
Rocky Enterprise Linux 9.2 Manual Pages on command 'org.freedesktop.machine1.5'

$ man org.freedesktop.machine1.5

ORG.FREEDESKTOP.MACHINE1(5) org.freedesktop.machine1 ORG.FREEDESKTOP.MACHINE1(5)

NAME

 org.freedesktop.machine1 - The D-Bus interface of systemd-machined

INTRODUCTION

 systemd-machined.service(8) is a system service that keeps track of locally running

 virtual machines and containers. This page describes the D-Bus interface.

THE MANAGER OBJECT

 The service exposes the following interfaces on the Manager object on the bus:

 node /org/freedesktop/machine1 {

 interface org.freedesktop.machine1.Manager {

 methods:

 GetMachine(in s name,

 out o machine);

 GetImage(in s name,

 out o image);

 GetMachineByPID(in u pid,

 out o machine);

 ListMachines(out a(ssso) machines);

 ListImages(out a(ssbttto) images);

 CreateMachine(in s name,

 in ay id,

 in s service,

 in s class, Page 1/11

 in u leader,

 in s root_directory,

 in a(sv) scope_properties,

 out o path);

 CreateMachineWithNetwork(in s name,

 in ay id,

 in s service,

 in s class,

 in u leader,

 in s root_directory,

 in ai ifindices,

 in a(sv) scope_properties,

 out o path);

 RegisterMachine(in s name,

 in ay id,

 in s service,

 in s class,

 in u leader,

 in s root_directory,

 out o path);

 RegisterMachineWithNetwork(in s name,

 in ay id,

 in s service,

 in s class,

 in u leader,

 in s root_directory,

 in ai ifindices,

 out o path);

 UnregisterMachine(in s name);

 TerminateMachine(in s id);

 KillMachine(in s name,

 in s who,

 in i signal); Page 2/11

 GetMachineAddresses(in s name,

 out a(iay) addresses);

 GetMachineOSRelease(in s name,

 out a{ss} fields);

 OpenMachinePTY(in s name,

 out h pty,

 out s pty_path);

 OpenMachineLogin(in s name,

 out h pty,

 out s pty_path);

 OpenMachineShell(in s name,

 in s user,

 in s path,

 in as args,

 in as environment,

 out h pty,

 out s pty_path);

 BindMountMachine(in s name,

 in s source,

 in s destination,

 in b read_only,

 in b mkdir);

 CopyFromMachine(in s name,

 in s source,

 in s destination);

 CopyToMachine(in s name,

 in s source,

 in s destination);

 OpenMachineRootDirectory(in s name,

 out h fd);

 GetMachineUIDShift(in s name,

 out u shift);

 RemoveImage(in s name); Page 3/11

 RenameImage(in s name,

 in s new_name);

 CloneImage(in s name,

 in s new_name,

 in b read_only);

 MarkImageReadOnly(in s name,

 in b read_only);

 GetImageHostname(in s name,

 out s hostname);

 GetImageMachineID(in s name,

 out ay id);

 GetImageMachineInfo(in s name,

 out a{ss} machine_info);

 GetImageOSRelease(in s name,

 out a{ss} os_release);

 SetPoolLimit(in t size);

 SetImageLimit(in s name,

 in t size);

 CleanPool(in s mode,

 out a(st) images);

 MapFromMachineUser(in s name,

 in u uid_inner,

 out u uid_outer);

 MapToMachineUser(in u uid_outer,

 out s machine_name,

 out o machine_path,

 out u uid_inner);

 MapFromMachineGroup(in s name,

 in u gid_inner,

 out u gid_outer);

 MapToMachineGroup(in u gid_outer,

 out s machine_name,

 out o machine_path, Page 4/11

 out u gid_inner);

 signals:

 MachineNew(s machine,

 o path);

 MachineRemoved(s machine,

 o path);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s PoolPath = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t PoolUsage = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t PoolLimit = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 GetMachine() may be used to get the machine object path for the machine with the specified

 name. Similarly, GetMachineByPID() gets the machine object the specified PID belongs to if

 there is any.

 GetImage() may be used to get the image object path of the image with the specified name.

 ListMachines() returns an array of all currently registered machines. The structures in

 the array consist of the following fields: machine name, machine class, an identifier for

 the service that registered the machine and the machine object path.

 ListImages() returns an array of all currently known images. The structures in the array

 consist of the following fields: image name, type, read-only flag, creation time,

 modification time, current disk space, and image object path.

