 username/password by clients optional, passing the responsibility to the user-de?

 fined authentication module/script to accept or deny the client based on other fac?

 tors (such as the setting of X509 certificate fields). When this option is used,

 and a connecting client does not submit a username/password, the user-defined au?

 thentication module/script will see the username and password as being set to empty

 strings (""). The authentication module/script MUST have logic to detect this con?

 dition and respond accordingly.

 --ccd-exclusive

 Require, as a condition of authentication, that a connecting client has a

 --client-config-dir file.

 --client-config-dir dir

 Specify a directory dir for custom client config files. After a connecting client

 has been authenticated, OpenVPN will look in this directory for a file having the

 same name as the client's X509 common name. If a matching file exists, it will be

 opened and parsed for client-specific configuration options. If no matching file is Page 30/113

 found, OpenVPN will instead try to open and parse a default file called "DEFAULT",

 which may be provided but is not required. Note that the configuration files must

 be readable by the OpenVPN process after it has dropped it's root privileges.

 This file can specify a fixed IP address for a given client using --ifconfig-push,

 as well as fixed subnets owned by the client using --iroute.

 One of the useful properties of this option is that it allows client configuration

 files to be conveniently created, edited, or removed while the server is live,

 without needing to restart the server.

 The following options are legal in a client-specific context: --push, --push-reset,

 --push-remove, --iroute, --ifconfig-push, --vlan-pvid and --config.

 --client-to-client

 Because the OpenVPN server mode handles multiple clients through a single tun or

 tap interface, it is effectively a router. The --client-to-client flag tells Open?

 VPN to internally route client-to-client traffic rather than pushing all

 client-originating traffic to the TUN/TAP interface.

 When this option is used, each client will "see" the other clients which are cur?

 rently connected. Otherwise, each client will only see the server. Don't use this

 option if you want to firewall tunnel traffic using custom, per-client rules.

 --disable

 Disable a particular client (based on the common name) from connecting. Don't use

 this option to disable a client due to key or password compromise. Use a CRL (cer?

 tificate revocation list) instead (see the --crl-verify option).

 This option must be associated with a specific client instance, which means that it

 must be specified either in a client instance config file using --client-config-dir

 or dynamically generated using a --client-connect script.

 --connect-freq args

 Allow a maximum of n new connections per sec seconds from clients.

 Valid syntax:

 connect-freq n sec

 This is designed to contain DoS attacks which flood the server with connection re?

 quests using certificates which will ultimately fail to authenticate.

 This is an imperfect solution however, because in a real DoS scenario, legitimate

 connections might also be refused. Page 31/113

 For the best protection against DoS attacks in server mode, use --proto udp and ei?

 ther --tls-auth or --tls-crypt.

 --duplicate-cn

 Allow multiple clients with the same common name to concurrently connect. In the

 absence of this option, OpenVPN will disconnect a client instance upon connection

 of a new client having the same common name.

 --ifconfig-pool args

 Set aside a pool of subnets to be dynamically allocated to connecting clients, sim?

 ilar to a DHCP server.

 Valid syntax:

 ifconfig-pool start-IP end-IP [netmask]

 For tun-style tunnels, each client will be given a /30 subnet (for interoperability

 with Windows clients). For tap-style tunnels, individual addresses will be allo?

 cated, and the optional netmask parameter will also be pushed to clients.

 --ifconfig-ipv6-pool args

 Specify an IPv6 address pool for dynamic assignment to clients.

 Valid args:

 ifconfig-ipv6-pool ipv6addr/bits

 The pool starts at ipv6addr and matches the offset determined from the start of the

 IPv4 pool. If the host part of the given IPv6 address is 0, the pool starts at

 ipv6addr +1.

 --ifconfig-pool-persist args

 Persist/unpersist ifconfig-pool data to file, at seconds intervals (default 600),

 as well as on program startup and shutdown.

 Valid syntax:

 ifconfig-pool-persist file [seconds]

 The goal of this option is to provide a long-term association between clients (de?

 noted by their common name) and the virtual IP address assigned to them from the

 ifconfig-pool. Maintaining a long-term association is good for clients because it

 allows them to effectively use the --persist-tun option.

 file is a comma-delimited ASCII file, formatted as <Common-Name>,<IP-address>.

 If seconds = 0, file will be treated as read-only. This is useful if you would like

 to treat file as a configuration file. Page 32/113

 Note that the entries in this file are treated by OpenVPN as suggestions only,

 based on past associations between a common name and IP address. They do not guar?

 antee that the given common name will always receive the given IP address. If you

 want guaranteed assignment, use --ifconfig-push

 --ifconfig-push args

 Push virtual IP endpoints for client tunnel, overriding the --ifconfig-pool dynamic

 allocation.

 Valid syntax:

 ifconfig-push local remote-netmask [alias]

 The parameters local and remote-netmask are set according to the --ifconfig direc?

 tive which you want to execute on the client machine to configure the remote end of

 the tunnel. Note that the parameters local and remote-netmask are from the perspec?

 tive of the client, not the server. They may be DNS names rather than IP addresses,

 in which case they will be resolved on the server at the time of client connection.

 The optional alias parameter may be used in cases where NAT causes the client view

 of its local endpoint to differ from the server view. In this case local/re?

 mote-netmask will refer to the server view while alias/remote-netmask will refer to

 the client view.

 This option must be associated with a specific client instance, which means that it

 must be specified either in a client instance config file using --client-config-dir

 or dynamically generated using a --client-connect script.

 Remember also to include a --route directive in the main OpenVPN config file which

 encloses local, so that the kernel will know to route it to the server's TUN/TAP

 interface.

 OpenVPN's internal client IP address selection algorithm works as follows:

 1. Use --client-connect script generated file for static IP (first choice).

 2. Use --client-config-dir file for static IP (next choice).

 3. Use --ifconfig-pool allocation for dynamic IP (last choice).

 --ifconfig-ipv6-push args

 for --client-config-dir per-client static IPv6 interface configuration, see

 --client-config-dir and --ifconfig-push for more details.

 Valid syntax:

 ifconfig-ipv6-push ipv6addr/bits ipv6remote Page 33/113

 --inetd args

 Valid syntaxes:

 inetd

 inetd wait

 inetd nowait

 inetd wait progname

 Use this option when OpenVPN is being run from the inetd or xinetd(8) server.

 The wait and nowait option must match what is specified in the inetd/xinetd config

 file. The nowait mode can only be used with --proto tcp-server The default is wait.

 The nowait mode can be used to instantiate the OpenVPN daemon as a classic TCP

 server, where client connection requests are serviced on a single port number. For

 additional information on this kind of configuration, see the OpenVPN FAQ:

https://community.openvpn.net/openvpn/wiki/325-openvpn-as-a--forking-tcp-server-which-can-service-multiple-clients-over-a

-single-tcp-port

 This option precludes the use of --daemon, --local or --remote. Note that this op?

 tion causes message and error output to be handled in the same way as the --daemon

 option. The optional progname parameter is also handled exactly as in --daemon.

 Also note that in wait mode, each OpenVPN tunnel requires a separate TCP/UDP port

 and a separate inetd or xinetd entry. See the OpenVPN 1.x HOWTO for an example on

 using OpenVPN with xinetd: https://openvpn.net/community-resources/1xhowto/

 --multihome

 Configure a multi-homed UDP server. This option needs to be used when a server has

 more than one IP address (e.g. multiple interfaces, or secondary IP addresses), and

 is not using --local to force binding to one specific address only. This option

 will add some extra lookups to the packet path to ensure that the UDP reply packets

 are always sent from the address that the client is talking to. This is not sup?

 ported on all platforms, and it adds more processing, so it's not enabled by de?

 fault.

 Notes:

 ? This option is only relevant for UDP servers.

 ? If you do an IPv6+IPv4 dual-stack bind on a Linux machine with multiple

 IPv4 address, connections to IPv4 addresses will not work right on kernels Page 34/113

 before 3.15, due to missing kernel support for the IPv4-mapped case (some

 distributions have ported this to earlier kernel versions, though).

 --iroute args

 Generate an internal route to a specific client. The netmask parameter, if omitted,

 defaults to 255.255.255.255.

 Valid syntax:

 iroute network [netmask]

 This directive can be used to route a fixed subnet from the server to a particular

 client, regardless of where the client is connecting from. Remember that you must

 also add the route to the system routing table as well (such as by using the

 --route directive). The reason why two routes are needed is that the --route direc?

 tive routes the packet from the kernel to OpenVPN. Once in OpenVPN, the --iroute

 directive routes to the specific client.

 This option must be specified either in a client instance config file using

 --client-config-dir or dynamically generated using a --client-connect script.

 The --iroute directive also has an important interaction with --push "route ...".

 --iroute essentially defines a subnet which is owned by a particular client (we

 will call this client A). If you would like other clients to be able to reach A's

 subnet, you can use --push "route ..." together with --client-to-client to effect

 this. In order for all clients to see A's subnet, OpenVPN must push this route to

 all clients EXCEPT for A, since the subnet is already owned by A. OpenVPN accom?

 plishes this by not not pushing a route to a client if it matches one of the

 client's iroutes.

 --iroute-ipv6 args

 for --client-config-dir per-client static IPv6 route configuration, see --iroute

 for more details how to setup and use this, and how --iroute and --route interact.

 Valid syntax:

 iroute-ipv6 ipv6addr/bits

 --max-clients n

 Limit server to a maximum of n concurrent clients.

 --max-routes-per-client n

 Allow a maximum of n internal routes per client (default 256). This is designed to

 help contain DoS attacks where an authenticated client floods the server with pack? Page 35/113

 ets appearing to come from many unique MAC addresses, forcing the server to deplete

 virtual memory as its internal routing table expands. This directive can be used in

 a --client-config-dir file or auto-generated by a --client-connect script to over?

 ride the global value for a particular client.

 Note that this directive affects OpenVPN's internal routing table, not the kernel

 routing table.

 --opt-verify

 Clients that connect with options that are incompatible with those of the server

 will be disconnected.

 Options that will be compared for compatibility include dev-type, link-mtu,

 tun-mtu, proto, ifconfig, comp-lzo, fragment, keydir, cipher, auth, keysize, se?

 cret, no-replay, tls-auth, key-method, tls-server and tls-client.

 This option requires that --disable-occ NOT be used.

 --port-share args

 Share OpenVPN TCP with another service

 Valid syntax:

 port-share host port [dir]

 When run in TCP server mode, share the OpenVPN port with another application, such

 as an HTTPS server. If OpenVPN senses a connection to its port which is using a

 non-OpenVPN protocol, it will proxy the connection to the server at host:port. Cur?

 rently only designed to work with HTTP/HTTPS, though it would be theoretically pos?

 sible to extend to other protocols such as ssh.

 dir specifies an optional directory where a temporary file with name N containing

 content C will be dynamically generated for each proxy connection, where N is the

 source IP:port of the client connection and C is the source IP:port of the connec?

 tion to the proxy receiver. This directory can be used as a dictionary by the proxy

 receiver to determine the origin of the connection. Each generated file will be au?

 tomatically deleted when the proxied connection is torn down.

 Not implemented on Windows.

 --push option

 Push a config file option back to the client for remote execution. Note that option

 must be enclosed in double quotes (""). The client must specify --pull in its con?

 fig file. The set of options which can be pushed is limited by both feasibility and Page 36/113

 security. Some options such as those which would execute scripts are banned, since

 they would effectively allow a compromised server to execute arbitrary code on the

 client. Other options such as TLS or MTU parameters cannot be pushed because the

 client needs to know them before the connection to the server can be initiated.

 This is a partial list of options which can currently be pushed: --route,

 --route-gateway, --route-delay, --redirect-gateway, --ip-win32, --dhcp-option,

 --inactive, --ping, --ping-exit, --ping-restart, --setenv, --auth-token, --per?

 sist-key, --persist-tun, --echo, --comp-lzo, --socket-flags, --sndbuf, --rcvbuf

 --push-remove opt

 Selectively remove all --push options matching "opt" from the option list for a

 client. opt is matched as a substring against the whole option string to-be-pushed

 to the client, so --push-remove route would remove all --push route ... and --push

 route-ipv6 ... statements, while --push-remove "route-ipv6 2001:" would only re?

 move IPv6 routes for 2001:... networks.

 --push-remove can only be used in a client-specific context, like in a

 --client-config-dir file, or --client-connect script or plugin -- similar to

 --push-reset, just more selective.

 NOTE: to change an option, --push-remove can be used to first remove the old value,

 and then add a new --push option with the new value.

 NOTE 2: due to implementation details, 'ifconfig' and 'ifconfig-ipv6' can only be

 removed with an exact match on the option (push-remove ifconfig), no substring

 matching and no matching on the IPv4/IPv6 address argument is possible.

 --push-reset

 Don't inherit the global push list for a specific client instance. Specify this

 option in a client-specific context such as with a --client-config-dir configura?

 tion file. This option will ignore --push options at the global config file level.

 NOTE: --push-reset is very thorough: it will remove almost all options from the

 list of to-be-pushed options. In many cases, some of these options will need to be

 re-configured afterwards - specifically, --topology subnet and --route-gateway will

 get lost and this will break client configs in many cases. Thus, for most pur?

 poses, --push-remove is better suited to selectively remove push options for indi?

 vidual clients.

 --server args Page 37/113

 A helper directive designed to simplify the configuration of OpenVPN's server mode.

 This directive will set up an OpenVPN server which will allocate addresses to

 clients out of the given network/netmask. The server itself will take the .1 ad?

 dress of the given network for use as the server-side endpoint of the local TUN/TAP

 interface. If the optional nopool flag is given, no dynamic IP address pool will

 prepared for VPN clients.

 Valid syntax:

 server network netmask [nopool]

 For example, --server 10.8.0.0 255.255.255.0 expands as follows:

 mode server

 tls-server

 push "topology [topology]"

 if dev tun AND (topology == net30 OR topology == p2p):

 ifconfig 10.8.0.1 10.8.0.2

 if !nopool:

 ifconfig-pool 10.8.0.4 10.8.0.251

 route 10.8.0.0 255.255.255.0

 if client-to-client:

 push "route 10.8.0.0 255.255.255.0"

 else if topology == net30:

 push "route 10.8.0.1"

 if dev tap OR (dev tun AND topology == subnet):

 ifconfig 10.8.0.1 255.255.255.0

 if !nopool:

 ifconfig-pool 10.8.0.2 10.8.0.253 255.255.255.0

 push "route-gateway 10.8.0.1"

 if route-gateway unset:

 route-gateway 10.8.0.2

 Don't use --server if you are ethernet bridging. Use --server-bridge instead.

 --server-bridge args

 A helper directive similar to --server which is designed to simplify the configura?

 tion of OpenVPN's server mode in ethernet bridging configurations.

 Valid syntaxes: Page 38/113

 server-bridge gateway netmask pool-start-IP pool-end-IP

 server-bridge [nogw]

 If --server-bridge is used without any parameters, it will enable a DHCP-proxy

 mode, where connecting OpenVPN clients will receive an IP address for their TAP

 adapter from the DHCP server running on the OpenVPN server-side LAN. Note that only

 clients that support the binding of a DHCP client with the TAP adapter (such as

 Windows) can support this mode. The optional nogw flag (advanced) indicates that

 gateway information should not be pushed to the client.

 To configure ethernet bridging, you must first use your OS's bridging capability to

 bridge the TAP interface with the ethernet NIC interface. For example, on Linux

 this is done with the brctl tool, and with Windows XP it is done in the Network

 Connections Panel by selecting the ethernet and TAP adapters and right-clicking on

 "Bridge Connections".

 Next you you must manually set the IP/netmask on the bridge interface. The gateway

 and netmask parameters to --server-bridge can be set to either the IP/netmask of

 the bridge interface, or the IP/netmask of the default gateway/router on the

 bridged subnet.

 Finally, set aside a IP range in the bridged subnet, denoted by pool-start-IP and

 pool-end-IP, for OpenVPN to allocate to connecting clients.

 For example, server-bridge 10.8.0.4 255.255.255.0 10.8.0.128 10.8.0.254 expands as

 follows:

 mode server

 tls-server

 ifconfig-pool 10.8.0.128 10.8.0.254 255.255.255.0

 push "route-gateway 10.8.0.4"

 In another example, --server-bridge (without parameters) expands as follows:

 mode server

 tls-server

 push "route-gateway dhcp"

 Or --server-bridge nogw expands as follows:

 mode server

 tls-server

 --server-ipv6 args Page 39/113

 Convenience-function to enable a number of IPv6 related options at once, namely

 --ifconfig-ipv6, --ifconfig-ipv6-pool and --push tun-ipv6.

 Valid syntax:

 server-ipv6 ipv6addr/bits

 Pushing of the --tun-ipv6 directive is done for older clients which require an ex?

 plicit --tun-ipv6 in their configuration.

 --stale-routes-check args

 Remove routes which haven't had activity for n seconds (i.e. the ageing time).

 This check is run every t seconds (i.e. check interval).

 Valid syntax:

 stale-routes-check n [t]

 If t is not present it defaults to n.

 This option helps to keep the dynamic routing table small. See also

 --max-routes-per-client

 --username-as-common-name

 Use the authenticated username as the common-name, rather than the common-name from

 the client certificate. Requires that some form of --auth-user-pass verification is

 in effect. As the replacement happens after --auth-user-pass verification, the ver?

 ification script or plugin will still receive the common-name from the certificate.

 The common_name environment variable passed to scripts and plugins invoked after

 authentication (e.g, client-connect script) and file names parsed in client-config

 directory will match the username.

 --verify-client-cert mode

 Specify whether the client is required to supply a valid certificate.

 Possible mode options are:

 none A client certificate is not required. the client needs to authenticate using

 username/password only. Be aware that using this directive is less secure

 than requiring certificates from all clients.

 If you use this directive, the entire responsibility of authentication will

 rest on your --auth-user-pass-verify script, so keep in mind that bugs in

 your script could potentially compromise the security of your VPN.

