
Rocky Enterprise Linux 9.2 Manual Pages on command 'package-lock-json.5'

$ man package-lock-json.5

PACKAGE-LOCK.JSON(5) PACKAGE-LOCK.JSON(5)

NAME

 package-lock.json - A manifestation of the manifest

 Description

 package-lock.json is automatically generated for any operations where npm modifies either

 the node_modules tree, or package.json. It describes the exact tree that was generated,

 such that subsequent installs are able to generate identical trees, regardless of interme?

 diate dependency updates.

 This file is intended to be committed into source repositories, and serves various pur?

 poses:

 ? Describe a single representation of a dependency tree such that teammates, deployments,

 and continuous integration are guaranteed to install exactly the same dependencies.

 ? Provide a facility for users to "time-travel" to previous states of node_modules without

 having to commit the directory itself.

 ? Facilitate greater visibility of tree changes through readable source control diffs.

 ? Optimize the installation process by allowing npm to skip repeated metadata resolutions

 for previously-installed packages.

 ? As of npm v7, lockfiles include enough information to gain a complete picture of the

 package tree, reducing the need to read package.json files, and allowing for significant

 performance improvements.

 package-lock.json vs npm-shrinkwrap.json

 Both of these files have the same format, and perform similar functions in the root of a

 project. Page 1/5

 The difference is that package-lock.json cannot be published, and it will be ignored if

 found in any place other than the root project.

 In contrast, npm help npm-shrinkwrap.json allows publication, and defines the dependency

 tree from the point encountered. This is not recommended unless deploying a CLI tool or

 otherwise using the publication process for producing production packages.

 If both package-lock.json and npm-shrinkwrap.json are present in the root of a project,

 npm-shrinkwrap.json will take precedence and package-lock.json will be ignored.

 Hidden Lockfiles

 In order to avoid processing the node_modules folder repeatedly, npm as of v7 uses a "hid?

 den" lockfile present in node_modules/.package-lock.json. This contains information about

 the tree, and is used in lieu of reading the entire node_modules hierarchy provided that

 the following conditions are met:

 ? All package folders it references exist in the node_modules hierarchy.

 ? No package folders exist in the node_modules hierarchy that are not listed in the lock?

 file.

 ? The modified time of the file is at least as recent as all of the package folders it

 references.

 That is, the hidden lockfile will only be relevant if it was created as part of the most

 recent update to the package tree. If another CLI mutates the tree in any way, this will

 be detected, and the hidden lockfile will be ignored.

 Note that it is possible to manually change the contents of a package in such a way that

 the modified time of the package folder is unaffected. For example, if you add a file to

 node_modules/foo/lib/bar.js, then the modified time on node_modules/foo will not reflect

 this change. If you are manually editing files in node_modules, it is generally best to

 delete the file at node_modules/.package-lock.json.

 As the hidden lockfile is ignored by older npm versions, it does not contain the backwards

 compatibility affordances present in "normal" lockfiles. That is, it is lockfileVersion:

 3, rather than lockfileVersion: 2.

 Handling Old Lockfiles

 When npm detects a lockfile from npm v6 or before during the package installation process,

 it is automatically updated to fetch missing information from either the node_modules tree

 or (in the case of empty node_modules trees or very old lockfile formats) the npm reg?

 istry. Page 2/5

 File Format

 name

 The name of the package this is a package-lock for. This will match what's in pack?

 age.json.

 version

 The version of the package this is a package-lock for. This will match what's in pack?

 age.json.

 lockfileVersion

 An integer version, starting at 1 with the version number of this document whose semantics

 were used when generating this package-lock.json.

 Note that the file format changed significantly in npm v7 to track information that would

 have otherwise required looking in node_modules or the npm registry. Lockfiles generated

 by npm v7 will contain lockfileVersion: 2.

 ? No version provided: an "ancient" shrinkwrap file from a version of npm prior to npm v5.

 ? 1: The lockfile version used by npm v5 and v6.

 ? 2: The lockfile version used by npm v7, which is backwards compatible to v1 lockfiles.

 ? 3: The lockfile version used by npm v7, without backwards compatibility affordances.

 This is used for the hidden lockfile at node_modules/.package-lock.json, and will likely

 be used in a future version of npm, once support for npm v6 is no longer relevant.

 npm will always attempt to get whatever data it can out of a lockfile, even if it is not a

 version that it was designed to support.

 packages

 This is an object that maps package locations to an object containing the information

 about that package.