 CreateMachine() may be used to register a new virtual machine or container with

 systemd-machined, creating a scope unit for it. It accepts the following arguments: a

 machine name chosen by the registrar, an optional UUID as a 32 byte array, a string that

 identifies the service that registers the machine, a class string, the PID of the leader Page 5/11

 process of the machine, an optional root directory of the container, and an array of

 additional properties to use for the scope registration. The virtual machine name must be

 suitable as a hostname, and hence should follow the usual DNS hostname rules, as well as

 the Linux hostname restrictions. Specifically, only 7 bit ASCII is permitted, a maximum

 length of 64 characters is enforced, only characters from the set "a-zA-Z0-9-_." are

 allowed, the name may not begin with a dot, and it may not contain two dots immediately

 following each other. Container and VM managers should ideally use the hostname used

 internally in the machine for this parameter. This recommendation is made in order to make

 the machine name naturally resolvable using nss-mymachines(8). If a container manager

 needs to embed characters outside of the indicated range, escaping is required, possibly

 using "_" as the escape character. Another (somewhat natural) option would be to utilize

 Internet IDNA encoding. The UUID is passed as a 32 byte array or, if no suitable UUID is

 available, an empty array (zero length) or zeroed out array shall be passed. The UUID

 should identify the virtual machine/container uniquely and should ideally be the same UUID

 that /etc/machine-id in the VM/container is initialized from. The service string can be

 free-form, but it is recommended to pass a short lowercase identifier like

 "systemd-nspawn", "libvirt-lxc" or similar. The class string should be either "container"

 or "vm" indicating whether the machine to register is of the respective class. The leader

 PID should be the host PID of the init process of the container or the encapsulating

 process of the VM. If the root directory of the container is known and available in the

 host's hierarchy, it should be passed. Otherwise, pass the empty string instead. Finally,

 the scope properties are passed as array in the same way as to PID1's StartTransientUnit()

 method. Calling this method will internally register a transient scope unit for the

 calling client (utilizing the passed scope_properties) and move the leader PID into it.

 The method returns an object path for the registered machine object that implements the

 org.freedesktop.machine1.Machine interface (see below). Also see the New Control Group

 Interfaces[1] for details about scope units and how to alter resource control settings on

 the created machine at runtime.

 RegisterMachine() is similar to CreateMachine(). However, it only registers a machine and

 does not create a scope unit for it. Instead, the caller's unit is registered. We

 recommend to only use this method for container or VM managers that are run multiple

 times, one instance for each container/VM they manage, and are invoked as system services.

 CreateMachineWithNetwork() and RegisterMachineWithNetwork() are similar to CreateMachine() Page 6/11

 and RegisterMachine() but take an extra argument: an array of network interface indices

 that point towards the virtual machine or container. The interface indices should

 reference one or more network interfaces on the host that can be used to communicate with

 the guest. Commonly, the passed interface index refers to the host side of a "veth" link

 (in case of containers), a "tun"/"tap" link (in case of VMs), or the host side of a bridge

 interface that bridges access to the VM/container interfaces. Specifying this information

 is useful to enable support for link-local IPv6 communication to the machines since the

 scope field of sockaddr_in6 can be initialized by the specified ifindex. nss-

 mymachines(8) makes use of this information.

 KillMachine() sends a UNIX signal to the machine's processes. As its arguments, it takes a

 machine name (as originally passed to CreateMachine() or returned by ListMachines()), an

 identifier that specifies what precisely to send the signal to (either "leader" or "all"),

 and a numeric UNIX signal integer.

 TerminateMachine() terminates a virtual machine, killing its processes. It takes a machine

 name as its only argument.

 GetMachineAddresses() retrieves the IP addresses of a container. This method returns an

 array of pairs consisting of an address family specifier (AF_INET or AF_INET6) and a byte

 array containing the addresses. This is only supported for containers that make use of

 network namespacing.

 GetMachineOSRelease() retrieves the OS release information of a container. This method

 returns an array of key value pairs read from the os-release(5) file in the container and

 is useful to identify the operating system used in a container.

 OpenMachinePTY() allocates a pseudo TTY in the container and returns a file descriptor and

 its path. This is equivalent to transitioning into the container and invoking

 posix_openpt(3).

 OpenMachineLogin() allocates a pseudo TTY in the container and ensures that a getty login

 prompt of the container is running on the other end. It returns the file descriptor of the

 PTY and the PTY path. This is useful for acquiring a pty with a login prompt from the

 container.

 OpenMachineShell() allocates a pseudo TTY in the container, as the specified user, and

 invokes the executable at the specified path with a list of arguments (starting from

 argv[0]) and an environment block. It then returns the file descriptor of the PTY and the

 PTY path. Page 7/11

 BindMountMachine() bind mounts a file or directory from the host into the container. Its

 arguments consist of a machine name, the source directory on the host, the destination

 directory in the container, and two booleans, one indicating whether the bind mount shall

 be read-only, the other indicating whether the destination mount point shall be created

 first, if it is missing.