 --verify-client-cert none is functionally equivalent to

 --client-cert-not-required. Page 40/113

 optional

 A client may present a certificate but it is not required to do so. When

 using this directive, you should also use a --auth-user-pass-verify script

 to ensure that clients are authenticated using a certificate, a username and

 password, or possibly even both.

 Again, the entire responsibility of authentication will rest on your

 --auth-user-pass-verify script, so keep in mind that bugs in your script

 could potentially compromise the security of your VPN.

 require

 This is the default option. A client is required to present a certificate,

 otherwise VPN access is refused.

 If you don't use this directive (or use --verify-client-cert require) but you also

 specify an --auth-user-pass-verify script, then OpenVPN will perform double authen?

 tication. The client certificate verification AND the --auth-user-pass-verify

 script will need to succeed in order for a client to be authenticated and accepted

 onto the VPN.

 --vlan-tagging

 Server-only option. Turns the OpenVPN server instance into a switch that under?

 stands VLAN-tagging, based on IEEE 802.1Q.

 The server TAP device and each of the connecting clients is seen as a port of the

 switch. All client ports are in untagged mode and the server TAP device is

 VLAN-tagged, untagged or accepts both, depending on the --vlan-accept setting.

 Ethernet frames with a prepended 802.1Q tag are called "tagged". If the VLAN Iden?

 tifier (VID) field in such a tag is non-zero, the frame is called "VLAN-tagged". If

 the VID is zero, but the Priority Control Point (PCP) field is non-zero, the frame

 is called "prio-tagged". If there is no 802.1Q tag, the frame is "untagged".

 Using the --vlan-pvid v option once per client (see --client-config-dir), each port

 can be associated with a certain VID. Packets can only be forwarded between ports

 having the same VID. Therefore, clients with differing VIDs are completely sepa?

 rated from one-another, even if --client-to-client is activated.

 The packet filtering takes place in the OpenVPN server. Clients should not have any

 VLAN tagging configuration applied.

 The --vlan-tagging option is off by default. While turned off, OpenVPN accepts any Page 41/113

 Ethernet frame and does not perform any special processing for VLAN-tagged packets.

 This option can only be activated in --dev tap mode.

 --vlan-accept args

 Configure the VLAN tagging policy for the server TAP device.

 Valid syntax:

 vlan-accept all|tagged|untagged

 The following modes are available:

 tagged Admit only VLAN-tagged frames. Only VLAN-tagged packets are accepted, while

 untagged or priority-tagged packets are dropped when entering the server TAP

 device.

 untagged

 Admit only untagged and prio-tagged frames. VLAN-tagged packets are not ac?

 cepted, while untagged or priority-tagged packets entering the server TAP

 device are tagged with the value configured for the global --vlan-pvid set?

 ting.

 all (default)

 Admit all frames. All packets are admitted and then treated like untagged

 or tagged mode respectively.

 Note: Some vendors refer to switch ports running in tagged mode as "trunk ports"

 and switch ports running in untagged mode as "access ports".

 Packets forwarded from clients to the server are VLAN-tagged with the originating

 client's PVID, unless the VID matches the global --vlan-pvid, in which case the tag

 is removed.

 If no PVID is configured for a given client (see --vlan-pvid) packets are tagged

 with 1 by default.

 --vlan-pvid v

 Specifies which VLAN identifier a "port" is associated with. Only valid when

 --vlan-tagging is speficied.

 In the client context, the setting specifies which VLAN ID a client is associated

 with. In the global context, the VLAN ID of the server TAP device is set. The lat?

 ter only makes sense for --vlan-accept untagged and --vlan-accept all modes.

 Valid values for v go from 1 through to 4094. The global value defaults to 1. If no

 --vlan-pvid is specified in the client context, the global value is inherited. Page 42/113

 In some switch implementations, the PVID is also referred to as "Native VLAN".

ENCRYPTION OPTIONS

 SSL Library information

 --show-ciphers

 (Standalone) Show all cipher algorithms to use with the --cipher option.

 --show-digests

 (Standalone) Show all message digest algorithms to use with the --auth option.

 --show-tls

 (Standalone) Show all TLS ciphers supported by the crypto library. OpenVPN uses

 TLS to secure the control channel, over which the keys that are used to protect the

 actual VPN traffic are exchanged. The TLS ciphers will be sorted from highest pref?

 erence (most secure) to lowest.

 Be aware that whether a cipher suite in this list can actually work depends on the

 specific setup of both peers (e.g. both peers must support the cipher, and an ECDSA

 cipher suite will not work if you are using an RSA certificate, etc.).

 --show-engines

 (Standalone) Show currently available hardware-based crypto acceleration engines

 supported by the OpenSSL library.

 --show-groups

 (Standalone) Show all available elliptic curves/groups to use with the --ecdh-curve

 and tls-groups options.

 Generating key material

 --genkey args

 (Standalone) Generate a key to be used of the type keytype. if keyfile is left out

 or empty the key will be output on stdout. See the following sections for the dif?

 ferent keytypes.

 Valid syntax:

 --genkey keytype keyfile

 Valid keytype arguments are:

 secret Standard OpenVPN shared secret keys

 tls-crypt Alias for secret

 tls-auth Alias for secret

 auth-token Key used for --auth-gen-token-key Page 43/113

 tls-crypt-v2-server TLS Crypt v2 server key

 tls-crypt-v2-client TLS Crypt v2 client key

 Examples:

 $ openvpn --genkey secret shared.key

 $ openvpn --genkey tls-crypt shared.key

 $ openvpn --genkey tls-auth shared.key

 $ openvpn --genkey tls-crypt-v2-server v2crypt-server.key

 $ openvpn --tls-crypt-v2 v2crypt-server.key --genkey tls-crypt-v2-client v2crypt-client-1.key

 ? Generating Shared Secret Keys Generate a shared secret, for use with the --se?

 cret, --tls-auth or --tls-crypt options.

 Syntax:

 $ openvpn --genkey secret|tls-crypt|tls-auth keyfile

 The key is saved in keyfile. All three variants (--secret, tls-crypt and

 tls-auth) generate the same type of key. The aliases are added for convenience.

 If using this for --secret, this file must be shared with the peer over a pre-ex?

 isting secure channel such as scp(1).

 ? Generating TLS Crypt v2 Server key Generate a --tls-crypt-v2 key to be used by an

 OpenVPN server. The key is stored in keyfile.

 Syntax:

 --genkey tls-crypt-v2-server keyfile

 ? Generating TLS Crypt v2 Client key Generate a --tls-crypt-v2 key to be used by

 OpenVPN clients. The key is stored in keyfile.

 Syntax

 --genkey tls-crypt-v2-client keyfile [metadata]

 If supplied, include the supplied metadata in the wrapped client key. This meta?

 data must be supplied in base64-encoded form. The metadata must be at most 735

 bytes long (980 bytes in base64).

 If no metadata is supplied, OpenVPN will use a 64-bit unix timestamp representing

 the current time in UTC, encoded in network order, as metadata for the generated

 key.

 A tls-crypt-v2 client key is wrapped using a server key. To generate a client

 key, the user must therefore supply the server key using the --tls-crypt-v2 op?

 tion. Page 44/113

 Servers can use --tls-crypt-v2-verify to specify a metadata verification command.

 ? Generate Authentication Token key Generate a new secret that can be used with

 --auth-gen-token-secret

 Syntax:

 --genkey auth-token [keyfile]

 Note: This file should be kept secret to the server as anyone that has access to

 this file will be able to generate auth tokens that the OpenVPN server

 will accept as valid.

 Data Channel Renegotiation

 When running OpenVPN in client/server mode, the data channel will use a separate ephemeral

 encryption key which is rotated at regular intervals.

 --reneg-bytes n

 Renegotiate data channel key after n bytes sent or received (disabled by default

 with an exception, see below). OpenVPN allows the lifetime of a key to be expressed

 as a number of bytes encrypted/decrypted, a number of packets, or a number of sec?

 onds. A key renegotiation will be forced if any of these three criteria are met by

 either peer.

 If using ciphers with cipher block sizes less than 128-bits, --reneg-bytes is set

 to 64MB by default, unless it is explicitly disabled by setting the value to 0, but

 this is HIGHLY DISCOURAGED as this is designed to add some protection against the

 SWEET32 attack vector. For more information see the --cipher option.

 --reneg-pkts n

 Renegotiate data channel key after n packets sent and received (disabled by de?

 fault).

 --reneg-sec args

 Renegotiate data channel key after at most max seconds (default 3600) and at least

 min seconds (default is 90% of max for servers, and equal to max for clients).

 reneg-sec max [min]

 The effective --reneg-sec value used is per session pseudo-uniform-randomized be?

 tween min and max.

 With the default value of 3600 this results in an effective per session value in

 the range of 3240 .. 3600 seconds for servers, or just 3600 for clients.

 When using dual-factor authentication, note that this default value may cause the Page 45/113

 end user to be challenged to reauthorize once per hour.

 Also, keep in mind that this option can be used on both the client and server, and

 whichever uses the lower value will be the one to trigger the renegotiation. A com?

 mon mistake is to set --reneg-sec to a higher value on either the client or server,

 while the other side of the connection is still using the default value of 3600

 seconds, meaning that the renegotiation will still occur once per 3600 seconds. The

 solution is to increase --reneg-sec on both the client and server, or set it to 0

 on one side of the connection (to disable), and to your chosen value on the other

 side.

 TLS Mode Options

 TLS mode is the most powerful crypto mode of OpenVPN in both security and flexibility. TLS

 mode works by establishing control and data channels which are multiplexed over a single

 TCP/UDP port. OpenVPN initiates a TLS session over the control channel and uses it to ex?

 change cipher and HMAC keys to protect the data channel. TLS mode uses a robust reliabil?

 ity layer over the UDP connection for all control channel communication, while the data

 channel, over which encrypted tunnel data passes, is forwarded without any mediation. The

 result is the best of both worlds: a fast data channel that forwards over UDP with only

 the overhead of encrypt, decrypt, and HMAC functions, and a control channel that provides

 all of the security features of TLS, including certificate-based authentication and Diffie

 Hellman forward secrecy.

 To use TLS mode, each peer that runs OpenVPN should have its own local certificate/key

 pair (--cert and --key), signed by the root certificate which is specified in --ca.

 When two OpenVPN peers connect, each presents its local certificate to the other. Each

 peer will then check that its partner peer presented a certificate which was signed by the

 master root certificate as specified in --ca.

 If that check on both peers succeeds, then the TLS negotiation will succeed, both OpenVPN

 peers will exchange temporary session keys, and the tunnel will begin passing data.

 The OpenVPN project provides a set of scripts for managing RSA certificates and keys:

 https://github.com/OpenVPN/easy-rsa

 --askpass file

 Get certificate password from console or file before we daemonize.

 Valid syntaxes:

 askpass Page 46/113

 askpass file

 For the extremely security conscious, it is possible to protect your private key

 with a password. Of course this means that every time the OpenVPN daemon is started

 you must be there to type the password. The --askpass option allows you to start

 OpenVPN from the command line. It will query you for a password before it daemo?

 nizes. To protect a private key with a password you should omit the -nodes option

 when you use the openssl command line tool to manage certificates and private keys.

 If file is specified, read the password from the first line of file. Keep in mind

 that storing your password in a file to a certain extent invalidates the extra se?

 curity provided by using an encrypted key.

 --ca file

 Certificate authority (CA) file in .pem format, also referred to as the root cer?

 tificate. This file can have multiple certificates in .pem format, concatenated to?

 gether. You can construct your own certificate authority certificate and private

 key by using a command such as:

 openssl req -nodes -new -x509 -keyout ca.key -out ca.crt

 Then edit your openssl.cnf file and edit the certificate variable to point to your

 new root certificate ca.crt.

 For testing purposes only, the OpenVPN distribution includes a sample CA certifi?

 cate (ca.crt). Of course you should never use the test certificates and test keys

 distributed with OpenVPN in a production environment, since by virtue of the fact

 that they are distributed with OpenVPN, they are totally insecure.

 --capath dir

 Directory containing trusted certificates (CAs and CRLs). Not available with mbed

 TLS.

 CAs in the capath directory are expected to be named <hash>.<n>. CRLs are expected

 to be named <hash>.r<n>. See the -CApath option of openssl verify, and the -hash

 option of openssl x509, openssl crl and X509_LOOKUP_hash_dir()(3) for more informa?

 tion.

 Similar to the --crl-verify option, CRLs are not mandatory - OpenVPN will log the

 usual warning in the logs if the relevant CRL is missing, but the connection will

 be allowed.

 --cert file Page 47/113

 Local peer's signed certificate in .pem format -- must be signed by a certificate

 authority whose certificate is in --ca file. Each peer in an OpenVPN link running

 in TLS mode should have its own certificate and private key file. In addition, each

 certificate should have been signed by the key of a certificate authority whose

 public key resides in the --ca certificate authority file. You can easily make your

 own certificate authority (see above) or pay money to use a commercial service such

 as thawte.com (in which case you will be helping to finance the world's second

 space tourist :). To generate a certificate, you can use a command such as:

 openssl req -nodes -new -keyout mycert.key -out mycert.csr

 If your certificate authority private key lives on another machine, copy the cer?

 tificate signing request (mycert.csr) to this other machine (this can be done over

 an insecure channel such as email). Now sign the certificate with a command such

 as:

 openssl ca -out mycert.crt -in mycert.csr

 Now copy the certificate (mycert.crt) back to the peer which initially generated

 the .csr file (this can be over a public medium). Note that the openssl ca command

 reads the location of the certificate authority key from its configuration file

 such as /usr/share/ssl/openssl.cnf -- note also that for certificate authority

 functions, you must set up the files index.txt (may be empty) and serial (initial?

 ize to 01).

 --crl-verify args

 Check peer certificate against a Certificate Revocation List.

 Valid syntax:

 crl-verify file/directory flag

 Examples:

 crl-verify crl-file.pem

 crl-verify /etc/openvpn/crls dir

 A CRL (certificate revocation list) is used when a particular key is compromised

 but when the overall PKI is still intact.

 Suppose you had a PKI consisting of a CA, root certificate, and a number of client

 certificates. Suppose a laptop computer containing a client key and certificate was

 stolen. By adding the stolen certificate to the CRL file, you could reject any con?

 nection which attempts to use it, while preserving the overall integrity of the Page 48/113

 PKI.

 The only time when it would be necessary to rebuild the entire PKI from scratch

 would be if the root certificate key itself was compromised.

 The option is not mandatory - if the relevant CRL is missing, OpenVPN will log a

 warning in the logs - e.g.

 VERIFY WARNING: depth=0, unable to get certificate CRL

 but the connection will be allowed. If the optional dir flag is specified, enable

 a different mode where the crl-verify is pointed at a directory containing files

 named as revoked serial numbers (the files may be empty, the contents are never

 read). If a client requests a connection, where the client certificate serial num?

 ber (decimal string) is the name of a file present in the directory, it will be re?

 jected.

 Note: As the crl file (or directory) is read every time a peer connects, if you

 are dropping root privileges with --user, make sure that this user has suf?

 ficient privileges to read the file.

 --dh file

 File containing Diffie Hellman parameters in .pem format (required for --tls-server

 only).

 Set file to none to disable Diffie Hellman key exchange (and use ECDH only). Note

 that this requires peers to be using an SSL library that supports ECDH TLS cipher

 suites (e.g. OpenSSL 1.0.1+, or mbed TLS 2.0+).

 Use openssl dhparam -out dh2048.pem 2048 to generate 2048-bit DH parameters. Diffie

 Hellman parameters may be considered public.

 --ecdh-curve name

 Specify the curve to use for elliptic curve Diffie Hellman. Available curves can be

 listed with --show-curves. The specified curve will only be used for ECDH TLS-ci?

 phers.

 This option is not supported in mbed TLS builds of OpenVPN.

 --extra-certs file

 Specify a file containing one or more PEM certs (concatenated together) that com?

 plete the local certificate chain.

 This option is useful for "split" CAs, where the CA for server certs is different

 than the CA for client certs. Putting certs in this file allows them to be used to Page 49/113

 complete the local certificate chain without trusting them to verify the peer-sub?

 mitted certificate, as would be the case if the certs were placed in the ca file.

 --hand-window n

 Handshake Window -- the TLS-based key exchange must finalize within n seconds of

 handshake initiation by any peer (default 60 seconds). If the handshake fails we

 will attempt to reset our connection with our peer and try again. Even in the event

 of handshake failure we will still use our expiring key for up to --tran-window

 seconds to maintain continuity of transmission of tunnel data.

 --key file

 Local peer's private key in .pem format. Use the private key which was generated

 when you built your peer's certificate (see --cert file above).

 --pkcs12 file

 Specify a PKCS #12 file containing local private key, local certificate, and root

 CA certificate. This option can be used instead of --ca, --cert, and --key. Not

 available with mbed TLS.

 --remote-cert-eku oid

 Require that peer certificate was signed with an explicit extended key usage.

 This is a useful security option for clients, to ensure that the host they connect

 to is a designated server.

 The extended key usage should be encoded in oid notation, or OpenSSL symbolic rep?

 resentation.

 --remote-cert-ku key-usage

 Require that peer certificate was signed with an explicit key-usage.

 If present in the certificate, the keyUsage value is validated by the TLS library

 during the TLS handshake. Specifying this option without arguments requires this

 extension to be present (so the TLS library will verify it).

 If key-usage is a list of usage bits, the keyUsage field must have at least the

 same bits set as the bits in one of the values supplied in the key-usage list.

 The key-usage values in the list must be encoded in hex, e.g.

 remote-cert-ku a0

 --remote-cert-tls type

 Require that peer certificate was signed with an explicit key usage and extended

 key usage based on RFC3280 TLS rules. Page 50/113

 Valid syntaxes:

 remote-cert-tls server

 remote-cert-tls client

 This is a useful security option for clients, to ensure that the host they connect

 to is a designated server. Or the other way around; for a server to verify that

 only hosts with a client certificate can connect.