 The root project is typically listed with a key of "", and all other packages are listed

 with their relative paths from the root project folder.

 Package descriptors have the following fields:

 ? version: The version found in package.json

 ? resolved: The place where the package was actually resolved from. In the case of pack?

 ages fetched from the registry, this will be a url to a tarball. In the case of git de?

 pendencies, this will be the full git url with commit sha. In the case of link depen?

 dencies, this will be the location of the link target. registry.npmjs.org is a magic

 value meaning "the currently configured registry". Page 3/5

 ? integrity: A sha512 or sha1 Standard Subresource Integrity https://w3c.github.io/we?

 bappsec/specs/subresourceintegrity/ string for the artifact that was unpacked in this

 location.

 ? link: A flag to indicate that this is a symbolic link. If this is present, no other

 fields are specified, since the link target will also be included in the lockfile.

 ? dev, optional, devOptional: If the package is strictly part of the devDependencies tree,

 then dev will be true. If it is strictly part of the optionalDependencies tree, then

 optional will be set. If it is both a dev dependency and an optional dependency of a

 non-dev dependency, then devOptional will be set. (An optional dependency of a dev de?

 pendency will have both dev and optional set.)

 ? inBundle: A flag to indicate that the package is a bundled dependency.

 ? hasInstallScript: A flag to indicate that the package has a preinstall, install, or

 postinstall script.

 ? hasShrinkwrap: A flag to indicate that the package has an npm-shrinkwrap.json file.

 ? bin, license, engines, dependencies, optionalDependencies: fields from package.json

 dependencies

 Legacy data for supporting versions of npm that use lockfileVersion: 1. This is a mapping

 of package names to dependency objects. Because the object structure is strictly hierar?

 chical, symbolic link dependencies are somewhat challenging to represent in some cases.

 npm v7 ignores this section entirely if a packages section is present, but does keep it up

 to date in order to support switching between npm v6 and npm v7.

 Dependency objects have the following fields:

 ? version: a specifier that varies depending on the nature of the package, and is usable

 in fetching a new copy of it.

 ? bundled dependencies: Regardless of source, this is a version number that is purely

 for informational purposes.

 ? registry sources: This is a version number. (eg, 1.2.3)

 ? git sources: This is a git specifier with resolved committish. (eg, git+https://exam?

 ple.com/foo/bar#115311855adb0789a0466714ed48a1499ffea97e)

 ? http tarball sources: This is the URL of the tarball. (eg, https://example.com/exam?

 ple-1.3.0.tgz)

 ? local tarball sources: This is the file URL of the tarball. (eg file:///opt/stor?

 age/example-1.3.0.tgz) Page 4/5

 ? local link sources: This is the file URL of the link. (eg file:libs/our-module)

 ? integrity: A sha512 or sha1 Standard Subresource Integrity https://w3c.github.io/we?

 bappsec/specs/subresourceintegrity/ string for the artifact that was unpacked in this

 location. For git dependencies, this is the commit sha.

 ? resolved: For registry sources this is path of the tarball relative to the registry URL.

 If the tarball URL isn't on the same server as the registry URL then this is a complete

 URL. registry.npmjs.org is a magic value meaning "the currently configured registry".

 ? bundled: If true, this is the bundled dependency and will be installed by the parent

 module. When installing, this module will be extracted from the parent module during

 the extract phase, not installed as a separate dependency.

 ? dev: If true then this dependency is either a development dependency ONLY of the top

 level module or a transitive dependency of one. This is false for dependencies that are

 both a development dependency of the top level and a transitive dependency of a non-de?

 velopment dependency of the top level.

 ? optional: If true then this dependency is either an optional dependency ONLY of the top

 level module or a transitive dependency of one. This is false for dependencies that are

 both an optional dependency of the top level and a transitive dependency of a non-op?

 tional dependency of the top level.

 ? requires: This is a mapping of module name to version. This is a list of everything

 this module requires, regardless of where it will be installed. The version should

 match via normal matching rules a dependency either in our dependencies or in a level

 higher than us.

 ? dependencies: The dependencies of this dependency, exactly as at the top level.

 See also

 ? npm help shrinkwrap

 ? npm help npm-shrinkwrap.json

 ? npm help package.json

 ? npm help install

 undefined NaN PACKAGE-LOCK.JSON(5)

Page 5/5

