PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'package-lock-json.5'
$ man package-lock-json.5
PACKAGE-LOCK.JSON(5) PACKAGE-LOCK.JSON(5)
NAME
package-lock.json - A manifestation of the manifest
Description

package-lock.json is automatically generated for any operations where npm modifies either

the node_modules tree, or package.json. It describes the exact tree that was generated,

such that subsequent installs are able to generate identical trees, regardless of interme?
diate dependency updates.

This file is intended to be committed into source repositories, and serves various pur?

poses:

? Describe a single representation of a dependency tree such that teammates, deployments,
and continuous integration are guaranteed to install exactly the same dependencies.

? Provide a facility for users to "time-travel" to previous states of node_modules without
having to commit the directory itself.

? Facilitate greater visibility of tree changes through readable source control diffs.

? Optimize the installation process by allowing npm to skip repeated metadata resolutions
for previously-installed packages.

? As of npm v7, lockfiles include enough information to gain a complete picture of the
package tree, reducing the need to read package.json files, and allowing for significant
performance improvements.

package-lock.json vs npm-shrinkwrap.json
Both of these files have the same format, and perform similar functions in the root of a

project. Page 1/5



The difference is that package-lock.json cannot be published, and it will be ignored if
found in any place other than the root project.
In contrast, npm help npm-shrinkwrap.json allows publication, and defines the dependency
tree from the point encountered. This is not recommended unless deploying a CLI tool or
otherwise using the publication process for producing production packages.
If both package-lock.json and npm-shrinkwrap.json are present in the root of a project,
npm-shrinkwrap.json will take precedence and package-lock.json will be ignored.

Hidden Lockfiles
In order to avoid processing the node_modules folder repeatedly, npm as of v7 uses a "hid?
den" lockfile present in node_modules/.package-lock.json. This contains information about
the tree, and is used in lieu of reading the entire node_modules hierarchy provided that
the following conditions are met:
? All package folders it references exist in the node_modules hierarchy.
? No package folders exist in the node_modules hierarchy that are not listed in the lock?

file.
? The modified time of the file is at least as recent as all of the package folders it
references.

That is, the hidden lockfile will only be relevant if it was created as part of the most
recent update to the package tree. If another CLI mutates the tree in any way, this will
be detected, and the hidden lockfile will be ignored.
Note that it is possible to manually change the contents of a package in such a way that
the modified time of the package folder is unaffected. For example, if you add a file to
node_modules/fool/lib/bar.js, then the modified time on node_modules/foo will not reflect
this change. If you are manually editing files in node_modules, it is generally best to
delete the file at node_modules/.package-lock.json.
As the hidden lockfile is ignored by older npm versions, it does not contain the backwards
compatibility affordances presentin "normal” lockfiles. That is, it is lockfileVersion:
3, rather than lockfileVersion: 2.

Handling Old Lockfiles
When npm detects a lockfile from npm v6 or before during the package installation process,
it is automatically updated to fetch missing information from either the node_modules tree
or (in the case of empty node_modules trees or very old lockfile formats) the npm reg?

istry. Page 2/5



File Format

name
The name of the package this is a package-lock for. This will match what's in pack?
age.json.

version
The version of the package this is a package-lock for. This will match what's in pack?
age.json.

lockfileVersion
An integer version, starting at 1 with the version number of this document whose semantics
were used when generating this package-lock.json.
Note that the file format changed significantly in npm v7 to track information that would
have otherwise required looking in node_modules or the npm registry. Lockfiles generated
by npm v7 will contain lockfileVersion: 2.
? No version provided: an "ancient" shrinkwrap file from a version of npm prior to npm v5.
? 1: The lockfile version used by npm v5 and v6.
? 2: The lockfile version used by npm v7, which is backwards compatible to v1 lockfiles.
? 3: The lockfile version used by npm v7, without backwards compatibility affordances.

This is used for the hidden lockfile at node_modules/.package-lock.json, and will likely
be used in a future version of npm, once support for npm v6 is no longer relevant.

npm will always attempt to get whatever data it can out of a lockfile, even if it is not a
version that it was designed to support.

packages
This is an object that maps package locations to an object containing the information
about that package.