 The --remote-cert-tls client option is equivalent to

 remote-cert-ku

 remote-cert-eku "TLS Web Client Authentication"

 The --remote-cert-tls server option is equivalent to

 remote-cert-ku

 remote-cert-eku "TLS Web Server Authentication"

 This is an important security precaution to protect against a man-in-the-middle at?

 tack where an authorized client attempts to connect to another client by imperson?

 ating the server. The attack is easily prevented by having clients verify the

 server certificate using any one of --remote-cert-tls, --verify-x509-name, or

 --tls-verify.

 --tls-auth args

 Add an additional layer of HMAC authentication on top of the TLS control channel to

 mitigate DoS attacks and attacks on the TLS stack.

 Valid syntaxes:

 tls-auth file

 tls-auth file 0

 tls-auth file 1

 In a nutshell, --tls-auth enables a kind of "HMAC firewall" on OpenVPN's TCP/UDP

 port, where TLS control channel packets bearing an incorrect HMAC signature can be

 dropped immediately without response.

 file (required) is a file in OpenVPN static key format which can be generated by

 --genkey.

 Older versions (up to OpenVPN 2.3) supported a freeform passphrase file. This is

 no longer supported in newer versions (v2.4+).

 See the --secret option for more information on the optional direction parameter.

 --tls-auth is recommended when you are running OpenVPN in a mode where it is lis? Page 51/113

 tening for packets from any IP address, such as when --remote is not specified, or

 --remote is specified with --float.

 The rationale for this feature is as follows. TLS requires a multi-packet exchange

 before it is able to authenticate a peer. During this time before authentication,

 OpenVPN is allocating resources (memory and CPU) to this potential peer. The poten?

 tial peer is also exposing many parts of OpenVPN and the OpenSSL library to the

 packets it is sending. Most successful network attacks today seek to either exploit

 bugs in programs (such as buffer overflow attacks) or force a program to consume so

 many resources that it becomes unusable. Of course the first line of defense is al?

 ways to produce clean, well-audited code. OpenVPN has been written with buffer

 overflow attack prevention as a top priority. But as history has shown, many of the

 most widely used network applications have, from time to time, fallen to buffer

 overflow attacks.

 So as a second line of defense, OpenVPN offers this special layer of authentication

 on top of the TLS control channel so that every packet on the control channel is

 authenticated by an HMAC signature and a unique ID for replay protection. This sig?

 nature will also help protect against DoS (Denial of Service) attacks. An important

 rule of thumb in reducing vulnerability to DoS attacks is to minimize the amount of

 resources a potential, but as yet unauthenticated, client is able to consume.

 --tls-auth does this by signing every TLS control channel packet with an HMAC sig?

 nature, including packets which are sent before the TLS level has had a chance to

 authenticate the peer. The result is that packets without the correct signature can

 be dropped immediately upon reception, before they have a chance to consume addi?

 tional system resources such as by initiating a TLS handshake. --tls-auth can be

 strengthened by adding the --replay-persist option which will keep OpenVPN's replay

 protection state in a file so that it is not lost across restarts.

 It should be emphasized that this feature is optional and that the key file used

 with --tls-auth gives a peer nothing more than the power to initiate a TLS hand?

 shake. It is not used to encrypt or authenticate any tunnel data.

 Use --tls-crypt instead if you want to use the key file to not only authenticate,

 but also encrypt the TLS control channel.

 --tls-groups list

 A list of allowable groups/curves in order of preference. Page 52/113

 Set the allowed elliptic curves/groups for the TLS session. These groups are al?

 lowed to be used in signatures and key exchange.

 mbedTLS currently allows all known curves per default.

 OpenSSL 1.1+ restricts the list per default to

 "X25519:secp256r1:X448:secp521r1:secp384r1".

 If you use certificates that use non-standard curves, you might need to add them

 here. If you do not force the ecdh curve by using --ecdh-curve, the groups for ecdh

 will also be picked from this list.

 OpenVPN maps the curve name secp256r1 to prime256v1 to allow specifying the same

 tls-groups option for mbedTLS and OpenSSL.

 Warning: this option not only affects elliptic curve certificates but also the key

 exchange in TLS 1.3 and using this option improperly will disable TLS 1.3.

 --tls-cert-profile profile

 Set the allowed cryptographic algorithms for certificates according to profile.

 The following profiles are supported:

 insecure

 Identical for mbed TLS to legacy

 legacy (default)

 SHA1 and newer, RSA 2048-bit+, any elliptic curve.

 preferred

 SHA2 and newer, RSA 2048-bit+, any elliptic curve.

 suiteb SHA256/SHA384, ECDSA with P-256 or P-384.

 This option is only fully supported for mbed TLS builds. OpenSSL builds use the

 following approximation:

 insecure

 sets "security level 0"

 legacy (default)

 sets "security level 1"

 preferred

 sets "security level 2"

 suiteb sets "security level 3" and --tls-cipher "SUITEB128".

 OpenVPN will migrate to 'preferred' as default in the future. Please ensure that

 your keys already comply. Page 53/113

 WARNING: --tls-ciphers, --tls-ciphersuites and tls-groups

 These options are expert features, which - if used correctly - can improve the se?

 curity of your VPN connection. But it is also easy to unwittingly use them to care?

 fully align a gun with your foot, or just break your connection. Use with care!

 --tls-cipher l

 A list l of allowable TLS ciphers delimited by a colon (":").

 These setting can be used to ensure that certain cipher suites are used (or not

 used) for the TLS connection. OpenVPN uses TLS to secure the control channel, over

 which the keys that are used to protect the actual VPN traffic are exchanged.

 The supplied list of ciphers is (after potential OpenSSL/IANA name translation)

 simply supplied to the crypto library. Please see the OpenSSL and/or mbed TLS docu?

 mentation for details on the cipher list interpretation.

 For OpenSSL, the --tls-cipher is used for TLS 1.2 and below.

 Use --show-tls to see a list of TLS ciphers supported by your crypto library.

 The default for --tls-cipher is to use mbed TLS's default cipher list when using

 mbed TLS or DEFAULT:!EXP:!LOW:!MEDIUM:!kDH:!kECDH:!DSS:!PSK:!SRP:!kRSA when using

 OpenSSL.

 --tls-ciphersuites l

 Same as --tls-cipher but for TLS 1.3 and up. mbed TLS has no TLS 1.3 support yet

 and only the --tls-cipher setting is used.

 The default for --tls-ciphersuites is to use the crypto library's default.

 --tls-client

 Enable TLS and assume client role during TLS handshake.

 --tls-crypt keyfile

 Encrypt and authenticate all control channel packets with the key from keyfile.

 (See --tls-auth for more background.)

 Encrypting (and authenticating) control channel packets:

 ? provides more privacy by hiding the certificate used for the TLS connection,

 ? makes it harder to identify OpenVPN traffic as such,

 ? provides "poor-man's" post-quantum security, against attackers who will never

 know the pre-shared key (i.e. no forward secrecy).

 In contrast to --tls-auth, --tls-crypt does not require the user to set --key-di?

 rection. Page 54/113

 Security Considerations

 All peers use the same --tls-crypt pre-shared group key to authenticate and encrypt

 control channel messages. To ensure that IV collisions remain unlikely, this key

 should not be used to encrypt more than 2^48 client-to-server or 2^48

 server-to-client control channel messages. A typical initial negotiation is about

 10 packets in each direction. Assuming both initial negotiation and renegotiations

 are at most 2^16 (65536) packets (to be conservative), and (re)negotiations happen

 each minute for each user (24/7), this limits the tls-crypt key lifetime to 8171

 years divided by the number of users. So a setup with 1000 users should rotate the

 key at least once each eight years. (And a setup with 8000 users each year.)

 If IV collisions were to occur, this could result in the security of --tls-crypt

 degrading to the same security as using --tls-auth. That is, the control channel

 still benefits from the extra protection against active man-in-the-middle-attacks

 and DoS attacks, but may no longer offer extra privacy and post-quantum security on

 top of what TLS itself offers.

 For large setups or setups where clients are not trusted, consider using

 --tls-crypt-v2 instead. That uses per-client unique keys, and thereby improves the

 bounds to 'rotate a client key at least once per 8000 years'.

 --tls-crypt-v2 keyfile

 Use client-specific tls-crypt keys.

 For clients, keyfile is a client-specific tls-crypt key. Such a key can be gener?

 ated using the --genkey tls-crypt-v2-client option.

 For servers, keyfile is used to unwrap client-specific keys supplied by the client

 during connection setup. This key must be the same as the key used to generate the

 client-specific key (see --genkey tls-crypt-v2-client).

 On servers, this option can be used together with the --tls-auth or --tls-crypt op?

 tion. In that case, the server will detect whether the client is using client-spe?

 cific keys, and automatically select the right mode.

 --tls-crypt-v2-verify cmd

 Run command cmd to verify the metadata of the client-specific tls-crypt-v2 key of a

 connecting client. This allows server administrators to reject client connections,

 before exposing the TLS stack (including the notoriously dangerous X.509 and ASN.1

 stacks) to the connecting client. Page 55/113

 OpenVPN supplies the following environment variables to the command:

 ? script_type is set to tls-crypt-v2-verify

 ? metadata_type is set to 0 if the metadata was user supplied, or 1 if it's a

 64-bit unix timestamp representing the key creation time.

 ? metadata_file contains the filename of a temporary file that contains the client

 metadata.

 The command can reject the connection by exiting with a non-zero exit code.

 --tls-exit

 Exit on TLS negotiation failure.

 --tls-export-cert directory

 Store the certificates the clients use upon connection to this directory. This will

 be done before --tls-verify is called. The certificates will use a temporary name

 and will be deleted when the tls-verify script returns. The file name used for the

 certificate is available via the peer_cert environment variable.

 --tls-server

 Enable TLS and assume server role during TLS handshake. Note that OpenVPN is de?

 signed as a peer-to-peer application. The designation of client or server is only

 for the purpose of negotiating the TLS control channel.

 --tls-timeout n

 Packet retransmit timeout on TLS control channel if no acknowledgment from remote

 within n seconds (default 2). When OpenVPN sends a control packet to its peer, it

 will expect to receive an acknowledgement within n seconds or it will retransmit

 the packet, subject to a TCP-like exponential backoff algorithm. This parameter

 only applies to control channel packets. Data channel packets (which carry en?

 crypted tunnel data) are never acknowledged, sequenced, or retransmitted by OpenVPN

 because the higher level network protocols running on top of the tunnel such as TCP

 expect this role to be left to them.

 --tls-version-min args

 Sets the minimum TLS version we will accept from the peer (default is "1.0").

 Valid syntax:

 tls-version-min version ['or-highest']

 Examples for version include 1.0, 1.1, or 1.2. If or-highest is specified and ver?

 sion is not recognized, we will only accept the highest TLS version supported by Page 56/113

 the local SSL implementation.

 --tls-version-max version

 Set the maximum TLS version we will use (default is the highest version supported).

 Examples for version include 1.0, 1.1, or 1.2.

 --verify-hash args

 Specify SHA1 or SHA256 fingerprint for level-1 cert.

 Valid syntax:

 verify-hash hash [algo]

 The level-1 cert is the CA (or intermediate cert) that signs the leaf certificate,

 and is one removed from the leaf certificate in the direction of the root. When ac?

 cepting a connection from a peer, the level-1 cert fingerprint must match hash or

 certificate verification will fail. Hash is specified as XX:XX:... For example:

 AD:B0:95:D8:09:C8:36:45:12:A9:89:C8:90:09:CB:13:72:A6:AD:16

 The algo flag can be either SHA1 or SHA256. If not provided, it defaults to SHA1.

 --verify-x509-name args

 Accept connections only if a host's X.509 name is equal to name. The remote host

 must also pass all other tests of verification.

 Valid syntax:

 verify-x509 name type

 Which X.509 name is compared to name depends on the setting of type. type can be

 subject to match the complete subject DN (default), name to match a subject RDN or

 name-prefix to match a subject RDN prefix. Which RDN is verified as name depends on

 the --x509-username-field option. But it defaults to the common name (CN), e.g. a

 certificate with a subject DN

 C=KG, ST=NA, L=Bishkek, CN=Server-1

 would be matched by:

 verify-x509-name 'C=KG, ST=NA, L=Bishkek, CN=Server-1'

 verify-x509-name Server-1 name

 verify-x509-name Server- name-prefix

 The last example is useful if you want a client to only accept connections to

 Server-1, Server-2, etc.

 --verify-x509-name is a useful replacement for the --tls-verify option to verify

 the remote host, because --verify-x509-name works in a --chroot environment without Page 57/113

 any dependencies.

 Using a name prefix is a useful alternative to managing a CRL (Certificate Revoca?

 tion List) on the client, since it allows the client to refuse all certificates ex?

 cept for those associated with designated servers.

 NOTE: Test against a name prefix only when you are using OpenVPN with a custom CA

 certificate that is under your control. Never use this option with type

 name-prefix when your client certificates are signed by a third party, such

 as a commercial web CA.

 --x509-track attribute

 Save peer X509 attribute value in environment for use by plugins and management in?

 terface. Prepend a + to attribute to save values from full cert chain. Values will

 be encoded as X509_<depth>_<attribute>=<value>. Multiple --x509-track options can

 be defined to track multiple attributes.

 --x509-username-field args

 Field in the X.509 certificate subject to be used as the username (default CN).

 Valid syntax:

 x509-username-field [ext:]fieldname

 Typically, this option is specified with fieldname as either of the following:

 x509-username-field emailAddress

 x509-username-field ext:subjectAltName

 The first example uses the value of the emailAddress attribute in the certificate's

 Subject field as the username. The second example uses the ext: prefix to signify

 that the X.509 extension fieldname subjectAltName be searched for an rfc822Name

 (email) field to be used as the username. In cases where there are multiple email

 addresses in ext:fieldname, the last occurrence is chosen.

 When this option is used, the --verify-x509-name option will match against the cho?

 sen fieldname instead of the Common Name.

 Only the subjectAltName and issuerAltName X.509 extensions are supported.

 Please note: This option has a feature which will convert an all-lowercase field?

 name to uppercase characters, e.g., ou -> OU. A mixed-case fieldname or one having

 the ext: prefix will be left as-is. This automatic upcasing feature is deprecated

 and will be removed in a future release.

 PKCS#11 / SmartCard options Page 58/113

 --pkcs11-cert-private args

 Set if access to certificate object should be performed after login. Every

 provider has its own setting.

 Valid syntaxes:

 pkcs11-cert-private 0

 pkcs11-cert-private 1

 --pkcs11-id name

 Specify the serialized certificate id to be used. The id can be gotten by the

 standalone --show-pkcs11-ids option.

 --pkcs11-id-management

 Acquire PKCS#11 id from management interface. In this case a NEED-STR

 'pkcs11-id-request' real-time message will be triggered, application may use

 pkcs11-id-count command to retrieve available number of certificates, and

 pkcs11-id-get command to retrieve certificate id and certificate body.

 --pkcs11-pin-cache seconds

 Specify how many seconds the PIN can be cached, the default is until the token is

 removed.

 --pkcs11-private-mode mode

 Specify which method to use in order to perform private key operations. A differ?

 ent mode can be specified for each provider. Mode is encoded as hex number, and can

 be a mask one of the following:

 0 (default) Try to determine automatically.

 1 Use sign.

 2 Use sign recover.

 4 Use decrypt.

 8 Use unwrap.

 --pkcs11-protected-authentication args

 Use PKCS#11 protected authentication path, useful for biometric and external keypad

 devices. Every provider has its own setting.

 Valid syntaxes:

 pkcs11-protected-authentication 0

 pkcs11-protected-authentication 1

 --pkcs11-providers provider Page 59/113

 Specify an RSA Security Inc. PKCS #11 Cryptographic Token Interface (Cryptoki)

 providers to load. This option can be used instead of --cert, --key and --pkcs12.

 If p11-kit is present on the system, its p11-kit-proxy.so module will be loaded by

 default if either the --pkcs11-id or --pkcs11-id-management options are specified

 without --pkcs11-provider being given.

 --show-pkcs11-ids args

 (Standalone) Show PKCS#11 token object list.

 Valid syntax:

 show-pkcs11 [provider] [cert_private]

 Specify cert_private as 1 if certificates are stored as private objects.

 If p11-kit is present on the system, the provider argument is optional; if omitted

 the default p11-kit-proxy.so module will be queried.

 --verb option can be used BEFORE this option to produce debugging information.

DATA CHANNEL CIPHER NEGOTIATION

 OpenVPN 2.4 and higher have the capability to negotiate the data cipher that is used to

 encrypt data packets. This section describes the mechanism in more detail and the differ?

 ent backwards compatibility mechanism with older server and clients.

 OpenVPN 2.5 and higher behaviour

 When both client and server are at least running OpenVPN 2.5, that the order of the ci?

 phers of the server's --data-ciphers is used to pick the the data cipher. That means that

 the first cipher in that list that is also in the client's --data-ciphers list is chosen.

 If no common cipher is found the client is rejected with a AUTH_FAILED message (as seen in

 client log):

 AUTH: Received control message: AUTH_FAILED,Data channel cipher negotiation failed (no

 shared cipher)

 OpenVPN 2.5 will only allow the ciphers specified in --data-ciphers. To ensure backwards

 compatibility also if a cipher is specified using the --cipher option it is automatically

 added to this list. If both options are unset the default is AES-256-GCM:AES-128-GCM.

 OpenVPN 2.4 clients

 The negotiation support in OpenVPN 2.4 was the first iteration of the implementation and

 still had some quirks. Its main goal was "upgrade to AES-256-GCM when possible". An Open?

 VPN 2.4 client that is built against a crypto library that supports AES in GCM mode and

 does not have --ncp-disable will always announce support for AES-256-GCM and AES-128-GCM Page 60/113

 to a server by sending IV_NCP=2.