 CopyFromMachine() copies files or directories from a container into the host. It takes a

 container name, a source directory in the container and a destination directory on the

 host as arguments. CopyToMachine() does the opposite and copies files from a source

 directory on the host into a destination directory in the container.

 RemoveImage() removes the image with the specified name.

 RenameImage() renames the specified image.

 CloneImage() clones the specified image under a new name. It also takes a boolean argument

 indicating whether the resulting image shall be read-only or not.

 MarkImageReadOnly() toggles the read-only flag of an image.

 SetPoolLimit() sets an overall quota limit on the pool of images.

 SetImageLimit() sets a per-image quota limit.

 MapFromMachineUser(), MapToMachineUser(), MapFromMachineGroup(), and MapToMachineGroup()

 may be used to map UIDs/GIDs from the host user namespace to a container user namespace or

 vice versa.

 Signals

 MachineNew and MachineRemoved are sent whenever a new machine is registered or removed.

 These signals carry the machine name and the object path to the corresponding

 org.freedesktop.machine1.Machine interface (see below).

 Properties

 PoolPath specifies the file system path where images are written to.

 PoolUsage specifies the current usage size of the image pool in bytes.

 PoolLimit specifies the size limit of the image pool in bytes.

MACHINE OBJECTS

 node /org/freedesktop/machine1/machine/rawhide {

 interface org.freedesktop.machine1.Machine {

 methods:

 Terminate();

 Kill(in s who, Page 8/11

 in i signal);

 GetAddresses(out a(iay) addresses);

 GetOSRelease(out a{ss} fields);

 GetUIDShift(out u shift);

 OpenPTY(out h pty,

 out s pty_path);

 OpenLogin(out h pty,

 out s pty_path);

 OpenShell(in s user,

 in s path,

 in as args,

 in as environment,

 out h pty,

 out s pty_path);

 BindMount(in s source,

 in s destination,

 in b read_only,

 in b mkdir);

 CopyFrom(in s source,

 in s destination);

 CopyTo(in s source,

 in s destination);

 OpenRootDirectory(out h fd);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Name = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly ay Id = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t Timestamp = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t TimestampMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const") Page 9/11

 readonly s Service = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Unit = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u Leader = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Class = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RootDirectory = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly ai NetworkInterfaces = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s State = '...';

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate() and Kill() terminate/kill the machine. These methods take the same arguments

 as TerminateMachine() and KillMachine() on the Manager interface, respectively.

 GetAddresses() and GetOSRelease() get the IP address and OS release information from the

 machine. These methods take the same arguments as GetMachineAddresses() and

 GetMachineOSRelease() of the Manager interface, respectively.

 Properties

 Name is the machine name as it was passed in during registration with CreateMachine() on

 the manager object.

 Id is the machine UUID.

 Timestamp and TimestampMonotonic are the realtime and monotonic timestamps when the

 virtual machines where created in microseconds since the epoch.

 Service contains a short string identifying the registering service as passed in during

 registration of the machine.

 Unit is the systemd scope or service unit name for the machine. Page 10/11

 Leader is the PID of the leader process of the machine.

 Class is the class of the machine and is either the string "vm" (for real VMs based on

 virtualized hardware) or "container" (for light-weight userspace virtualization sharing

 the same kernel as the host).

 RootDirectory is the root directory of the container if it is known and applicable or the

 empty string.

 NetworkInterfaces contains an array of network interface indices that point towards the

 container, the VM or the host. For details about this information see the description of

 CreateMachineWithNetwork() above.

 State is the state of the machine and is one of "opening", "running", or "closing". Note

 that the state machine is not considered part of the API and states might be removed or

 added without this being considered API breakage.

EXAMPLES

 Example 1. Introspect org.freedesktop.machine1.Manager on the bus

 $ gdbus introspect --system \

 --dest org.freedesktop.machine1 \

 --object-path /org/freedesktop/machine1

 Example 2. Introspect org.freedesktop.machine1.Machine on the bus

 $ gdbus introspect --system \

 --dest org.freedesktop.machine1 \

 --object-path /org/freedesktop/machine1/machine/rawhide

VERSIONING

 These D-Bus interfaces follow the usual interface versioning guidelines[2].

NOTES

 1. New Control Group Interfaces

 https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface/

 2. the usual interface versioning guidelines

 http://0pointer.de/blog/projects/versioning-dbus.html

systemd 249 ORG.FREEDESKTOP.MACHINE1(5)

Page 11/11