The root project is typically listed with a key of ™, and all other packages are listed

with their relative paths from the root project folder.

Package descriptors have the following fields:

? version: The version found in package.json

? resolved: The place where the package was actually resolved from. In the case of pack?
ages fetched from the registry, this will be a url to a tarball. In the case of git de?
pendencies, this will be the full git url with commit sha. In the case of link depen?

dencies, this will be the location of the link target. registry.npmjs.org is a magic

value meaning "the currently configured registry". Page 3/5



? integrity: A sha512 or shal Standard Subresource Integrity https://w3c.github.io/we?
bappsec/specs/subresourceintegrity/ string for the artifact that was unpacked in this
location.

? link: A flag to indicate that this is a symbolic link. If this is present, no other
fields are specified, since the link target will also be included in the lockfile.

? dev, optional, devOptional: If the package is strictly part of the devDependencies tree,
then dev will be true. Ifitis strictly part of the optionalDependencies tree, then
optional will be set. Ifit is both a dev dependency and an optional dependency of a
non-dev dependency, then devOptional will be set. (An optional dependency of a dev de?
pendency will have both dev and optional set.)

? inBundle: A flag to indicate that the package is a bundled dependency.

? haslinstallScript: A flag to indicate that the package has a preinstall, install, or
postinstall script.

? hasShrinkwrap: A flag to indicate that the package has an npm-shrinkwrap.json file.

? bin, license, engines, dependencies, optionalDependencies: fields from package.json

dependencies

Legacy data for supporting versions of npm that use lockfileVersion: 1. This is a mapping

of package names to dependency objects. Because the object structure is strictly hierar?

chical, symbolic link dependencies are somewhat challenging to represent in some cases.
npm v7 ignores this section entirely if a packages section is present, but does keep it up
to date in order to support switching between npm v6 and npm v7.

Dependency objects have the following fields:

? version: a specifier that varies depending on the nature of the package, and is usable
in fetching a new copy of it.

? bundled dependencies: Regardless of source, this is a version number that is purely
for informational purposes.

? registry sources: This is a version number. (eg, 1.2.3)

? git sources: This is a git specifier with resolved committish. (eg, git+https://exam?
ple.com/foo/bar#115311855adb0789a0466714ed48al1499ffea97e)

? http tarball sources: This is the URL of the tarball. (eg, https://example.com/exam?
ple-1.3.0.tgz)

? local tarball sources: This is the file URL of the tarball. (eg file:///opt/stor?

age/example-1.3.0.tgz) Page 4/5



? local link sources: This is the file URL of the link. (eg file:libs/our-module)

? integrity: A sha512 or shal Standard Subresource Integrity https://w3c.github.io/we?
bappsec/specs/subresourceintegrity/ string for the artifact that was unpacked in this
location. For git dependencies, this is the commit sha.

? resolved: For registry sources this is path of the tarball relative to the registry URL.

If the tarball URL isn't on the same server as the registry URL then this is a complete
URL. registry.npmjs.org is a magic value meaning "the currently configured registry".

? bundled: If true, this is the bundled dependency and will be installed by the parent
module. When installing, this module will be extracted from the parent module during
the extract phase, not installed as a separate dependency.

? dev: If true then this dependency is either a development dependency ONLY of the top
level module or a transitive dependency of one. This is false for dependencies that are
both a development dependency of the top level and a transitive dependency of a non-de?
velopment dependency of the top level.

? optional: If true then this dependency is either an optional dependency ONLY of the top
level module or a transitive dependency of one. This is false for dependencies that are
both an optional dependency of the top level and a transitive dependency of a non-op?
tional dependency of the top level.

? requires: This is a mapping of module name to version. This is a list of everything
this module requires, regardless of where it will be installed. The version should
match via normal matching rules a dependency either in our dependencies or in a level
higher than us.

? dependencies: The dependencies of this dependency, exactly as at the top level.

See also

? npm help shrinkwrap

? npm help npm-shrinkwrap.json
? npm help package.json

? npm help install

undefined NaN PACKAGE-LOCK.JSON(5)

Page 5/5