 This only causes a problem if --ncp-ciphers option has been changed from the default of

 AES-256-GCM:AES-128-GCM to a value that does not include these two ciphers. When a OpenVPN

 servers try to use AES-256-GCM or AES-128-GCM the connection will then fail. It is there?

 fore recommended to always have the AES-256-GCM and AES-128-GCM ciphers to the --ncp-ci?

 phers options to avoid this behaviour.

 OpenVPN 3 clients

 Clients based on the OpenVPN 3.x library (https://github.com/openvpn/openvpn3/) do not

 have a configurable --ncp-ciphers or --data-ciphers option. Instead these clients will an?

 nounce support for all their supported AEAD ciphers (AES-256-GCM, AES-128-GCM and in newer

 versions also Chacha20-Poly1305).

 To support OpenVPN 3.x based clients at least one of these ciphers needs to be included in

 the server's --data-ciphers option.

 OpenVPN 2.3 and older clients (and clients with --ncp-disable)

 When a client without cipher negotiation support connects to a server the cipher specified

 with the --cipher option in the client configuration must be included in the --data-ci?

 phers option of the server to allow the client to connect. Otherwise the client will be

 sent the AUTH_FAILED message that indicates no shared cipher.

 If the client is 2.3 or older and has been configured with the --enable-small ./configure

 argument, using data-ciphers-fallback cipher in the server config file with the explicit

 cipher used by the client is necessary.

 OpenVPN 2.4 server

 When a client indicates support for AES-128-GCM and AES-256-GCM (with IV_NCP=2) an OpenVPN

 2.4 server will send the first cipher of the --ncp-ciphers to the OpenVPN client regard?

 less of what the cipher is. To emulate the behaviour of an OpenVPN 2.4 client as close as

 possible and have compatibility to a setup that depends on this quirk, adding AES-128-GCM

 and AES-256-GCM to the client's --data-ciphers option is required. OpenVPN 2.5+ will only

 announce the IV_NCP=2 flag if those ciphers are present.

 OpenVPN 2.3 and older servers (and servers with --ncp-disable)

 The cipher used by the server must be included in --data-ciphers to allow the client con?

 necting to a server without cipher negotiation support. (For compatibility OpenVPN 2.5

 will also accept the cipher set with --cipher)

 If the server is 2.3 or older and has been configured with the --enable-small ./configure Page 61/113

 argument, adding data-ciphers-fallback cipher to the client config with the explicit ci?

 pher used by the server is necessary.

 Blowfish in CBC mode (BF-CBC) deprecation

 The --cipher option defaulted to BF-CBC in OpenVPN 2.4 and older version. The default was

 never changed to ensure backwards compatibility. In OpenVPN 2.5 this behaviour has now

 been changed so that if the --cipher is not explicitly set it does not allow the weak

 BF-CBC cipher any more and needs to explicitly added as --cipher BFC-CBC or added to

 --data-ciphers.

 We strongly recommend to switching away from BF-CBC to a more secure cipher as soon as

 possible instead.

NETWORK CONFIGURATION

 OpenVPN consists of two sides of network configuration. One side is the link between the

 local and remote side, the other side is the virtual network adapter (tun/tap device).

 Link Options

 This link options section covers options related to the connection between the local and

 the remote host.

 --bind keywords

 Bind to local address and port. This is the default unless any of --proto

 tcp-client , --http-proxy or --socks-proxy are used.

 If the optional ipv6only keyword is present OpenVPN will bind only to IPv6 (as op?

 posed to IPv6 and IPv4) when a IPv6 socket is opened.

 --float

 Allow remote peer to change its IP address and/or port number, such as due to DHCP

 (this is the default if --remote is not used). --float when specified with --re?

 mote allows an OpenVPN session to initially connect to a peer at a known address,

 however if packets arrive from a new address and pass all authentication tests, the

 new address will take control of the session. This is useful when you are connect?

 ing to a peer which holds a dynamic address such as a dial-in user or DHCP client.

 Essentially, --float tells OpenVPN to accept authenticated packets from any ad?

 dress, not only the address which was specified in the --remote option.

 --fragment max

 Enable internal datagram fragmentation so that no UDP datagrams are sent which are

 larger than max bytes. Page 62/113

 The max parameter is interpreted in the same way as the --link-mtu parameter, i.e.

 the UDP packet size after encapsulation overhead has been added in, but not includ?

 ing the UDP header itself.

 The --fragment option only makes sense when you are using the UDP protocol (--proto

 udp).

 --fragment adds 4 bytes of overhead per datagram.

 See the --mssfix option below for an important related option to --fragment.

 It should also be noted that this option is not meant to replace UDP fragmentation

 at the IP stack level. It is only meant as a last resort when path MTU discovery is

 broken. Using this option is less efficient than fixing path MTU discovery for your

 IP link and using native IP fragmentation instead.

 Having said that, there are circumstances where using OpenVPN's internal fragmenta?

 tion capability may be your only option, such as tunneling a UDP multicast stream

 which requires fragmentation.

 --keepalive args

 A helper directive designed to simplify the expression of --ping and

 --ping-restart.

 Valid syntax:

 keepalive interval timeout

 This option can be used on both client and server side, but it is enough to add

 this on the server side as it will push appropriate --ping and --ping-restart op?

 tions to the client. If used on both server and client, the values pushed from

 server will override the client local values.

 The timeout argument will be twice as long on the server side. This ensures that a

 timeout is detected on client side before the server side drops the connection.

 For example, --keepalive 10 60 expands as follows:

 if mode server:

 ping 10 # Argument: interval

 ping-restart 120 # Argument: timeout*2

 push "ping 10" # Argument: interval

 push "ping-restart 60" # Argument: timeout

 else

 ping 10 # Argument: interval Page 63/113

 ping-restart 60 # Argument: timeout

 --link-mtu n

 Sets an upper bound on the size of UDP packets which are sent between OpenVPN

 peers. It's best not to set this parameter unless you know what you're doing.

 --local host

 Local host name or IP address for bind. If specified, OpenVPN will bind to this ad?

 dress only. If unspecified, OpenVPN will bind to all interfaces.

 --lport port

 Set local TCP/UDP port number or name. Cannot be used together with --nobind op?

 tion.

 --mark value

 Mark encrypted packets being sent with value. The mark value can be matched in pol?

 icy routing and packetfilter rules. This option is only supported in Linux and does

 nothing on other operating systems.

 --mode m

 Set OpenVPN major mode. By default, OpenVPN runs in point-to-point mode (p2p).

 OpenVPN 2.0 introduces a new mode (server) which implements a multi-client server

 capability.

 --mssfix max

 Announce to TCP sessions running over the tunnel that they should limit their send

 packet sizes such that after OpenVPN has encapsulated them, the resulting UDP

 packet size that OpenVPN sends to its peer will not exceed max bytes. The default

 value is 1450.

 The max parameter is interpreted in the same way as the --link-mtu parameter, i.e.

 the UDP packet size after encapsulation overhead has been added in, but not includ?

 ing the UDP header itself. Resulting packet would be at most 28 bytes larger for

 IPv4 and 48 bytes for IPv6 (20/40 bytes for IP header and 8 bytes for UDP header).

 Default value of 1450 allows IPv4 packets to be transmitted over a link with MTU

 1473 or higher without IP level fragmentation.

 The --mssfix option only makes sense when you are using the UDP protocol for Open?

 VPN peer-to-peer communication, i.e. --proto udp.

 --mssfix and --fragment can be ideally used together, where --mssfix will try to

 keep TCP from needing packet fragmentation in the first place, and if big packets Page 64/113

 come through anyhow (from protocols other than TCP), --fragment will internally

 fragment them.

 Both --fragment and --mssfix are designed to work around cases where Path MTU dis?

 covery is broken on the network path between OpenVPN peers.

 The usual symptom of such a breakdown is an OpenVPN connection which successfully

 starts, but then stalls during active usage.

 If --fragment and --mssfix are used together, --mssfix will take its default max

 parameter from the --fragment max option.

 Therefore, one could lower the maximum UDP packet size to 1300 (a good first try

 for solving MTU-related connection problems) with the following options:

 --tun-mtu 1500 --fragment 1300 --mssfix

 --mtu-disc type

 Should we do Path MTU discovery on TCP/UDP channel? Only supported on OSes such as

 Linux that supports the necessary system call to set.

 Valid types:

 no Never send DF (Don't Fragment) frames

 maybe Use per-route hints

 yes Always DF (Don't Fragment)

 --mtu-test

 To empirically measure MTU on connection startup, add the --mtu-test option to your

 configuration. OpenVPN will send ping packets of various sizes to the remote peer

 and measure the largest packets which were successfully received. The --mtu-test

 process normally takes about 3 minutes to complete.

 --nobind

 Do not bind to local address and port. The IP stack will allocate a dynamic port

 for returning packets. Since the value of the dynamic port could not be known in

 advance by a peer, this option is only suitable for peers which will be initiating

 connections by using the --remote option.

 --passtos

 Set the TOS field of the tunnel packet to what the payload's TOS is.

 --ping n

 Ping remote over the TCP/UDP control channel if no packets have been sent for at

 least n seconds (specify --ping on both peers to cause ping packets to be sent in Page 65/113

 both directions since OpenVPN ping packets are not echoed like IP ping packets).

 When used in one of OpenVPN's secure modes (where --secret, --tls-server or

 --tls-client is specified), the ping packet will be cryptographically secure.

 This option has two intended uses:

 1. Compatibility with stateful firewalls. The periodic ping will ensure that a

 stateful firewall rule which allows OpenVPN UDP packets to pass will not time

 out.

 2. To provide a basis for the remote to test the existence of its peer using the

 --ping-exit option.

 --ping-exit n

 Causes OpenVPN to exit after n seconds pass without reception of a ping or other

 packet from remote. This option can be combined with --inactive, --ping and

 --ping-exit to create a two-tiered inactivity disconnect.

 For example,

 openvpn [options...] --inactive 3600 --ping 10 --ping-exit 60

 when used on both peers will cause OpenVPN to exit within 60 seconds if its peer

 disconnects, but will exit after one hour if no actual tunnel data is exchanged.

 --ping-restart n

 Similar to --ping-exit, but trigger a SIGUSR1 restart after n seconds pass without

 reception of a ping or other packet from remote.

 This option is useful in cases where the remote peer has a dynamic IP address and a

 low-TTL DNS name is used to track the IP address using a service such as

 https://www.nsupdate.info/ + a dynamic DNS client such as ddclient.

 If the peer cannot be reached, a restart will be triggered, causing the hostname

 used with --remote to be re-resolved (if --resolv-retry is also specified).

 In server mode, --ping-restart, --inactive or any other type of internally gener?

 ated signal will always be applied to individual client instance objects, never to

 whole server itself. Note also in server mode that any internally generated signal

 which would normally cause a restart, will cause the deletion of the client in?

 stance object instead.

 In client mode, the --ping-restart parameter is set to 120 seconds by default. This

 default will hold until the client pulls a replacement value from the server, based

 on the --keepalive setting in the server configuration. To disable the 120 second Page 66/113

 default, set --ping-restart 0 on the client.

 See the signals section below for more information on SIGUSR1.

 Note that the behavior of SIGUSR1 can be modified by the --persist-tun, --per?

 sist-key, --persist-local-ip and --persist-remote-ip options.

 Also note that --ping-exit and --ping-restart are mutually exclusive and cannot be

 used together.

 --ping-timer-rem

 Run the --ping-exit / --ping-restart timer only if we have a remote address. Use

 this option if you are starting the daemon in listen mode (i.e. without an explicit

 --remote peer), and you don't want to start clocking timeouts until a remote peer

 connects.

 --proto p

 Use protocol p for communicating with remote host. p can be udp, tcp-client, or

 tcp-server. You can also limit OpenVPN to use only IPv4 or only IPv6 by specifying

 p as udp4, tcp4-client, tcp4-server or udp6, tcp6-client, tcp6-server, respec?

 tively.

 The default protocol is udp when --proto is not specified.

 For UDP operation, --proto udp should be specified on both peers.

 For TCP operation, one peer must use --proto tcp-server and the other must use

 --proto tcp-client. A peer started with tcp-server will wait indefinitely for an

 incoming connection. A peer started with tcp-client will attempt to connect, and if

 that fails, will sleep for 5 seconds (adjustable via the --connect-retry option)

 and try again infinite or up to N retries (adjustable via the --connect-retry-max

 option). Both TCP client and server will simulate a SIGUSR1 restart signal if ei?

 ther side resets the connection.

 OpenVPN is designed to operate optimally over UDP, but TCP capability is provided

 for situations where UDP cannot be used. In comparison with UDP, TCP will usually

 be somewhat less efficient and less robust when used over unreliable or congested

 networks.

 This article outlines some of problems with tunneling IP over TCP:

 http://sites.inka.de/sites/bigred/devel/tcp-tcp.html

 There are certain cases, however, where using TCP may be advantageous from a secu?

 rity and robustness perspective, such as tunneling non-IP or application-level UDP Page 67/113

 protocols, or tunneling protocols which don't possess a built-in reliability layer.

 --port port

 TCP/UDP port number or port name for both local and remote (sets both --lport and

 --rport options to given port). The current default of 1194 represents the official

 IANA port number assignment for OpenVPN and has been used since version 2.0-beta17.

 Previous versions used port 5000 as the default.

 --rport port

 Set TCP/UDP port number or name used by the --remote option. The port can also be

 set directly using the --remote option.

 --replay-window args

 Modify the replay protection sliding-window size and time window.

 Valid syntax:

 replay-window n [t]

 Use a replay protection sliding-window of size n and a time window of t seconds.

 By default n is 64 (the IPSec default) and t is 15 seconds.

 This option is only relevant in UDP mode, i.e. when either --proto udp is speci?

 fied, or no --proto option is specified.

 When OpenVPN tunnels IP packets over UDP, there is the possibility that packets

 might be dropped or delivered out of order. Because OpenVPN, like IPSec, is emulat?

 ing the physical network layer, it will accept an out-of-order packet sequence, and

 will deliver such packets in the same order they were received to the TCP/IP proto?

 col stack, provided they satisfy several constraints.

 a. The packet cannot be a replay (unless --no-replay is specified, which disables

 replay protection altogether).

 b. If a packet arrives out of order, it will only be accepted if the difference be?

 tween its sequence number and the highest sequence number received so far is

 less than n.

 c. If a packet arrives out of order, it will only be accepted if it arrives no

 later than t seconds after any packet containing a higher sequence number.

 If you are using a network link with a large pipeline (meaning that the product of

 bandwidth and latency is high), you may want to use a larger value for n. Satellite

 links in particular often require this.

 If you run OpenVPN at --verb 4, you will see the message "PID_ERR replay-window Page 68/113

 backtrack occurred [x]" every time the maximum sequence number backtrack seen thus

 far increases. This can be used to calibrate n.

 There is some controversy on the appropriate method of handling packet reordering

 at the security layer.

 Namely, to what extent should the security layer protect the encapsulated protocol

 from attacks which masquerade as the kinds of normal packet loss and reordering

 that occur over IP networks?

 The IPSec and OpenVPN approach is to allow packet reordering within a certain fixed

 sequence number window.

 OpenVPN adds to the IPSec model by limiting the window size in time as well as se?

 quence space.

 OpenVPN also adds TCP transport as an option (not offered by IPSec) in which case

 OpenVPN can adopt a very strict attitude towards message deletion and reordering:

 Don't allow it. Since TCP guarantees reliability, any packet loss or reordering

 event can be assumed to be an attack.

 In this sense, it could be argued that TCP tunnel transport is preferred when tun?

 neling non-IP or UDP application protocols which might be vulnerable to a message

 deletion or reordering attack which falls within the normal operational parameters

 of IP networks.

 So I would make the statement that one should never tunnel a non-IP protocol or UDP

 application protocol over UDP, if the protocol might be vulnerable to a message

 deletion or reordering attack that falls within the normal operating parameters of

 what is to be expected from the physical IP layer. The problem is easily fixed by

 simply using TCP as the VPN transport layer.

 --replay-persist file

 Persist replay-protection state across sessions using file to save and reload the

 state.

 This option will strengthen protection against replay attacks, especially when you

 are using OpenVPN in a dynamic context (such as with --inetd) when OpenVPN sessions

 are frequently started and stopped.

 This option will keep a disk copy of the current replay protection state (i.e. the

 most recent packet timestamp and sequence number received from the remote peer), so

 that if an OpenVPN session is stopped and restarted, it will reject any replays of Page 69/113

 packets which were already received by the prior session.

 This option only makes sense when replay protection is enabled (the default) and

 you are using either --secret (shared-secret key mode) or TLS mode with --tls-auth.

 --socket-flags flags

 Apply the given flags to the OpenVPN transport socket. Currently, only TCP_NODELAY

 is supported.

 The TCP_NODELAY socket flag is useful in TCP mode, and causes the kernel to send

 tunnel packets immediately over the TCP connection without trying to group several

 smaller packets into a larger packet. This can result in a considerably improve?

 ment in latency.

 This option is pushable from server to client, and should be used on both client

 and server for maximum effect.

 --tcp-nodelay

 This macro sets the TCP_NODELAY socket flag on the server as well as pushes it to

 connecting clients. The TCP_NODELAY flag disables the Nagle algorithm on TCP sock?

 ets causing packets to be transmitted immediately with low latency, rather than

 waiting a short period of time in order to aggregate several packets into a larger

 containing packet. In VPN applications over TCP, TCP_NODELAY is generally a good

 latency optimization.

 The macro expands as follows:

 if mode server:

 socket-flags TCP_NODELAY

 push "socket-flags TCP_NODELAY"

 Virtual Network Adapter (VPN interface)

 Options in this section relates to configuration of the virtual tun/tap network interface,

 including setting the VPN IP address and network routing.

 --bind-dev device

 (Linux only) Set device to bind the server socket to a Virtual Routing and Forward?

 ing device

 --block-ipv6

 On the client, instead of sending IPv6 packets over the VPN tunnel, all IPv6 pack?

 ets are answered with an ICMPv6 no route host message. On the server, all IPv6

 packets from clients are answered with an ICMPv6 no route to host message. This op? Page 70/113

 tions is intended for cases when IPv6 should be blocked and other options are not

 available. --block-ipv6 will use the remote IPv6 as source address of the ICMPv6

 packets if set, otherwise will use fe80::7 as source address.

 For this option to make sense you actually have to route traffic to the tun inter?

 face. The following example config block would send all IPv6 traffic to OpenVPN and

 answer all requests with no route to host, effectively blocking IPv6 (to avoid IPv6

 connections from dual-stacked clients leaking around IPv4-only VPN services).

 Client config

 --ifconfig-ipv6 fd15:53b6:dead::2/64 fd15:53b6:dead::1

 --redirect-gateway ipv6

 --block-ipv6

 Server config

 Push a "valid" ipv6 config to the client and block on the server

 --push "ifconfig-ipv6 fd15:53b6:dead::2/64 fd15:53b6:dead::1"

 --push "redirect-gateway ipv6"

 --block-ipv6

 Note: this option does not influence traffic sent from the server towards the

 client (neither on the server nor on the client side). This is not seen as neces?

 sary, as such traffic can be most easily avoided by not configuring IPv6 on the

 server tun, or setting up a server-side firewall rule.

 --dev device

 TUN/TAP virtual network device which can be tunX, tapX, null or an arbitrary name

 string (X can be omitted for a dynamic device.)

 See examples section below for an example on setting up a TUN device.

 You must use either tun devices on both ends of the connection or tap devices on

 both ends. You cannot mix them, as they represent different underlying network lay?

 ers:

 tun devices encapsulate IPv4 or IPv6 (OSI Layer 3)

 tap devices encapsulate Ethernet 802.3 (OSI Layer 2).

 Valid syntaxes:

 dev tun2

 dev tap4

 dev ovpn Page 71/113

 When the device name starts with tun or tap, the device type is extracted automati?

 cally. Otherwise the --dev-type option needs to be added as well.

 --dev-node node

 Explicitly set the device node rather than using /dev/net/tun, /dev/tun, /dev/tap,

 etc. If OpenVPN cannot figure out whether node is a TUN or TAP device based on the

 name, you should also specify --dev-type tun or --dev-type tap.

 Under Mac OS X this option can be used to specify the default tun implementation.

 Using --dev-node utun forces usage of the native Darwin tun kernel support. Use

 --dev-node utunN to select a specific utun instance. To force using the tun.kext

 (/dev/tunX) use --dev-node tun. When not specifying a --dev-node option openvpn

 will first try to open utun, and fall back to tun.kext.

 On Windows systems, select the TAP-Win32 adapter which is named node in the Network

 Connections Control Panel or the raw GUID of the adapter enclosed by braces. The

 --show-adapters option under Windows can also be used to enumerate all available

 TAP-Win32 adapters and will show both the network connections control panel name

 and the GUID for each TAP-Win32 adapter.

 --dev-type device-type

 Which device type are we using? device-type should be tun (OSI Layer 3) or tap (OSI

 Layer 2). Use this option only if the TUN/TAP device used with --dev does not begin

 with tun or tap.

 --dhcp-option args

 Set additional network parameters on supported platforms. May be specified on the

 client or pushed from the server. On Windows these options are handled by the

 tap-windows6 driver by default or directly by OpenVPN if dhcp is disabled or the

 wintun driver is in use. The OpenVPN for Android client also handles them inter?

 nally.

 On all other platforms these options are only saved in the client's environment un?

 der the name foreign_option_{n} before the --up script is called. A plugin or an

 --up script must be used to pick up and interpret these as required. Many Linux

 distributions include such scripts and some third-party user interfaces such as

 tunnelblick also come with scripts that process these options.

 Valid syntax:

 dhcp-options type [parm] Page 72/113

 DOMAIN name

 Set Connection-specific DNS Suffix to name.

 ADAPTER_DOMAIN_SUFFIX name

 Alias to DOMAIN. This is a compatibility option, it should not be used in

 new deployments.

 DOMAIN-SEARCH name

 Add name to the domain search list. Repeat this option to add more entries.

 Up to 10 domains are supported.

 DNS address

 Set primary domain name server IPv4 or IPv6 address. Repeat this option to

 set secondary DNS server addresses.

 Note: DNS IPv6 servers are currently set using netsh (the existing DHCP code

 can only do IPv4 DHCP, and that protocol only permits IPv4 addresses any?

 where). The option will be put into the environment, so an --up script could

 act upon it if needed.

 WINS address

 Set primary WINS server address (NetBIOS over TCP/IP Name Server). Repeat

 this option to set secondary WINS server addresses.

 NBDD address

 Set primary NBDD server address (NetBIOS over TCP/IP Datagram Distribution

 Server). Repeat this option to set secondary NBDD server addresses.

 NTP address

 Set primary NTP server address (Network Time Protocol). Repeat this option

 to set secondary NTP server addresses.

 NBT type

 Set NetBIOS over TCP/IP Node type. Possible options:

 1 b-node (broadcasts)

 2 p-node (point-to-point name queries to a WINS server)

 4 m-node (broadcast then query name server)

 8 h-node (query name server, then broadcast).

 NBS scope-id

 Set NetBIOS over TCP/IP Scope. A NetBIOS Scope ID provides an extended nam?

 ing service for the NetBIOS over TCP/IP (Known as NBT) module. The primary Page 73/113

 purpose of a NetBIOS scope ID is to isolate NetBIOS traffic on a single net?

 work to only those nodes with the same NetBIOS scope ID. The NetBIOS scope

 ID is a character string that is appended to the NetBIOS name. The NetBIOS

 scope ID on two hosts must match, or the two hosts will not be able to com?

 municate. The NetBIOS Scope ID also allows computers to use the same com?

 puter name, as they have different scope IDs. The Scope ID becomes a part of

 the NetBIOS name, making the name unique. (This description of NetBIOS

 scopes courtesy of NeonSurge@abyss.com)

 DISABLE-NBT

 Disable Netbios-over-TCP/IP.

 --ifconfig args

 Set TUN/TAP adapter parameters. It requires the IP address of the local VPN end?

 point. For TUN devices in point-to-point mode, the next argument must be the VPN IP

 address of the remote VPN endpoint. For TAP devices, or TUN devices used with

 --topology subnet, the second argument is the subnet mask of the virtual network

 segment which is being created or connected to.

 For TUN devices, which facilitate virtual point-to-point IP connections (when used

 in --topology net30 or p2p mode), the proper usage of --ifconfig is to use two pri?

 vate IP addresses which are not a member of any existing subnet which is in use.

 The IP addresses may be consecutive and should have their order reversed on the re?

 mote peer. After the VPN is established, by pinging rn, you will be pinging across

 the VPN.

 For TAP devices, which provide the ability to create virtual ethernet segments, or

 TUN devices in --topology subnet mode (which create virtual "multipoint networks"),

 --ifconfig is used to set an IP address and subnet mask just as a physical ethernet

 adapter would be similarly configured. If you are attempting to connect to a remote

 ethernet bridge, the IP address and subnet should be set to values which would be

 valid on the the bridged ethernet segment (note also that DHCP can be used for the

 same purpose).

 This option, while primarily a proxy for the ifconfig(8) command, is designed to

 simplify TUN/TAP tunnel configuration by providing a standard interface to the dif?

 ferent ifconfig implementations on different platforms.

 --ifconfig parameters which are IP addresses can also be specified as a DNS or Page 74/113

 /etc/hosts file resolvable name.

 For TAP devices, --ifconfig should not be used if the TAP interface will be getting

 an IP address lease from a DHCP server.

 Examples:

 # tun device in net30/p2p mode

 ifconfig 10.8.0.2 10.8.0.1

 # tun/tap device in subnet mode

 ifconfig 10.8.0.2 255.255.255.0

 --ifconfig-ipv6 args

 Configure an IPv6 address on the tun device.

 Valid syntax:

 ifconfig-ipv6 ipv6addr/bits [ipv6remote]

 The ipv6addr/bits argument is the IPv6 address to use. The second parameter is used

 as route target for --route-ipv6 if no gateway is specified.

 The --topology option has no influence with --ifconfig-ipv6

 --ifconfig-noexec

 Don't actually execute ifconfig/netsh commands, instead pass --ifconfig parameters

 to scripts using environmental variables.

 --ifconfig-nowarn

 Don't output an options consistency check warning if the --ifconfig option on this

 side of the connection doesn't match the remote side. This is useful when you want

 to retain the overall benefits of the options consistency check (also see --dis?

 able-occ option) while only disabling the ifconfig component of the check.

 For example, if you have a configuration where the local host uses --ifconfig but

 the remote host does not, use --ifconfig-nowarn on the local host.

 This option will also silence warnings about potential address conflicts which oc?

 casionally annoy more experienced users by triggering "false positive" warnings.

 --lladdr address

 Specify the link layer address, more commonly known as the MAC address. Only ap?

 plied to TAP devices.

 --persist-tun

 Don't close and reopen TUN/TAP device or run up/down scripts across SIGUSR1 or

 --ping-restart restarts. Page 75/113

 SIGUSR1 is a restart signal similar to SIGHUP, but which offers finer-grained con?

 trol over reset options.

 --redirect-gateway flags

 Automatically execute routing commands to cause all outgoing IP traffic to be redi?

 rected over the VPN. This is a client-side option.

 This option performs three steps:

 1. Create a static route for the --remote address which forwards to the pre-exist?

 ing default gateway. This is done so that (3) will not create a routing loop.

 2. Delete the default gateway route.

 3. Set the new default gateway to be the VPN endpoint address (derived either from

 --route-gateway or the second parameter to --ifconfig when --dev tun is speci?

 fied).

 When the tunnel is torn down, all of the above steps are reversed so that the orig?

 inal default route is restored.

 Option flags:

 local Add the local flag if both OpenVPN peers are directly connected via a common

 subnet, such as with wireless. The local flag will cause step (1) above to

 be omitted.

 autolocal

 Try to automatically determine whether to enable local flag above.

 def1 Use this flag to override the default gateway by using 0.0.0.0/1 and

 128.0.0.0/1 rather than 0.0.0.0/0. This has the benefit of overriding but

 not wiping out the original default gateway.

 bypass-dhcp

 Add a direct route to the DHCP server (if it is non-local) which bypasses

 the tunnel (Available on Windows clients, may not be available on non-Win?

 dows clients).

 bypass-dns

 Add a direct route to the DNS server(s) (if they are non-local) which by?

 passes the tunnel (Available on Windows clients, may not be available on

 non-Windows clients).

 block-local

 Block access to local LAN when the tunnel is active, except for the LAN Page 76/113

 gateway itself. This is accomplished by routing the local LAN (except for

 the LAN gateway address) into the tunnel.

 ipv6 Redirect IPv6 routing into the tunnel. This works similar to the def1 flag,

 that is, more specific IPv6 routes are added (2000::/4, 3000::/4), covering

 the whole IPv6 unicast space.

 !ipv4 Do not redirect IPv4 traffic - typically used in the flag pair ipv6 !ipv4 to

 redirect IPv6-only.

 --redirect-private flags

 Like --redirect-gateway, but omit actually changing the default gateway. Useful

 when pushing private subnets.

 --route args

 Add route to routing table after connection is established. Multiple routes can be

 specified. Routes will be automatically torn down in reverse order prior to TUN/TAP

 device close.

 Valid syntaxes:

 route network/IP

 route network/IP netmask

 route network/IP netmask gateway

 route network/IP netmask gateway metric

 This option is intended as a convenience proxy for the route(8) shell command,

 while at the same time providing portable semantics across OpenVPN's platform

 space.

 netmask

 defaults to 255.255.255.255 when not given

 gateway

 default taken from --route-gateway or the second parameter to --ifconfig

 when --dev tun is specified.

 metric default taken from --route-metric if set, otherwise 0.

 The default can be specified by leaving an option blank or setting it to default.

 The network and gateway parameters can also be specified as a DNS or /etc/hosts

 file resolvable name, or as one of three special keywords:

 vpn_gateway

 The remote VPN endpoint address (derived either from --route-gateway or the Page 77/113

 second parameter to --ifconfig when --dev tun is specified).

 net_gateway

 The pre-existing IP default gateway, read from the routing table (not sup?

 ported on all OSes).

 remote_host

 The --remote address if OpenVPN is being run in client mode, and is unde?

 fined in server mode.

 --route-delay args

 Valid syntaxes:

 route-delay

 route-delay n

 route-delay n m

 Delay n seconds (default 0) after connection establishment, before adding routes.

 If n is 0, routes will be added immediately upon connection establishment. If

 --route-delay is omitted, routes will be added immediately after TUN/TAP device

 open and --up script execution, before any --user or --group privilege downgrade

 (or --chroot execution.)

 This option is designed to be useful in scenarios where DHCP is used to set tap

 adapter addresses. The delay will give the DHCP handshake time to complete before

 routes are added.

 On Windows, --route-delay tries to be more intelligent by waiting w seconds (de?

 fault 30 by default) for the TAP-Win32 adapter to come up before adding routes.

 --route-ipv6 args

 Setup IPv6 routing in the system to send the specified IPv6 network into OpenVPN's

 tun.

 Valid syntax:

 route-ipv6 ipv6addr/bits [gateway] [metric]

 The gateway parameter is only used for IPv6 routes across tap devices, and if miss?

 ing, the ipv6remote field from --ifconfig-ipv6 or --route-ipv6-gateway is used.

 --route-gateway arg

 Specify a default gateway for use with --route.

 If dhcp is specified as the parameter, the gateway address will be extracted from a

 DHCP negotiation with the OpenVPN server-side LAN. Page 78/113

 Valid syntaxes:

 route-gateway gateway

 route-gateway dhcp

 --route-ipv6-gateway gw

 Specify a default gateway gw for use with --route-ipv6.

 --route-metric m

 Specify a default metric m for use with --route.

 --route-noexec

 Don't add or remove routes automatically. Instead pass routes to --route-up script

 using environmental variables.

 --route-nopull

 When used with --client or --pull, accept options pushed by server EXCEPT for

 routes, block-outside-dns and dhcp options like DNS servers.

 When used on the client, this option effectively bars the server from adding routes

 to the client's routing table, however note that this option still allows the

 server to set the TCP/IP properties of the client's TUN/TAP interface.

 --topology mode

 Configure virtual addressing topology when running in --dev tun mode. This direc?

 tive has no meaning in --dev tap mode, which always uses a subnet topology.

 If you set this directive on the server, the --server and --server-bridge direc?

 tives will automatically push your chosen topology setting to clients as well. This

 directive can also be manually pushed to clients. Like the --dev directive, this

 directive must always be compatible between client and server.

 mode can be one of:

 net30 Use a point-to-point topology, by allocating one /30 subnet per client. This

 is designed to allow point-to-point semantics when some or all of the con?

 necting clients might be Windows systems. This is the default on OpenVPN

 2.0.

 p2p Use a point-to-point topology where the remote endpoint of the client's tun

 interface always points to the local endpoint of the server's tun interface.

 This mode allocates a single IP address per connecting client. Only use when

 none of the connecting clients are Windows systems.

 subnet Use a subnet rather than a point-to-point topology by configuring the tun Page 79/113

 interface with a local IP address and subnet mask, similar to the topology

 used in --dev tap and ethernet bridging mode. This mode allocates a single

 IP address per connecting client and works on Windows as well. Only avail?

 able when server and clients are OpenVPN 2.1 or higher, or OpenVPN 2.0.x

 which has been manually patched with the --topology directive code. When

 used on Windows, requires version 8.2 or higher of the TAP-Win32 driver.

 When used on *nix, requires that the tun driver supports an ifconfig(8) com?

 mand which sets a subnet instead of a remote endpoint IP address.

 Note: Using --topology subnet changes the interpretation of the arguments of --if?

 config to mean "address netmask", no longer "local remote".

 --tun-mtu n

 Take the TUN device MTU to be n and derive the link MTU from it (default 1500). In

 most cases, you will probably want to leave this parameter set to its default

 value.

 The MTU (Maximum Transmission Units) is the maximum datagram size in bytes that can

 be sent unfragmented over a particular network path. OpenVPN requires that packets

 on the control and data channels be sent unfragmented.

 MTU problems often manifest themselves as connections which hang during periods of

 active usage.

 It's best to use the --fragment and/or --mssfix options to deal with MTU sizing is?

 sues.

 --tun-mtu-extra n

 Assume that the TUN/TAP device might return as many as n bytes more than the

 --tun-mtu size on read. This parameter defaults to 0, which is sufficient for most

 TUN devices. TAP devices may introduce additional overhead in excess of the MTU

 size, and a setting of 32 is the default when TAP devices are used. This parameter

 only controls internal OpenVPN buffer sizing, so there is no transmission overhead

 associated with using a larger value.

 TUN/TAP standalone operations

 These two standalone operations will require --dev and optionally --user and/or --group.

 --mktun

 (Standalone) Create a persistent tunnel on platforms which support them such as

 Linux. Normally TUN/TAP tunnels exist only for the period of time that an applica? Page 80/113

 tion has them open. This option takes advantage of the TUN/TAP driver's ability to

 build persistent tunnels that live through multiple instantiations of OpenVPN and

 die only when they are deleted or the machine is rebooted.

 One of the advantages of persistent tunnels is that they eliminate the need for

 separate --up and --down scripts to run the appropriate ifconfig(8) and route(8)

 commands. These commands can be placed in the the same shell script which starts or

 terminates an OpenVPN session.

 Another advantage is that open connections through the TUN/TAP-based tunnel will

 not be reset if the OpenVPN peer restarts. This can be useful to provide uninter?

 rupted connectivity through the tunnel in the event of a DHCP reset of the peer's

 public IP address (see the --ipchange option above).

 One disadvantage of persistent tunnels is that it is harder to automatically con?

 figure their MTU value (see --link-mtu and --tun-mtu above).

 On some platforms such as Windows, TAP-Win32 tunnels are persistent by default.

 --rmtun

 (Standalone) Remove a persistent tunnel.

 Virtual Routing and Forwarding

 Options in this section relates to configuration of virtual routing and forwarding in com?

 bination with the underlying operating system.

 As of today this is only supported on Linux, a kernel >= 4.9 is recommended.

 This could come in handy when for example the external network should be only used as a

 means to connect to some VPN endpoints and all regular traffic should only be routed

 through any tunnel(s). This could be achieved by setting up a VRF and configuring the in?

 terface connected to the external network to be part of the VRF. The examples below will

 cover this setup.

 Another option would be to put the tun/tap interface into a VRF. This could be done by an

 up-script which uses the ip link set command shown below.

 VRF setup with iproute2

 Create VRF vrf_external and map it to routing table 1023

 ip link add vrf_external type vrf table 1023

 Move eth0 into vrf_external

 ip link set master vrf_external dev eth0

 Any prefixes configured on eth0 will be moved from the :code`main` routing table into Page 81/113

 routing table 1023

 VRF setup with ifupdown

 For Debian based Distributions ifupdown2 provides an almost drop-in replacement for ifup?

 down including VRFs and other features. A configuration for an interface eth0 being part

 of VRF code:vrf_external could look like this:

 auto eth0

 iface eth0

 address 192.0.2.42/24

 address 2001:db8:08:15::42/64

 gateway 192.0.2.1

 gateway 2001:db8:08:15::1

 vrf vrf_external

 auto vrf_external

 iface vrf_external

 vrf-table 1023

 OpenVPN configuration

 The OpenVPN configuration needs to contain this line:

 bind-dev vrf_external

 Further reading

 Wikipedia has nice page one VRFs:

 https://en.wikipedia.org/wiki/Virtual_routing_and_forwarding

 This talk from the Network Track of FrOSCon 2018 provides an overview about advanced layer

 2 and layer 3 features of Linux

 ? Slides:

 https://www.slideshare.net/BarbarossaTM/l2l3-fr-fortgeschrittene-helle-und-dunkle-magie-im-linuxnetzwerkstack

 ? Video (german):

https://media.ccc.de/v/froscon2018-2247-l2_l3_fur_fortgeschrittene_-_helle_und_dunkle_magie_im_linux-netzwerkstack

SCRIPTING INTEGRATION

 OpenVPN can execute external scripts in various phases of the lifetime of the OpenVPN

 process.

 Script Order of Execution

 1. --up Page 82/113

 Executed after TCP/UDP socket bind and TUN/TAP open.

 2. --tls-verify

 Executed when we have a still untrusted remote peer.

 3. --ipchange

 Executed after connection authentication, or remote IP address change.

 4. --client-connect

 Executed in --mode server mode immediately after client authentication.

 5. --route-up

 Executed after connection authentication, either immediately after, or some number of

 seconds after as defined by the --route-delay option.

 6. --route-pre-down

 Executed right before the routes are removed.

 7. --client-disconnect

 Executed in --mode server mode on client instance shutdown.

 8. --down

 Executed after TCP/UDP and TUN/TAP close.

 9. --learn-address

 Executed in --mode server mode whenever an IPv4 address/route or MAC address is added

 to OpenVPN's internal routing table.

 10. --auth-user-pass-verify

 Executed in --mode server mode on new client connections, when the client is still un?

 trusted.

 SCRIPT HOOKS

 --auth-user-pass-verify args

 Require the client to provide a username/password (possibly in addition to a client

 certificate) for authentication.

 Valid syntax:

 auth-user-pass-verify cmd method

 OpenVPN will run command cmd to validate the username/password provided by the

 client.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces. Page 83/113

 If method is set to via-env, OpenVPN will call script with the environmental vari?

 ables username and password set to the username/password strings provided by the

 client. Beware that this method is insecure on some platforms which make the envi?

 ronment of a process publicly visible to other unprivileged processes.

 If method is set to via-file, OpenVPN will write the username and password to the

 first two lines of a temporary file. The filename will be passed as an argument to

 script, and the file will be automatically deleted by OpenVPN after the script re?

 turns. The location of the temporary file is controlled by the --tmp-dir option,

 and will default to the current directory if unspecified. For security, consider

 setting --tmp-dir to a volatile storage medium such as /dev/shm (if available) to

 prevent the username/password file from touching the hard drive.

 The script should examine the username and password, returning a success exit code

 (0) if the client's authentication request is to be accepted, or a failure code (1)

 to reject the client.

 This directive is designed to enable a plugin-style interface for extending Open?

 VPN's authentication capabilities.

 To protect against a client passing a maliciously formed username or password

 string, the username string must consist only of these characters: alphanumeric,

 underbar ('_'), dash ('-'), dot ('.'), or at ('@'). The password string can consist

 of any printable characters except for CR or LF. Any illegal characters in either

 the username or password string will be converted to underbar ('_').

 Care must be taken by any user-defined scripts to avoid creating a security vulner?

 ability in the way that these strings are handled. Never use these strings in such

 a way that they might be escaped or evaluated by a shell interpreter.

 For a sample script that performs PAM authentication, see sam?

 ple-scripts/auth-pam.pl in the OpenVPN source distribution.

 --client-connect cmd

 Run command cmd on client connection.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 The command is passed the common name and IP address of the just-authenticated

 client as environmental variables (see environmental variable section below). The Page 84/113

 command is also passed the pathname of a freshly created temporary file as the last

 argument (after any arguments specified in cmd), to be used by the command to pass

 dynamically generated config file directives back to OpenVPN.

 If the script wants to generate a dynamic config file to be applied on the server

 when the client connects, it should write it to the file named by the last argu?

 ment.

 See the --client-config-dir option below for options which can be legally used in a

 dynamically generated config file.

 Note that the return value of script is significant. If script returns a non-zero

 error status, it will cause the client to be disconnected.

 If a --client-connect wants to defer the generating of the configuration then the

 script needs to use the client_connect_deferred_file and client_connect_config_file

 environment variables, and write status accordingly into these files. See the

 Environmental Variables section for more details.

 --client-disconnect cmd

 Like --client-connect but called on client instance shutdown. Will not be called

 unless the --client-connect script and plugins (if defined) were previously called

 on this instance with successful (0) status returns.

 The exception to this rule is if the --client-disconnect command or plugins are

 cascaded, and at least one client-connect function succeeded, then ALL of the

 client-disconnect functions for scripts and plugins will be called on client in?

 stance object deletion, even in cases where some of the related client-connect

 functions returned an error status.

 The --client-disconnect command is not passed any extra arguments (only those argu?

 ments specified in cmd, if any).

 --down cmd

 Run command cmd after TUN/TAP device close (post --user UID change and/or --chroot

). cmd consists of a path to script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 Called with the same parameters and environmental variables as the --up option

 above.

 Note that if you reduce privileges by using --user and/or --group, your --down Page 85/113

 script will also run at reduced privilege.

 --down-pre

 Call --down cmd/script before, rather than after, TUN/TAP close.

 --ipchange cmd

 Run command cmd when our remote ip-address is initially authenticated or changes.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 When cmd is executed two arguments are appended after any arguments specified in

 cmd , as follows:

 cmd ip address port number

 Don't use --ipchange in --mode server mode. Use a --client-connect script instead.

 See the Environmental Variables section below for additional parameters passed as

 environmental variables.

 If you are running in a dynamic IP address environment where the IP addresses of

 either peer could change without notice, you can use this script, for example, to

 edit the /etc/hosts file with the current address of the peer. The script will be

 run every time the remote peer changes its IP address.

 Similarly if our IP address changes due to DHCP, we should configure our IP address

 change script (see man page for dhcpcd(8)) to deliver a SIGHUP or SIGUSR1 signal to

 OpenVPN. OpenVPN will then re-establish a connection with its most recently authen?

 ticated peer on its new IP address.

 --learn-address cmd

 Run command cmd to validate client virtual addresses or routes.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 Three arguments will be appended to any arguments in cmd as follows:

 $1 - [operation]

 "add", "update", or "delete" based on whether or not the address is being

 added to, modified, or deleted from OpenVPN's internal routing table.

 $2 - [address]

 The address being learned or unlearned. This can be an IPv4 address such as Page 86/113

 "198.162.10.14", an IPv4 subnet such as "198.162.10.0/24", or an ethernet

 MAC address (when --dev tap is being used) such as "00:FF:01:02:03:04".

 $3 - [common name]

 The common name on the certificate associated with the client linked to this

 address. Only present for "add" or "update" operations, not "delete".

 On "add" or "update" methods, if the script returns a failure code (non-zero),

 OpenVPN will reject the address and will not modify its internal routing table.

 Normally, the cmd script will use the information provided above to set appropriate

 firewall entries on the VPN TUN/TAP interface. Since OpenVPN provides the associa?

 tion between virtual IP or MAC address and the client's authenticated common name,

 it allows a user-defined script to configure firewall access policies with regard

 to the client's high-level common name, rather than the low level client virtual

 addresses.

 --route-up cmd

 Run command cmd after routes are added, subject to --route-delay.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 See the Environmental Variables section below for additional parameters passed as

 environmental variables.

 --route-pre-down cmd

 Run command cmd before routes are removed upon disconnection.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 See the Environmental Variables section below for additional parameters passed as

 environmental variables.

 --setenv args

 Set a custom environmental variable name=value to pass to script.

 Valid syntaxes:

 setenv name value

 setenv FORWARD_COMPATIBLE 1

 setenv opt config_option Page 87/113

 By setting FORWARD_COMPATIBLE to 1, the config file syntax checking is relaxed so

 that unknown directives will trigger a warning but not a fatal error, on the as?

 sumption that a given unknown directive might be valid in future OpenVPN versions.

 This option should be used with caution, as there are good security reasons for

 having OpenVPN fail if it detects problems in a config file. Having said that,

 there are valid reasons for wanting new software features to gracefully degrade

 when encountered by older software versions.

 It is also possible to tag a single directive so as not to trigger a fatal error if

 the directive isn't recognized. To do this, prepend the following before the direc?

 tive: setenv opt

 Versions prior to OpenVPN 2.3.3 will always ignore options set with the setenv opt

 directive.

 See also --ignore-unknown-option

 --setenv-safe args

 Set a custom environmental variable OPENVPN_name to value to pass to scripts.

 Valid syntaxes:

 setenv-safe name value

 This directive is designed to be pushed by the server to clients, and the prepend?

 ing of OPENVPN_ to the environmental variable is a safety precaution to prevent a

 LD_PRELOAD style attack from a malicious or compromised server.

 --tls-verify cmd

 Run command cmd to verify the X509 name of a pending TLS connection that has other?

 wise passed all other tests of certification (except for revocation via --crl-ver?

 ify directive; the revocation test occurs after the --tls-verify test).

 cmd should return 0 to allow the TLS handshake to proceed, or 1 to fail.

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 When cmd is executed two arguments are appended after any arguments specified in

 cmd, as follows:

 cmd certificate_depth subject

 These arguments are, respectively, the current certificate depth and the X509 sub?

 ject distinguished name (dn) of the peer. Page 88/113

 This feature is useful if the peer you want to trust has a certificate which was

 signed by a certificate authority who also signed many other certificates, where

 you don't necessarily want to trust all of them, but rather be selective about

 which peer certificate you will accept. This feature allows you to write a script

 which will test the X509 name on a certificate and decide whether or not it should

 be accepted. For a simple perl script which will test the common name field on the

 certificate, see the file verify-cn in the OpenVPN distribution.

 See the Environmental Variables section below for additional parameters passed as

 environmental variables.

 --up cmd

 Run command cmd after successful TUN/TAP device open (pre --user UID change).

 cmd consists of a path to a script (or executable program), optionally followed by

 arguments. The path and arguments may be single- or double-quoted and/or escaped

 using a backslash, and should be separated by one or more spaces.

 The up command is useful for specifying route commands which route IP traffic des?

 tined for private subnets which exist at the other end of the VPN connection into

 the tunnel.

 For --dev tun execute as:

 cmd tun_dev tun_mtu link_mtu ifconfig_local_ip ifconfig_remote_ip [init | restart]

 For --dev tap execute as:

 cmd tap_dev tap_mtu link_mtu ifconfig_local_ip ifconfig_netmask [init | restart]

 See the Environmental Variables section below for additional parameters passed as

 environmental variables.

 Note that if cmd includes arguments, all OpenVPN-generated arguments will be ap?

 pended to them to build an argument list with which the executable will be called.

 Typically, cmd will run a script to add routes to the tunnel.

 Normally the up script is called after the TUN/TAP device is opened. In this con?

 text, the last command line parameter passed to the script will be init. If the

 --up-restart option is also used, the up script will be called for restarts as

 well. A restart is considered to be a partial reinitialization of OpenVPN where the

 TUN/TAP instance is preserved (the --persist-tun option will enable such preserva?

 tion). A restart can be generated by a SIGUSR1 signal, a --ping-restart timeout,

 or a connection reset when the TCP protocol is enabled with the --proto option. If Page 89/113

 a restart occurs, and --up-restart has been specified, the up script will be called

 with restart as the last parameter.

 NOTE: On restart, OpenVPN will not pass the full set of environment variables to

 the script. Namely, everything related to routing and gateways will not be

 passed, as nothing needs to be done anyway - all the routing setup is al?

 ready in place. Additionally, the up-restart script will run with the down?

 graded UID/GID settings (if configured).

 The following standalone example shows how the --up script can be called in both an

 initialization and restart context. (NOTE: for security reasons, don't run the fol?

 lowing example unless UDP port 9999 is blocked by your firewall. Also, the example

 will run indefinitely, so you should abort with control-c).

 openvpn --dev tun --port 9999 --verb 4 --ping-restart 10 \

 --up 'echo up' --down 'echo down' --persist-tun \

 --up-restart

 Note that OpenVPN also provides the --ifconfig option to automatically ifconfig the

 TUN device, eliminating the need to define an --up script, unless you also want to

 configure routes in the --up script.

 If --ifconfig is also specified, OpenVPN will pass the ifconfig local and remote

 endpoints on the command line to the --up script so that they can be used to con?

 figure routes such as:

 route add -net 10.0.0.0 netmask 255.255.255.0 gw $5

 --up-delay

 Delay TUN/TAP open and possible --up script execution until after TCP/UDP connec?

 tion establishment with peer.

 In --proto udp mode, this option normally requires the use of --ping to allow con?

 nection initiation to be sensed in the absence of tunnel data, since UDP is a "con?

 nectionless" protocol.

 On Windows, this option will delay the TAP-Win32 media state transitioning to "con?

 nected" until connection establishment, i.e. the receipt of the first authenticated

 packet from the peer.

 --up-restart

 Enable the --up and --down scripts to be called for restarts as well as initial

 program start. This option is described more fully above in the --up option docu? Page 90/113

 mentation.

 String Types and Remapping

 In certain cases, OpenVPN will perform remapping of characters in strings. Essentially,

 any characters outside the set of permitted characters for each string type will be con?

 verted to underbar ('_').

 Q: Why is string remapping necessary?

 It's an important security feature to prevent the malicious coding of strings from

 untrusted sources to be passed as parameters to scripts, saved in the environment,

 used as a common name, translated to a filename, etc.

 Q: Can string remapping be disabled?

 Yes, by using the --no-name-remapping option, however this should be considered an

 advanced option.

 Here is a brief rundown of OpenVPN's current string types and the permitted character

 class for each string:

 X509 Names

 Alphanumeric, underbar ('_'), dash ('-'), dot ('.'), at ('@'), colon (':'), slash

 ('/'), and equal ('='). Alphanumeric is defined as a character which will cause the

 C library isalnum() function to return true.

 Common Names

 Alphanumeric, underbar ('_'), dash ('-'), dot ('.'), and at ('@').

 --auth-user-pass username

 Same as Common Name, with one exception: starting with OpenVPN 2.0.1, the username

 is passed to the OPENVPN_PLUGIN_AUTH_USER_PASS_VERIFY plugin in its raw form, with?

 out string remapping.

 --auth-user-pass password

 Any "printable" character except CR or LF. Printable is defined to be a character

 which will cause the C library isprint() function to return true.

 --client-config-dir filename as derived from common name or`username

 Alphanumeric, underbar ('_'), dash ('-'), and dot ('.') except for "." or ".." as

 standalone strings. As of v2.0.1-rc6, the at ('@') character has been added as well

 for compatibility with the common name character class.

 Environmental variable names

 Alphanumeric or underbar ('_'). Page 91/113

 Environmental variable values

 Any printable character.

 For all cases, characters in a string which are not members of the legal character class

 for that string type will be remapped to underbar ('_').

 Environmental Variables

 Once set, a variable is persisted indefinitely until it is reset by a new value or a

 restart,

 As of OpenVPN 2.0-beta12, in server mode, environmental variables set by OpenVPN are

 scoped according to the client objects they are associated with, so there should not be

 any issues with scripts having access to stale, previously set variables which refer to

 different client instances.

 bytes_received

 Total number of bytes received from client during VPN session. Set prior to execu?

 tion of the --client-disconnect script.

 bytes_sent

 Total number of bytes sent to client during VPN session. Set prior to execution of

 the --client-disconnect script.

 client_connect_config_file

 The path to the configuration file that should be written to by the --client-con?

 nect script (optional, if per-session configuration is desired). This is the same

 file name as passed via command line argument on the call to the --client-connect

 script.

 client_connect_deferred_file

 This file can be optionally written to in order to to communicate a status code of

 the --client-connect script or plgin. Only the first character in the file is rel?

 evant. It must be either 1 to indicate normal script execution, 0 indicates an er?

 ror (in the same way that a non zero exit status does) or 2 to indicate that the

 script deferred returning the config file.

 For deferred (background) handling, the script or plugin MUST write 2 to the file

 to indicate the deferral and then return with exit code 0 to signal deferred han?

 dler started OK.

 A background process or similar must then take care of writing the configuration to

 the file indicated by the client_connect_config_file environment variable and when Page 92/113

 finished, write the a 1 to this file (or 0 in case of an error).

 The absence of any character in the file when the script finishes executing is in?

 terpreted the same as 1. This allows scripts that are not written to support the

 defer mechanism to be used unmodified.

 common_name

 The X509 common name of an authenticated client. Set prior to execution of

 --client-connect, --client-disconnect and --auth-user-pass-verify scripts.

 config Name of first --config file. Set on program initiation and reset on SIGHUP.

 daemon Set to "1" if the --daemon directive is specified, or "0" otherwise. Set on pro?

 gram initiation and reset on SIGHUP.

 daemon_log_redirect

 Set to "1" if the --log or --log-append directives are specified, or "0" otherwise.

 Set on program initiation and reset on SIGHUP.

 dev The actual name of the TUN/TAP device, including a unit number if it exists. Set

 prior to --up or --down script execution.

 dev_idx

 On Windows, the device index of the TUN/TAP adapter (to be used in netsh.exe calls

 which sometimes just do not work right with interface names). Set prior to --up or

 --down script execution.

 foreign_option_{n}

 An option pushed via --push to a client which does not natively support it, such as

 --dhcp-option on a non-Windows system, will be recorded to this environmental vari?

 able sequence prior to --up script execution.

 ifconfig_broadcast

 The broadcast address for the virtual ethernet segment which is derived from the

 --ifconfig option when --dev tap is used. Set prior to OpenVPN calling the ifconfig

 or netsh (windows version of ifconfig) commands which normally occurs prior to --up

 script execution.

 ifconfig_ipv6_local

 The local VPN endpoint IPv6 address specified in the --ifconfig-ipv6 option (first

 parameter). Set prior to OpenVPN calling the ifconfig or code:netsh (windows ver?

 sion of ifconfig) commands which normally occurs prior to --up script execution.

 ifconfig_ipv6_netbits Page 93/113

 The prefix length of the IPv6 network on the VPN interface. Derived from the /nnn

 parameter of the IPv6 address in the --ifconfig-ipv6 option (first parameter). Set

 prior to OpenVPN calling the ifconfig or netsh (windows version of ifconfig) com?

 mands which normally occurs prior to --up script execution.

 ifconfig_ipv6_remote

 The remote VPN endpoint IPv6 address specified in the --ifconfig-ipv6 option (sec?

 ond parameter). Set prior to OpenVPN calling the ifconfig or netsh (windows version

 of ifconfig) commands which normally occurs prior to --up script execution.

 ifconfig_local

 The local VPN endpoint IP address specified in the --ifconfig option (first parame?

 ter). Set prior to OpenVPN calling the ifconfig or netsh (windows version of ifcon?

 fig) commands which normally occurs prior to --up script execution.

 ifconfig_remote

 The remote VPN endpoint IP address specified in the --ifconfig option (second pa?

 rameter) when --dev tun is used. Set prior to OpenVPN calling the ifconfig or netsh

 (windows version of ifconfig) commands which normally occurs prior to --up script

 execution.

 ifconfig_netmask

 The subnet mask of the virtual ethernet segment that is specified as the second pa?

 rameter to --ifconfig when --dev tap is being used. Set prior to OpenVPN calling

 the ifconfig or netsh (windows version of ifconfig) commands which normally occurs

 prior to --up script execution.

 ifconfig_pool_local_ip

 The local virtual IP address for the TUN/TAP tunnel taken from an --ifconfig-push

 directive if specified, or otherwise from the ifconfig pool (controlled by the

 --ifconfig-pool config file directive). Only set for --dev tun tunnels. This option

 is set on the server prior to execution of the --client-connect and --client-dis?

 connect scripts.

 ifconfig_pool_netmask

 The virtual IP netmask for the TUN/TAP tunnel taken from an --ifconfig-push direc?

 tive if specified, or otherwise from the ifconfig pool (controlled by the --ifcon?

 fig-pool config file directive). Only set for --dev tap tunnels. This option is set

 on the server prior to execution of the --client-connect and --client-disconnect Page 94/113

 scripts.

 ifconfig_pool_remote_ip

 The remote virtual IP address for the TUN/TAP tunnel taken from an --ifconfig-push

 directive if specified, or otherwise from the ifconfig pool (controlled by the

 --ifconfig-pool config file directive). This option is set on the server prior to

 execution of the --client-connect and --client-disconnect scripts.

 link_mtu

 The maximum packet size (not including the IP header) of tunnel data in UDP tunnel

 transport mode. Set prior to --up or --down script execution.

 local The --local parameter. Set on program initiation and reset on SIGHUP.

 local_port

 The local port number or name, specified by --port or --lport. Set on program ini?

 tiation and reset on SIGHUP.

 password

 The password provided by a connecting client. Set prior to --auth-user-pass-verify

 script execution only when the via-env modifier is specified, and deleted from the

 environment after the script returns.

 proto The --proto parameter. Set on program initiation and reset on SIGHUP.

 remote_{n}

 The --remote parameter. Set on program initiation and reset on SIGHUP.

 remote_port_{n}

 The remote port number, specified by --port or --rport. Set on program initiation

 and reset on SIGHUP.

 route_net_gateway

 The pre-existing default IP gateway in the system routing table. Set prior to --up

 script execution.

 route_vpn_gateway

 The default gateway used by --route options, as specified in either the

 --route-gateway option or the second parameter to --ifconfig when --dev tun is

 specified. Set prior to --up script execution.

 route_{parm}_{n}

 A set of variables which define each route to be added, and are set prior to --up

 script execution. Page 95/113

 parm will be one of network, netmask", gateway, or metric.

 n is the OpenVPN route number, starting from 1.

 If the network or gateway are resolvable DNS names, their IP address translations

 will be recorded rather than their names as denoted on the command line or configu?

 ration file.

 route_ipv6_{parm}_{n}

 A set of variables which define each IPv6 route to be added, and are set prior to

 --up script execution.

 parm will be one of network, gateway or metric. route_ipv6_network_{n} contains

 netmask as /nnn, unlike IPv4 where it is passed in a separate environment variable.

 n is the OpenVPN route number, starting from 1.

 If the network or gateway are resolvable DNS names, their IP address translations

 will be recorded rather than their names as denoted on the command line or configu?

 ration file.

 peer_cert

 Temporary file name containing the client certificate upon connection. Useful in

 conjunction with --tls-verify.

 script_context

 Set to "init" or "restart" prior to up/down script execution. For more information,

 see documentation for --up.

 script_type

 Prior to execution of any script, this variable is set to the type of script being

 run. It can be one of the following: up, down, ipchange, route-up, tls-verify,

 auth-user-pass-verify, client-connect, client-disconnect or learn-address. Set

 prior to execution of any script.

 signal The reason for exit or restart. Can be one of sigusr1, sighup, sigterm, sigint, in?

 active (controlled by --inactive option), ping-exit (controlled by --ping-exit op?

 tion), ping-restart (controlled by --ping-restart option), connection-reset (trig?

 gered on TCP connection reset), error or unknown (unknown signal). This variable

 is set just prior to down script execution.

 time_ascii

 Client connection timestamp, formatted as a human-readable time string. Set prior

 to execution of the --client-connect script. Page 96/113

 time_duration

 The duration (in seconds) of the client session which is now disconnecting. Set

 prior to execution of the --client-disconnect script.

 time_unix

 Client connection timestamp, formatted as a unix integer date/time value. Set prior

 to execution of the --client-connect script.

 tls_digest_{n} / tls_digest_sha256_{n}

 Contains the certificate SHA1 / SHA256 fingerprint, where n is the verification

 level. Only set for TLS connections. Set prior to execution of --tls-verify script.

 tls_id_{n}

 A series of certificate fields from the remote peer, where n is the verification

 level. Only set for TLS connections. Set prior to execution of --tls-verify script.

 tls_serial_{n}

 The serial number of the certificate from the remote peer, where n is the verifica?

 tion level. Only set for TLS connections. Set prior to execution of --tls-verify

 script. This is in the form of a decimal string like "933971680", which is suitable

 for doing serial-based OCSP queries (with OpenSSL, do not prepend "0x" to the

 string) If something goes wrong while reading the value from the certificate it

 will be an empty string, so your code should check that. See the con?

 trib/OCSP_check/OCSP_check.sh script for an example.

 tls_serial_hex_{n}

 Like tls_serial_{n}, but in hex form (e.g. 12:34:56:78:9A).

 tun_mtu

 The MTU of the TUN/TAP device. Set prior to --up or --down script execution.

 trusted_ip / trusted_ip6)

 Actual IP address of connecting client or peer which has been authenticated. Set

 prior to execution of --ipchange, --client-connect and --client-disconnect scripts.

 If using ipv6 endpoints (udp6, tcp6), trusted_ip6 will be set instead.

 trusted_port

 Actual port number of connecting client or peer which has been authenticated. Set

 prior to execution of --ipchange, --client-connect and --client-disconnect scripts.

 untrusted_ip / untrusted_ip6

 Actual IP address of connecting client or peer which has not been authenticated Page 97/113

 yet. Sometimes used to nmap the connecting host in a --tls-verify script to ensure

 it is firewalled properly. Set prior to execution of --tls-verify and

 --auth-user-pass-verify scripts. If using ipv6 endpoints (udp6, tcp6), un?

 trusted_ip6 will be set instead.

 untrusted_port

 Actual port number of connecting client or peer which has not been authenticated

 yet. Set prior to execution of --tls-verify and --auth-user-pass-verify scripts.

 username

 The username provided by a connecting client. Set prior to --auth-user-pass-verify

 script execution only when the via-env modifier is specified.

 X509_{n}_{subject_field}

 An X509 subject field from the remote peer certificate, where n is the verification

 level. Only set for TLS connections. Set prior to execution of --tls-verify script.

 This variable is similar to tls_id_{n} except the component X509 subject fields are

 broken out, and no string remapping occurs on these field values (except for remap?

 ping of control characters to "_"). For example, the following variables would be

 set on the OpenVPN server using the sample client certificate in sample-keys

 (client.crt). Note that the verification level is 0 for the client certificate and

 1 for the CA certificate.

 X509_0_emailAddress=me@myhost.mydomain

 X509_0_CN=Test-Client

 X509_0_O=OpenVPN-TEST

 X509_0_ST=NA

 X509_0_C=KG

 X509_1_emailAddress=me@myhost.mydomain

 X509_1_O=OpenVPN-TEST

 X509_1_L=BISHKEK

 X509_1_ST=NA

 X509_1_C=KG

 Management Interface Options

 OpenVPN provides a feature rich socket based management interface for both server and

 client mode operations.

 --management args Page 98/113

 Enable a management server on a socket-name Unix socket on those platforms support?

 ing it, or on a designated TCP port.

 Valid syntaxes:

 management socket-name unix #

 management socket-name unix pw-file # (recommended)

 management IP port # (INSECURE)

 management IP port pw-file #

 pw-file, if specified, is a password file where the password must be on first line.

 Instead of a filename it can use the keyword stdin which will prompt the user for a

 password to use when OpenVPN is starting.

 For unix sockets, the default behaviour is to create a unix domain socket that may

 be connected to by any process. Use the --management-client-user and --manage?

 ment-client-group directives to restrict access.

 The management interface provides a special mode where the TCP management link can

 operate over the tunnel itself. To enable this mode, set IP to tunnel. Tunnel mode

 will cause the management interface to listen for a TCP connection on the local VPN

 address of the TUN/TAP interface.

 BEWARE of enabling the management interface over TCP. In these cases you should

 ALWAYS make use of pw-file to password protect the management interface. Any user

 who can connect to this TCP IP:port will be able to manage and control (and inter?

 fere with) the OpenVPN process. It is also strongly recommended to set IP to

 127.0.0.1 (localhost) to restrict accessibility of the management server to local

 clients.

 While the management port is designed for programmatic control of OpenVPN by other

 applications, it is possible to telnet to the port, using a telnet client in "raw"

 mode. Once connected, type help for a list of commands.

 For detailed documentation on the management interface, see the manage?

 ment-notes.txt file in the management folder of the OpenVPN source distribution.

 --management-client

 Management interface will connect as a TCP/unix domain client to IP:port specified

 by --management rather than listen as a TCP server or on a unix domain socket.

 If the client connection fails to connect or is disconnected, a SIGTERM signal will

 be generated causing OpenVPN to quit. Page 99/113

 --management-client-auth

 Gives management interface client the responsibility to authenticate clients after

 their client certificate has been verified. See management-notes.txt in OpenVPN

 distribution for detailed notes.

 --management-client-group g

 When the management interface is listening on a unix domain socket, only allow con?

 nections from group g.

 --management-client-pf

 Management interface clients must specify a packet filter file for each connecting

 client. See management-notes.txt in OpenVPN distribution for detailed notes.

 --management-client-user u

 When the management interface is listening on a unix domain socket, only allow con?

 nections from user u.

 --management-external-cert certificate-hint

 Allows usage for external certificate instead of --cert option (client-only). cer?

 tificate-hint is an arbitrary string which is passed to a management interface

 client as an argument of NEED-CERTIFICATE notification. Requires --management-ex?

 ternal-key.

 --management-external-key args

 Allows usage for external private key file instead of --key option (client-only).

 Valid syntaxes:

 management-external-key

 management-external-key nopadding

 management-external-key pkcs1

 management-external-key nopadding pkcs1

 The optional parameters nopadding and pkcs1 signal support for different padding

 algorithms. See doc/mangement-notes.txt for a complete description of this feature.

 --management-forget-disconnect

 Make OpenVPN forget passwords when management session disconnects.

 This directive does not affect the --http-proxy username/password. It is always

 cached.

 --management-hold

 Start OpenVPN in a hibernating state, until a client of the management interface Page 100/113

 explicitly starts it with the hold release command.

 --management-log-cache n

 Cache the most recent n lines of log file history for usage by the management chan?

 nel.

 --management-query-passwords

 Query management channel for private key password and --auth-user-pass user?

 name/password. Only query the management channel for inputs which ordinarily would

 have been queried from the console.

 --management-query-proxy

 Query management channel for proxy server information for a specific --remote

 (client-only).

 --management-query-remote

 Allow management interface to override --remote directives (client-only).

 --management-signal

 Send SIGUSR1 signal to OpenVPN if management session disconnects. This is useful

 when you wish to disconnect an OpenVPN session on user logoff. For --manage?

 ment-client this option is not needed since a disconnect will always generate a

 SIGTERM.

 --management-up-down

 Report tunnel up/down events to management interface.

 Plug-in Interface Options

 OpenVPN can be extended by loading external plug-in modules at runtime. These plug-ins

 must be prebuilt and adhere to the OpenVPN Plug-In API.

 --plugin args

 Loads an OpenVPN plug-in module.

 Valid syntax:

 plugin module-name

 plugin module-name "arguments"

 The module-name needs to be the first argument, indicating the plug-in to load.

 The second argument is an optional init string which will be passed directly to the

 plug-in. If the init consists of multiple arguments it must be enclosed in dou?

 ble-quotes ("). Multiple plugin modules may be loaded into one OpenVPN process.

 The module-name argument can be just a filename or a filename with a relative or Page 101/113

 absolute path. The format of the filename and path defines if the plug-in will be

 loaded from a default plug-in directory or outside this directory.

 --plugin path Effective directory used

 ===================== =============================

 myplug.so DEFAULT_DIR/myplug.so

 subdir/myplug.so DEFAULT_DIR/subdir/myplug.so

 ./subdir/myplug.so CWD/subdir/myplug.so

 /usr/lib/my/plug.so /usr/lib/my/plug.so

 DEFAULT_DIR is replaced by the default plug-in directory, which is configured at

 the build time of OpenVPN. CWD is the current directory where OpenVPN was started

 or the directory OpenVPN have switched into via the --cd option before the --plugin

 option.

 For more information and examples on how to build OpenVPN plug-in modules, see the

 README file in the plugin folder of the OpenVPN source distribution.

 If you are using an RPM install of OpenVPN, see /usr/share/openvpn/plugin. The doc?

 umentation is in doc and the actual plugin modules are in lib.

 Multiple plugin modules can be cascaded, and modules can be used in tandem with

 scripts. The modules will be called by OpenVPN in the order that they are declared

 in the config file. If both a plugin and script are configured for the same call?

 back, the script will be called last. If the return code of the module/script con?

 trols an authentication function (such as tls-verify, auth-user-pass-verify, or

 client-connect), then every module and script must return success (0) in order for

 the connection to be authenticated.

 WARNING:

 Plug-ins may do deferred execution, meaning the plug-in will return the con?

 trol back to the main OpenVPN process and provide the plug-in result later

 on via a different thread or process. OpenVPN does NOT support multiple au?

 thentication plug-ins where more than one plugin tries to do deferred au?

 thentication. If this behaviour is detected, OpenVPN will shut down upon

 first authentication.

 Windows-Specific Options

 --allow-nonadmin TAP-adapter

 (Standalone) Set TAP-adapter to allow access from non-administrative accounts. If Page 102/113

 TAP-adapter is omitted, all TAP adapters on the system will be configured to allow

 non-admin access. The non-admin access setting will only persist for the length of

 time that the TAP-Win32 device object and driver remain loaded, and will need to be

 re-enabled after a reboot, or if the driver is unloaded and reloaded. This direc?

 tive can only be used by an administrator.

 --block-outside-dns

 Block DNS servers on other network adapters to prevent DNS leaks. This option pre?

 vents any application from accessing TCP or UDP port 53 except one inside the tun?

 nel. It uses Windows Filtering Platform (WFP) and works on Windows Vista or later.

 This option is considered unknown on non-Windows platforms and unsupported on Win?

 dows XP, resulting in fatal error. You may want to use --setenv opt or --ignore-un?

 known-option (not suitable for Windows XP) to ignore said error. Note that pushing

 unknown options from server does not trigger fatal errors.

 --cryptoapicert select-string

 (Windows/OpenSSL Only) Load the certificate and private key from the Windows Cer?

 tificate System Store.

 Use this option instead of --cert and --key.

 This makes it possible to use any smart card, supported by Windows, but also any

 kind of certificate, residing in the Cert Store, where you have access to the pri?

 vate key. This option has been tested with a couple of different smart cards (Gem?

 SAFE, Cryptoflex, and Swedish Post Office eID) on the client side, and also an im?

 ported PKCS12 software certificate on the server side.

 To select a certificate, based on a substring search in the certificate's subject:

 cryptoapicert "SUBJ:Peter Runestig"

 To select a certificate, based on certificate's thumbprint:

 cryptoapicert "THUMB:f6 49 24 41 01 b4 ..."

 The thumbprint hex string can easily be copy-and-pasted from the Windows Certifi?

 cate Store GUI.

 --dhcp-release

 Ask Windows to release the TAP adapter lease on shutdown. This option has no effect

 now, as it is enabled by default starting with OpenVPN 2.4.1.

 --dhcp-renew

 Ask Windows to renew the TAP adapter lease on startup. This option is normally un? Page 103/113

 necessary, as Windows automatically triggers a DHCP renegotiation on the TAP

 adapter when it comes up, however if you set the TAP-Win32 adapter Media Status

 property to "Always Connected", you may need this flag.

 --ip-win32 method

 When using --ifconfig on Windows, set the TAP-Win32 adapter IP address and netmask

 using method. Don't use this option unless you are also using --ifconfig.

 manual Don't set the IP address or netmask automatically. Instead output a message

 to the console telling the user to configure the adapter manually and indi?

 cating the IP/netmask which OpenVPN expects the adapter to be set to.

 dynamic [offset] [lease-time]

 Automatically set the IP address and netmask by replying to DHCP query mes?

 sages generated by the kernel. This mode is probably the "cleanest" solu?

 tion for setting the TCP/IP properties since it uses the well-known DHCP

 protocol. There are, however, two prerequisites for using this mode:

 1. The TCP/IP properties for the TAP-Win32 adapter must be set to "Obtain an

 IP address automatically", and

 2. OpenVPN needs to claim an IP address in the subnet for use as the virtual

 DHCP server address.

 By default in --dev tap mode, OpenVPN will take the normally unused first

 address in the subnet. For example, if your subnet is 192.168.4.0 netmask

 255.255.255.0, then OpenVPN will take the IP address 192.168.4.0 to use as

 the virtual DHCP server address. In --dev tun mode, OpenVPN will cause the

 DHCP server to masquerade as if it were coming from the remote endpoint.

 The optional offset parameter is an integer which is > -256 and < 256 and

 which defaults to 0. If offset is positive, the DHCP server will masquerade

 as the IP address at network address + offset. If offset is negative, the

 DHCP server will masquerade as the IP address at broadcast address + offset.

 The Windows ipconfig /all command can be used to show what Windows thinks

 the DHCP server address is. OpenVPN will "claim" this address, so make sure

 to use a free address. Having said that, different OpenVPN instantiations,

 including different ends of the same connection, can share the same virtual

 DHCP server address.

 The lease-time parameter controls the lease time of the DHCP assignment Page 104/113

 given to the TAP-Win32 adapter, and is denoted in seconds. Normally a very

 long lease time is preferred because it prevents routes involving the

 TAP-Win32 adapter from being lost when the system goes to sleep. The default

 lease time is one year.

 netsh Automatically set the IP address and netmask using the Windows command-line

 "netsh" command. This method appears to work correctly on Windows XP but not

 Windows 2000.

 ipapi Automatically set the IP address and netmask using the Windows IP Helper

 API. This approach does not have ideal semantics, though testing has indi?

 cated that it works okay in practice. If you use this option, it is best to

 leave the TCP/IP properties for the TAP-Win32 adapter in their default

 state, i.e. "Obtain an IP address automatically."

 adaptive (Default)

 Try dynamic method initially and fail over to netsh if the DHCP negotiation

 with the TAP-Win32 adapter does not succeed in 20 seconds. Such failures

 have been known to occur when certain third-party firewall packages in?

 stalled on the client machine block the DHCP negotiation used by the

 TAP-Win32 adapter. Note that if the netsh failover occurs, the TAP-Win32

 adapter TCP/IP properties will be reset from DHCP to static, and this will

 cause future OpenVPN startups using the adaptive mode to use netsh immedi?

 ately, rather than trying dynamic first.

 To "unstick" the adaptive mode from using netsh, run OpenVPN at least once

 using the dynamic mode to restore the TAP-Win32 adapter TCP/IP properties to

 a DHCP configuration.

 --pause-exit

 Put up a "press any key to continue" message on the console prior to OpenVPN pro?

 gram exit. This option is automatically used by the Windows explorer when OpenVPN

 is run on a configuration file using the right-click explorer menu.

 --register-dns

 Run ipconfig /flushdns and ipconfig /registerdns on connection initiation. This is

 known to kick Windows into recognizing pushed DNS servers.

 --route-method m

 Which method m to use for adding routes on Windows? Page 105/113

 adaptive (default)

 Try IP helper API first. If that fails, fall back to the route.exe shell

 command.

 ipapi Use IP helper API.

 exe Call the route.exe shell command.

 --service args

 Should be used when OpenVPN is being automatically executed by another program in

 such a context that no interaction with the user via display or keyboard is possi?

 ble.

 Valid syntax:

 service exit-event [0|1]

 In general, end-users should never need to explicitly use this option, as it is au?

 tomatically added by the OpenVPN service wrapper when a given OpenVPN configuration

 is being run as a service.

 exit-event is the name of a Windows global event object, and OpenVPN will continu?

 ously monitor the state of this event object and exit when it becomes signaled.

 The second parameter indicates the initial state of exit-event and normally de?

 faults to 0.

 Multiple OpenVPN processes can be simultaneously executed with the same exit-event

 parameter. In any case, the controlling process can signal exit-event, causing all

 such OpenVPN processes to exit.

 When executing an OpenVPN process using the --service directive, OpenVPN will prob?

 ably not have a console window to output status/error messages, therefore it is

 useful to use --log or --log-append to write these messages to a file.

 --show-adapters

 (Standalone) Show available TAP-Win32 adapters which can be selected using the

 --dev-node option. On non-Windows systems, the ifconfig(8) command provides similar

 functionality.

 --show-net

 (Standalone) Show OpenVPN's view of the system routing table and network adapter

 list.

 --show-net-up

 Output OpenVPN's view of the system routing table and network adapter list to the Page 106/113

 syslog or log file after the TUN/TAP adapter has been brought up and any routes

 have been added.

 --show-valid-subnets

 (Standalone) Show valid subnets for --dev tun emulation. Since the TAP-Win32 driver

 exports an ethernet interface to Windows, and since TUN devices are point-to-point

 in nature, it is necessary for the TAP-Win32 driver to impose certain constraints

 on TUN endpoint address selection.

 Namely, the point-to-point endpoints used in TUN device emulation must be the mid?

 dle two addresses of a /30 subnet (netmask 255.255.255.252).

 --tap-sleep n

 Cause OpenVPN to sleep for n seconds immediately after the TAP-Win32 adapter state

 is set to "connected".

 This option is intended to be used to troubleshoot problems with the --ifconfig and

 --ip-win32 options, and is used to give the TAP-Win32 adapter time to come up be?

 fore Windows IP Helper API operations are applied to it.

 --win-sys path

 Set the Windows system directory pathname to use when looking for system executa?

 bles such as route.exe and netsh.exe. By default, if this directive is not speci?

 fied, OpenVPN will use the SystemRoot environment variable.

 This option has changed behaviour since OpenVPN 2.3. Earlier you had to define

 --win-sys env to use the SystemRoot environment variable, otherwise it defaulted to

 C:\\WINDOWS. It is not needed to use the env keyword any more, and it will just be

 ignored. A warning is logged when this is found in the configuration file.

 --windows-driver drv

 Specifies which tun driver to use. Values are tap-windows6 (default) and wintun.

 This is a Windows-only option. wintun" requires --dev tun and the OpenVPN process

 to run elevated, or be invoked using the Interactive Service.

 Standalone Debug Options

 --show-gateway args

 (Standalone) Show current IPv4 and IPv6 default gateway and interface towards the

 gateway (if the protocol in question is enabled).

 Valid syntax:

 --show-gateway Page 107/113

 --show-gateway IPv6-target

 For IPv6 this queries the route towards ::/128, or the specified IPv6 target ad?

 dress if passed as argument. For IPv4 on Linux, Windows, MacOS and BSD it looks

 for a 0.0.0.0/0 route. If there are more specific routes, the result will not al?

 ways be matching the route of the IPv4 packets to the VPN gateway.

 Advanced Expert Options

 These are options only required when special tweaking is needed, often used when debugging

 or testing out special usage scenarios.

 --hash-size args

 Set the size of the real address hash table to r and the virtual address table to

 v.

 Valid syntax:

 hash-size r v

 By default, both tables are sized at 256 buckets.

 --bcast-buffers n

 Allocate n buffers for broadcast datagrams (default 256).

 --persist-local-ip

 Preserve initially resolved local IP address and port number across SIGUSR1 or

 --ping-restart restarts.

 --persist-remote-ip

 Preserve most recently authenticated remote IP address and port number across SI?

 GUSR1 or --ping-restart restarts.

 --prng args

 (Advanced) Change the PRNG (Pseudo-random number generator) parameters

 Valid syntaxes:

 prng alg

 prng alg nsl

 Changes the PRNG to use digest algorithm alg (default sha1), and set nsl (default

 16) to the size in bytes of the nonce secret length (between 16 and 64).

 Set alg to none to disable the PRNG and use the OpenSSL RAND_bytes function instead

 for all of OpenVPN's pseudo-random number needs.

 --rcvbuf size

 Set the TCP/UDP socket receive buffer size. Defaults to operating system default. Page 108/113

 --shaper n

 Limit bandwidth of outgoing tunnel data to n bytes per second on the TCP/UDP port.

 Note that this will only work if mode is set to p2p. If you want to limit the

 bandwidth in both directions, use this option on both peers.

 OpenVPN uses the following algorithm to implement traffic shaping: Given a shaper

 rate of n bytes per second, after a datagram write of b bytes is queued on the

 TCP/UDP port, wait a minimum of (b / n) seconds before queuing the next write.

 It should be noted that OpenVPN supports multiple tunnels between the same two

 peers, allowing you to construct full-speed and reduced bandwidth tunnels at the

 same time, routing low-priority data such as off-site backups over the reduced

 bandwidth tunnel, and other data over the full-speed tunnel.

 Also note that for low bandwidth tunnels (under 1000 bytes per second), you should

 probably use lower MTU values as well (see above), otherwise the packet latency

 will grow so large as to trigger timeouts in the TLS layer and TCP connections run?

 ning over the tunnel.

 OpenVPN allows n to be between 100 bytes/sec and 100 Mbytes/sec.

 --sndbuf size

 Set the TCP/UDP socket send buffer size. Defaults to operating system default.

 --tcp-queue-limit n

 Maximum number of output packets queued before TCP (default 64).

 When OpenVPN is tunneling data from a TUN/TAP device to a remote client over a TCP

 connection, it is possible that the TUN/TAP device might produce data at a faster

 rate than the TCP connection can support. When the number of output packets queued

 before sending to the TCP socket reaches this limit for a given client connection,

 OpenVPN will start to drop outgoing packets directed at this client.

 --txqueuelen n

 (Linux only) Set the TX queue length on the TUN/TAP interface. Currently defaults

 to operating system default.

UNSUPPORTED OPTIONS

 Options listed in this section have been removed from OpenVPN and are no longer supported

 --client-cert-not-required

 Removed in OpenVPN 2.5. This should be replaxed with --verify-client-cert none.

 --ifconfig-pool-linear Page 109/113

 Removed in OpenVPN 2.5. This should be replaced with --topology p2p.

 --key-method

 Removed in OpenVPN 2.5. This option should not be used, as using the old

 key-method weakens the VPN tunnel security. The old key-method was also only

 needed when the remote side was older than OpenVPN 2.0.

 --no-iv

 Removed in OpenVPN 2.5. This option should not be used as it weakens the VPN tun?

 nel security. This has been a NOOP option since OpenVPN 2.4.

 --no-replay

 Removed in OpenVPN 2.5. This option should not be used as it weakens the VPN tun?

 nel security.

 --ns-cert-type

 Removed in OpenVPN 2.5. The nsCertType field is no longer supported in recent

 SSL/TLS libraries. If your certificates does not include key usage and extended

 key usage fields, they must be upgraded and the --remote-cert-tls option should be

 used instead.

CONNECTION PROFILES

 Client configuration files may contain multiple remote servers which it will attempt to

 connect against. But there are some configuration options which are related to specific

 --remote options. For these use cases, connection profiles are the solution.

 By enacpulating the --remote option and related options within <connection> and </connec?

 tion>, these options are handled as a group.

 An OpenVPN client will try each connection profile sequentially until it achieves a suc?

 cessful connection.

 --remote-random can be used to initially "scramble" the connection list.

 Here is an example of connection profile usage:

 client

 dev tun

 <connection>

 remote 198.19.34.56 1194 udp

 </connection>

 <connection>

 remote 198.19.34.56 443 tcp Page 110/113

 </connection>

 <connection>

 remote 198.19.34.56 443 tcp

 http-proxy 192.168.0.8 8080

 </connection>

 <connection>

 remote 198.19.36.99 443 tcp

 http-proxy 192.168.0.8 8080

 </connection>

 persist-key

 persist-tun

 pkcs12 client.p12

 remote-cert-tls server

 verb 3

 First we try to connect to a server at 198.19.34.56:1194 using UDP. If that fails, we then

 try to connect to 198.19.34.56:443 using TCP. If that also fails, then try connecting

 through an HTTP proxy at 192.168.0.8:8080 to 198.19.34.56:443 using TCP. Finally, try to

 connect through the same proxy to a server at 198.19.36.99:443 using TCP.

 The following OpenVPN options may be used inside of a <connection> block:

 bind, connect-retry, connect-retry-max, connect-timeout, explicit-exit-notify, float,

 fragment, http-proxy, http-proxy-option, key-direction, link-mtu, local, lport, mssfix,

 mtu-disc, nobind, port, proto, remote, rport, socks-proxy, tls-auth, tls-crypt, tun-mtu

 and, tun-mtu-extra.

 A defaulting mechanism exists for specifying options to apply to all <connection> pro?

 files. If any of the above options (with the exception of remote) appear outside of a

 <connection> block, but in a configuration file which has one or more <connection> blocks,

 the option setting will be used as a default for <connection> blocks which follow it in

 the configuration file.

 For example, suppose the nobind option were placed in the sample configuration file above,

 near the top of the file, before the first <connection> block. The effect would be as if

 nobind were declared in all <connection> blocks below it.

INLINE FILE SUPPORT

 OpenVPN allows including files in the main configuration for the --ca, --cert, --dh, --ex? Page 111/113

 tra-certs, --key, --pkcs12, --secret, --crl-verify, --http-proxy-user-pass, --tls-auth,

 --auth-gen-token-secret, --tls-crypt and --tls-crypt-v2 options.

 Each inline file started by the line <option> and ended by the line </option>

 Here is an example of an inline file usage

 <cert>

 -----BEGIN CERTIFICATE-----

 [...]

 -----END CERTIFICATE-----

 </cert>

 When using the inline file feature with --pkcs12 the inline file has to be base64 encoded.

 Encoding of a .p12 file into base64 can be done for example with OpenSSL by running

 openssl base64 -in input.p12

SIGNALS

 SIGHUP Cause OpenVPN to close all TUN/TAP and network connections, restart, re-read the

 configuration file (if any), and reopen TUN/TAP and network connections.

 SIGUSR1

 Like SIGHUP`, except don't re-read configuration file, and possibly don't close and

 reopen TUN/TAP device, re-read key files, preserve local IP address/port, or pre?

 serve most recently authenticated remote IP address/port based on --persist-tun,

 --persist-key, --persist-local-ip and --persist-remote-ip options respectively (see

 above).

 This signal may also be internally generated by a timeout condition, governed by

 the --ping-restart option.

 This signal, when combined with --persist-remote-ip, may be sent when the underly?

 ing parameters of the host's network interface change such as when the host is a

 DHCP client and is assigned a new IP address. See --ipchange for more information.

 SIGUSR2

 Causes OpenVPN to display its current statistics (to the syslog file if --daemon is

 used, or stdout otherwise).

 SIGINT, SIGTERM

 Causes OpenVPN to exit gracefully.

FAQ

 https://community.openvpn.net/openvpn/wiki/FAQ Page 112/113

HOWTO

 For a more comprehensive guide to setting up OpenVPN in a production setting, see the

 OpenVPN HOWTO at https://openvpn.net/community-resources/how-to/

PROTOCOL

 For a description of OpenVPN's underlying protocol, see

 https://openvpn.net/community-resources/openvpn-protocol/

WEB

 OpenVPN's web site is at https://openvpn.net/

 Go here to download the latest version of OpenVPN, subscribe to the mailing lists, read

 the mailing list archives, or browse the SVN repository.

BUGS

 Report all bugs to the OpenVPN team info@openvpn.net

SEE ALSO

 openvpn-examples(5), dhcpcd(8), ifconfig(8), openssl(1), route(8), scp(1) ssh(1)

NOTES

 This product includes software developed by the OpenSSL Project (https://www.openssl.org/)

 For more information on the TLS protocol, see http://www.ietf.org/rfc/rfc2246.txt

 For more information on the LZO real-time compression library see

 https://www.oberhumer.com/opensource/lzo/

COPYRIGHT

 Copyright (C) 2002-2020 OpenVPN Inc This program is free software; you can redistribute it

 and/or modify it under the terms of the GNU General Public License version 2 as published

 by the Free Software Foundation.

AUTHORS

 James Yonan james@openvpn.net

 OPENVPN(8)

Page 113/113

